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Introduction to 
Distributed Computing
By Jason Altieri

The rise of big data has required changes to the way 
that data is processed. Distributed computing is one 
approach used to meet expanding processing capacity 

needs driven by continually growing datasets. In Designing 
Data Intensive Applications Martin Kleppmann states, “Many 
applications today are data-intensive, as opposed to com-
pute-intensive. Raw CPU power is rarely a limiting factor for 
these applications—bigger problems are usually the amount of 
data, the complexity of data, and the speed at which it is chang-
ing.”1 Where single machines or relational databases used to 
be sufficient for data processing and analysis, obtaining single 
machines that can handle today’s quantity of data has become 
cost-prohibitive if not impossible. New software and processes 
have become necessary to allow efficient and effective use of 
this data. 

In the actuarial world, these technologies have become import-
ant to support more advanced modelling on larger and more 
complicated data. The actuarial profession has been evolving 
to include more predictive analytics and these methods often 
require more compute power than traditional actuarial mod-
elling. In addition, even the datasets used to support more 
traditional actuarial work have grown in recent years. For 
example, large reference datasets used for benchmarking and 
government databases, such as Medicare or Medicaid claims can 
be large. This combination of factors makes an understanding 
of these new technologies important for actuaries working in a 
modern data environment.

INTRODUCTION TO PARALLEL 
DISTRIBUTED COMPUTING 
Distributed computing is a framework for handling large quan-
tities of data and complex processes by increasing the amount 
of hardware applied to a task. Instead of using a single machine, 
a distributed computing system allows a network of machines 
to work together to complete a process. There are two ways to 
leverage the network to complete the process, which is referred 
to as parallelization. First, different nodes within the network can 
simultaneously work on different tasks in the process, as long as 
the tasks are not linearly dependent. Second, by taking a large 

task and splitting it up into smaller self-contained pieces, multiple 
nodes on the network can contribute to the completion of the 
same task. In practice, both of these approaches can be used within 
the same process provided there is a sufficiently large network.

Several factors have contributed to the rise of distributed com-
puting, including increasingly large datasets, the popularity of 
statistical learning, and affordable access to hardware (often via 
cloud providers). Increasingly large datasets have made it more 
difficult to perform analysis on single computers, both because 
of memory and time constraints. Even if a single machine is 
capable of processing a large dataset it may be too slow, espe-
cially in industries that require the ability to react quickly to 
new data. Many common statistical learning algorithms applied 
to these large datasets also lend themselves to a distributed com-
puting framework. Training these models, particularly on large 
datasets, can be memory and processing intensive. Additionally, 
some models benefit from running many iterations of the same 
model, and almost all statistical learning techniques utilize 
resampling to tune their accuracy. Both of these factors make 
statistical learning algorithms a perfect fit for parallelization.  
Finally, distributed computing has benefited from easier access 
to hardware. The rise of cloud computing resources has made 
large amounts of machine time and power broadly available 
to both companies and individuals. Cloud computing has also 
enabled users to access a large network of machines for just a 
limited amount of time and only pay for what they use.  These 
factors, among others, have helped make distributed computing 
a popular tool for people who work with large quantities of data.

BENEFITS AND DRAWBACKS OF 
A DISTRIBUTED SYSTEM 
Like with most technologies, there are both benefits and 
drawbacks to the use of distributed computing. Some of the 
advantages are:

• Distributed computing scales up effectively to very large 
datasets,

• acquiring large amounts of memory or processing power 
may be more affordable by networking a series of less 
expensive machines than buying one sufficiently powerful 
machine,

• externally maintained infrastructure such as cloud comput-
ing platforms can be leveraged and

• can decrease processing time, especially in non-linear 
pipelines.

The cost savings can be significant, particularly for a large clus-
ter. According to Designing Data Intensive Applications “…cost 
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is super-linear: a machine with twice as many CPUs, twice as 
much RAM and disk typically costs significantly more than 
twice as much.”2 However, there are disadvantages that can 
make distributed computing impractical to implement:

• Not all algorithms are good candidates for parallelization,

• lack of efficient scaling down to smaller data,

• overhead in getting programs up and running on additional 
nodes, and

• overhead in orchestrating the parallelization.

These disadvantages can be a significant barrier to the use of 
distributed computing in some cases. First, there are some 
algorithms and use cases that do not fit well in a distributed 
framework. The distributed computing framework requires 
the ability to separate data or distinct tasks, and this process 
does not work well in certain cases. Second, while a distributed 
approach scales up to very large data effectively, downscaling can 
be problematic. Each node on the network needs to be notified 
a task needs to be done, load up the environment to perform the 
task, and communicate results back to the main process. When 
the data is small this cycle can take more time than it would 
take to complete the process on a single machine. Additionally, 
there is a substantial amount of overhead involved in maintain-
ing the parallelization. Systems need to exist to communicate 
what work needs to be done, manage the status of the processes 
on different nodes, and coordinate the compiling of results. 
Building and implementing a system capable of doing this is a 
significant investment, which can become prohibitive if a real 
need does not exist. Fortunately, systems exist to handle this 
communication and facilitate the use of distributed computing.
 
DISTRIBUTED COMPUTING TECHNOLOGIES
Several distributed computing technologies exist to help solve the 
problems related to managing a distributed computing system. 
There are two categories of solutions: MapReduce implementa-
tions and workflow managers. MapReduce implementations use 
a two-step process to break the data up and distribute it to differ-
ent nodes, then re-aggregate it to determine a result. Workflow 
managers use dependencies between tasks to determine if there 
are tasks that are independent of the results of other tasks. The 
workflow manager then distributes the independent tasks to 
different nodes to allow for parallel completion of the tasks. The 
following is a non-exhaustive list of these solutions:

MAPREDUCE IMPLEMENTATIONS
• Apache Spark,
• Hadoop MapReduce,
• Disco,

• Dask and
• Teradata.

WORKFLOW MANAGERS
• Luigi,
• Airflow,
• Azkaban and
• Oozie.

The remainder of this article will focus on MapReduce, and dive 
specifically into Apache Spark.

WHAT IS MAPREDUCE?
MapReduce is a process designed to facilitate parallel operations 
(See Figure 1). The original public implementation was part of 
the Hadoop ecosystem; however, the same general MapReduce 
concepts are used in other frameworks. As the name implies, 
the process is composed of two functions: A map function and a 
reduce function. 

The map function breaks the data up into independent parti-
tions. It then distributes these partitions to various nodes on 
the network for parallel processing. Each partition will output a 
group of key-value pairs that completes as much of the process 
as possible at the independent partition level. As each partition 
finishes processing, these key-value pairs need to be re-aggre-
gated. This is the purpose of the reduce function. The reduce 
function pulls the results of each partition back into the main 
process and further aggregates them to determine the result at 
the full dataset level. 
 
Manually implementing MapReduce is possible; however, it can 
be very difficult to do for even moderately complex processes. In 
order for a MapReduce process to be efficient, it is important to 
distribute the data to maximize the amount of work performed 
at the partition level. Additionally, it is important to minimize 
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Figure 1
The MapReduce Process
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the frequency of re-aggregating the results, as that step does not 
benefit from the parallel framework. Fortunately, MapReduce 
solutions such as the ones listed above automatically perform 
this optimization using query planning and analysis tools.

OVERVIEW OF APACHE SPARK
There are many implementations of MapReduce-based 
distributed computing frameworks with different benefits and 
drawbacks. Depending on the infrastructure in place and the 
use case, the best implementation may vary. Apache Spark is one 
such implementation used as a more detailed example imple-
mentation of a MapReduce framework.

According to Learning Spark, “Apache Spark is a cluster com-
puting platform designed to be fast and general-purpose.”3 It 
started as a research project at UC Berkeley back in 2009 by 
a lab working with Hadoop MapReduce. The researchers 
identified interactive querying and iterative development as a 
weakness of the Hadoop implementation and sought to improve 
it. Early results were positive; showing speed improvements in 
the 10x–20x range, and the performance has since improved to 
100x faster on in-memory jobs. Spark was open-sourced in 2010 
and became part of the Apache Software Foundation in 2013. 
Per the Spark documentation, it scales up to petabytes of data 
and clusters as large as 8000 nodes in practice. 

HOW DOES SPARK WORK?
On a technical level, Spark is written in Scala and runs on the 
Java Virtual Machine. It uses a concept called “Resiliently Dis-
tributed Datasets” (RDDs) to support its parallelized operations. 
According to Learning Spark “RDDs represent a collection 
of items distributed across many compute nodes that can be 
manipulated in parallel.” 4 

Another key element of Spark is tightly integrated components. 
Spark is broken up into six main components:

• Spark Core: task scheduling, memory management, and 
other basic functions, 

• Spark SQL: querying and data manipulation for mostly 
structured data sources,

• Spark Streaming: API to work with live data updates,

• MLlib: scalable implementations of machine learning 
algorithms,

• GraphX: library for graph analysis and computation, and

• Standalone Scheduler: built-in cluster manager.

Spark Core is the foundational component that enables the sys-
tem as a whole to function. From there, the other components 
act as extensions that allow the user to perform specific tasks 
such as querying or machine learning. The integration of these 
different components allows a user to switch between different 
types of tasks while remaining inside the Spark ecosystem.

Spark can also integrate with other common cluster managers 
such as Hadoop, YARN and Mesos. This allows Spark to be 
deployed inside of existing distributed computing infrastruc-
ture. Meanwhile the Standalone Scheduler allows deployment 
of Spark in cases where there is no existing distributed comput-
ing infrastructure. 

BENEFITS OF SPARK
There are several benefits to using Spark as a distributed 
computing framework. For instance, knowledge of Scala pro-
gramming is not necessary to work with data in Spark. There 
are convenient wrappers available to allow users to interact in a 
more familiar language such as python (PySpark) or R (Spark-
lyR). Additionally, the APIs support the use of SQL syntax for 
data interaction. The availability of these common language 
interfaces helps reduce the learning curve for people looking to 
get started with Spark.

Spark also offers an interface that allows users to track the 
progress of jobs, data storage and query planning. The interface 
also offers a directed acyclic graph (DAG) to help visualize the 
execution of tasks. This allows for relatively straightforward 
performance monitoring and can assist with optimization of 
the system. 

Additionally, while scaling down to smaller datasets can still be 
an issue; Spark handles data in the gigabyte range more effec-
tively than some other options do. This makes Spark a viable 
choice for companies that have data in the gigabyte to terabyte 
range rather than the 100-terabyte range.
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Figure 2
The Spark Ecosystem
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In addition, while Spark scales down relatively effectively as a 
data manipulation and analysis language, the machine learning 
components do not. The performance of MLlib on smaller data-
sets does not compare favorably to common implementations in 
python and R. In particular, the Spark GBM implementation 
struggles on smaller datasets. As with any technology platform, 
it is important to understand the limitations of the specific 
implementation. 

Finally, Spark lacks the flexibility of some lower-level frame-
works, such as Dask, to build and control non-standard 
processes. Spark has some capabilities here, but they are mostly 
limited to the Scala language APIs.

GET STARTED
Getting started on working with Spark is easy. Databricks com-
munity edition offers free web-based notebooks running on 
top of pre-configured clusters in AWS. This removes the need 
to deal with setting up infrastructure for people who want to 
experiment with Spark. If you are interested in giving Spark a 
try, head over to https://databricks.com/try-databricks.  ■

DRAWBACKS OF SPARK
Setting up the infrastructure necessary to run a Spark cluster 
can be challenging, especially on Windows-based systems. 
Spark was built to run on Linux, and its design choices reflect 
that. There is support for Windows; however, it is a clear 
second-class citizen and requires significantly more effort to 
implement and maintain.
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Details for Stage 16 (Attempt 0)
Total Time Across All Tasks: 0.1 s
Input Size / Records: 1088.0 B / 4
Shuffle Read: 3.2 KB / 16
Shuffle Write: 3.2 KB / 16
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Figure 3
Sample Directed Acyclic Graph (DAG)
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