

Article from

CompAct

April 2018
Issue 57

14 | APRIL 2018 COMPACT

Introduction to
Distributed Computing
By Jason Altieri

The rise of big data has required changes to the way
that data is processed. Distributed computing is one
approach used to meet expanding processing capacity

needs driven by continually growing datasets. In Designing
Data Intensive Applications Martin Kleppmann states, “Many
applications today are data-intensive, as opposed to com-
pute-intensive. Raw CPU power is rarely a limiting factor for
these applications—bigger problems are usually the amount of
data, the complexity of data, and the speed at which it is chang-
ing.”1 Where single machines or relational databases used to
be sufficient for data processing and analysis, obtaining single
machines that can handle today’s quantity of data has become
cost-prohibitive if not impossible. New software and processes
have become necessary to allow efficient and effective use of
this data.

In the actuarial world, these technologies have become import-
ant to support more advanced modelling on larger and more
complicated data. The actuarial profession has been evolving
to include more predictive analytics and these methods often
require more compute power than traditional actuarial mod-
elling. In addition, even the datasets used to support more
traditional actuarial work have grown in recent years. For
example, large reference datasets used for benchmarking and
government databases, such as Medicare or Medicaid claims can
be large. This combination of factors makes an understanding
of these new technologies important for actuaries working in a
modern data environment.

INTRODUCTION TO PARALLEL
DISTRIBUTED COMPUTING
Distributed computing is a framework for handling large quan-
tities of data and complex processes by increasing the amount
of hardware applied to a task. Instead of using a single machine,
a distributed computing system allows a network of machines
to work together to complete a process. There are two ways to
leverage the network to complete the process, which is referred
to as parallelization. First, different nodes within the network can
simultaneously work on different tasks in the process, as long as
the tasks are not linearly dependent. Second, by taking a large

task and splitting it up into smaller self-contained pieces, multiple
nodes on the network can contribute to the completion of the
same task. In practice, both of these approaches can be used within
the same process provided there is a sufficiently large network.

Several factors have contributed to the rise of distributed com-
puting, including increasingly large datasets, the popularity of
statistical learning, and affordable access to hardware (often via
cloud providers). Increasingly large datasets have made it more
difficult to perform analysis on single computers, both because
of memory and time constraints. Even if a single machine is
capable of processing a large dataset it may be too slow, espe-
cially in industries that require the ability to react quickly to
new data. Many common statistical learning algorithms applied
to these large datasets also lend themselves to a distributed com-
puting framework. Training these models, particularly on large
datasets, can be memory and processing intensive. Additionally,
some models benefit from running many iterations of the same
model, and almost all statistical learning techniques utilize
resampling to tune their accuracy. Both of these factors make
statistical learning algorithms a perfect fit for parallelization.
Finally, distributed computing has benefited from easier access
to hardware. The rise of cloud computing resources has made
large amounts of machine time and power broadly available
to both companies and individuals. Cloud computing has also
enabled users to access a large network of machines for just a
limited amount of time and only pay for what they use. These
factors, among others, have helped make distributed computing
a popular tool for people who work with large quantities of data.

BENEFITS AND DRAWBACKS OF
A DISTRIBUTED SYSTEM
Like with most technologies, there are both benefits and
drawbacks to the use of distributed computing. Some of the
advantages are:

• Distributed computing scales up effectively to very large
datasets,

• acquiring large amounts of memory or processing power
may be more affordable by networking a series of less
expensive machines than buying one sufficiently powerful
machine,

• externally maintained infrastructure such as cloud comput-
ing platforms can be leveraged and

• can decrease processing time, especially in non-linear
pipelines.

The cost savings can be significant, particularly for a large clus-
ter. According to Designing Data Intensive Applications “…cost

 APRIL 2018 COMPACT | 15

is super-linear: a machine with twice as many CPUs, twice as
much RAM and disk typically costs significantly more than
twice as much.”2 However, there are disadvantages that can
make distributed computing impractical to implement:

• Not all algorithms are good candidates for parallelization,

• lack of efficient scaling down to smaller data,

• overhead in getting programs up and running on additional
nodes, and

• overhead in orchestrating the parallelization.

These disadvantages can be a significant barrier to the use of
distributed computing in some cases. First, there are some
algorithms and use cases that do not fit well in a distributed
framework. The distributed computing framework requires
the ability to separate data or distinct tasks, and this process
does not work well in certain cases. Second, while a distributed
approach scales up to very large data effectively, downscaling can
be problematic. Each node on the network needs to be notified
a task needs to be done, load up the environment to perform the
task, and communicate results back to the main process. When
the data is small this cycle can take more time than it would
take to complete the process on a single machine. Additionally,
there is a substantial amount of overhead involved in maintain-
ing the parallelization. Systems need to exist to communicate
what work needs to be done, manage the status of the processes
on different nodes, and coordinate the compiling of results.
Building and implementing a system capable of doing this is a
significant investment, which can become prohibitive if a real
need does not exist. Fortunately, systems exist to handle this
communication and facilitate the use of distributed computing.

DISTRIBUTED COMPUTING TECHNOLOGIES
Several distributed computing technologies exist to help solve the
problems related to managing a distributed computing system.
There are two categories of solutions: MapReduce implementa-
tions and workflow managers. MapReduce implementations use
a two-step process to break the data up and distribute it to differ-
ent nodes, then re-aggregate it to determine a result. Workflow
managers use dependencies between tasks to determine if there
are tasks that are independent of the results of other tasks. The
workflow manager then distributes the independent tasks to
different nodes to allow for parallel completion of the tasks. The
following is a non-exhaustive list of these solutions:

MAPREDUCE IMPLEMENTATIONS
• Apache Spark,
• Hadoop MapReduce,
• Disco,

• Dask and
• Teradata.

WORKFLOW MANAGERS
• Luigi,
• Airflow,
• Azkaban and
• Oozie.

The remainder of this article will focus on MapReduce, and dive
specifically into Apache Spark.

WHAT IS MAPREDUCE?
MapReduce is a process designed to facilitate parallel operations
(See Figure 1). The original public implementation was part of
the Hadoop ecosystem; however, the same general MapReduce
concepts are used in other frameworks. As the name implies,
the process is composed of two functions: A map function and a
reduce function.

The map function breaks the data up into independent parti-
tions. It then distributes these partitions to various nodes on
the network for parallel processing. Each partition will output a
group of key-value pairs that completes as much of the process
as possible at the independent partition level. As each partition
finishes processing, these key-value pairs need to be re-aggre-
gated. This is the purpose of the reduce function. The reduce
function pulls the results of each partition back into the main
process and further aggregates them to determine the result at
the full dataset level.

Manually implementing MapReduce is possible; however, it can
be very difficult to do for even moderately complex processes. In
order for a MapReduce process to be efficient, it is important to
distribute the data to maximize the amount of work performed
at the partition level. Additionally, it is important to minimize

I
N
P
U
T

D
A
T
A

O
U
T
P
U
T

D
A
T
A

Map ()

Map ()

Map ()

Reduce ()

Reduce ()

Figure 1
The MapReduce Process

16 | APRIL 2018 COMPACT

Introduction to Distributed Computing

the frequency of re-aggregating the results, as that step does not
benefit from the parallel framework. Fortunately, MapReduce
solutions such as the ones listed above automatically perform
this optimization using query planning and analysis tools.

OVERVIEW OF APACHE SPARK
There are many implementations of MapReduce-based
distributed computing frameworks with different benefits and
drawbacks. Depending on the infrastructure in place and the
use case, the best implementation may vary. Apache Spark is one
such implementation used as a more detailed example imple-
mentation of a MapReduce framework.

According to Learning Spark, “Apache Spark is a cluster com-
puting platform designed to be fast and general-purpose.”3 It
started as a research project at UC Berkeley back in 2009 by
a lab working with Hadoop MapReduce. The researchers
identified interactive querying and iterative development as a
weakness of the Hadoop implementation and sought to improve
it. Early results were positive; showing speed improvements in
the 10x–20x range, and the performance has since improved to
100x faster on in-memory jobs. Spark was open-sourced in 2010
and became part of the Apache Software Foundation in 2013.
Per the Spark documentation, it scales up to petabytes of data
and clusters as large as 8000 nodes in practice.

HOW DOES SPARK WORK?
On a technical level, Spark is written in Scala and runs on the
Java Virtual Machine. It uses a concept called “Resiliently Dis-
tributed Datasets” (RDDs) to support its parallelized operations.
According to Learning Spark “RDDs represent a collection
of items distributed across many compute nodes that can be
manipulated in parallel.” 4

Another key element of Spark is tightly integrated components.
Spark is broken up into six main components:

• Spark Core: task scheduling, memory management, and
other basic functions,

• Spark SQL: querying and data manipulation for mostly
structured data sources,

• Spark Streaming: API to work with live data updates,

• MLlib: scalable implementations of machine learning
algorithms,

• GraphX: library for graph analysis and computation, and

• Standalone Scheduler: built-in cluster manager.

Spark Core is the foundational component that enables the sys-
tem as a whole to function. From there, the other components
act as extensions that allow the user to perform specific tasks
such as querying or machine learning. The integration of these
different components allows a user to switch between different
types of tasks while remaining inside the Spark ecosystem.

Spark can also integrate with other common cluster managers
such as Hadoop, YARN and Mesos. This allows Spark to be
deployed inside of existing distributed computing infrastruc-
ture. Meanwhile the Standalone Scheduler allows deployment
of Spark in cases where there is no existing distributed comput-
ing infrastructure.

BENEFITS OF SPARK
There are several benefits to using Spark as a distributed
computing framework. For instance, knowledge of Scala pro-
gramming is not necessary to work with data in Spark. There
are convenient wrappers available to allow users to interact in a
more familiar language such as python (PySpark) or R (Spark-
lyR). Additionally, the APIs support the use of SQL syntax for
data interaction. The availability of these common language
interfaces helps reduce the learning curve for people looking to
get started with Spark.

Spark also offers an interface that allows users to track the
progress of jobs, data storage and query planning. The interface
also offers a directed acyclic graph (DAG) to help visualize the
execution of tasks. This allows for relatively straightforward
performance monitoring and can assist with optimization of
the system.

Additionally, while scaling down to smaller datasets can still be
an issue; Spark handles data in the gigabyte range more effec-
tively than some other options do. This makes Spark a viable
choice for companies that have data in the gigabyte to terabyte
range rather than the 100-terabyte range.

Spark
SQL

Spark
Streaming

Apache Spark

MLlib
(machine
learning)

GraphX
(graph)

Figure 2
The Spark Ecosystem

 APRIL 2018 COMPACT | 17

ENDNOTES

1 Kleppmann, Martin. 2017. Designing Data-Intensive Applications: The big Ideas
Behind Reliable, Scalable, and Maintainable Systems. Sebastopol, Calif. O’Reilly &
Associates, Inc. Pg. 3

2 Ibid. Pg. 146.

3 Karau, Holden, and Matei Zaharia, Andy Konwinski and Patrick Wendell. 2015.
Learning Spark: Lightning-Fast Data Analysis. Sebastopol, Calif. O’Reilly & Associ-
ates, Inc.

4 Ibid. Pg. 3.

Jason Altieri, ASA, MAAA, is a data scientist with
Milliman’s PRM Analytics practice. He can be
contacted at Jason.Altieri@milliman.com.

REFERENCES

Lockwood, Glenn K. “Map/Reduce Implementations.” April 6, 2014. users.sdsc.
edu/~glockwood/comp/mapreduce.php

Kempf, Rachel. “Members.” Bizety. June 5, 2017. www.bizety.com/2017/06/05/
open-source-data-pipeline-luigi-vs-azkaban-vs-oozie-vs-airflow/

“Apache Spark—Lightning-Fast Cluster Computing.” Apache Spark—Lightning-Fast
Cluster Computing, Apache, spark.apache.org/

“Comparison to Spark.” Comparison to Spark—Dask 0.16.1 documentation, dask.
pydata.org/en/latest/spark.html

“MapReduce.” Hortonworks. hortonworks.com/apache/mapreduce/#section_2

“Analytics.” What is MapReduce? IBM Analytics. www.ibm.com/analytics/hadoop/
mapreduce

In addition, while Spark scales down relatively effectively as a
data manipulation and analysis language, the machine learning
components do not. The performance of MLlib on smaller data-
sets does not compare favorably to common implementations in
python and R. In particular, the Spark GBM implementation
struggles on smaller datasets. As with any technology platform,
it is important to understand the limitations of the specific
implementation.

Finally, Spark lacks the flexibility of some lower-level frame-
works, such as Dask, to build and control non-standard
processes. Spark has some capabilities here, but they are mostly
limited to the Scala language APIs.

GET STARTED
Getting started on working with Spark is easy. Databricks com-
munity edition offers free web-based notebooks running on
top of pre-configured clusters in AWS. This removes the need
to deal with setting up infrastructure for people who want to
experiment with Spark. If you are interested in giving Spark a
try, head over to https://databricks.com/try-databricks. ■

DRAWBACKS OF SPARK
Setting up the infrastructure necessary to run a Spark cluster
can be challenging, especially on Windows-based systems.
Spark was built to run on Linux, and its design choices reflect
that. There is support for Windows; however, it is a clear
second-class citizen and requires significantly more effort to
implement and maintain.

groupByKey

flatMap

mapValues

mapValues

groupByKey

mapValues

join

join

ShuffledRDD[16]

MapPartitionsRDD[33]

ShuffledRDD[25]

MapPartitionsRDD[29]

CoGroupedRDD[26]

CoGroupedRDD[30]

MapPartitionsRDD[27]

MapPartitionsRDD[31]

MapPartitionsRDD[28]

MapPartitionsRDD[32]

ItemInBlocks[17]

ItemOutBlocks[18]

Details for Stage 16 (Attempt 0)
Total Time Across All Tasks: 0.1 s
Input Size / Records: 1088.0 B / 4
Shuffle Read: 3.2 KB / 16
Shuffle Write: 3.2 KB / 16

 DAG Visualization

Figure 3
Sample Directed Acyclic Graph (DAG)

Stage 16

	Letter From the EditorBy Ravi Bhagat
	Chairperson’s CornerBy Mark Africa
	The How of DataVisualizationBy Mary Pat Campbell
	ACORD: SettingStandards for the GlobalInsurance IndustryBy ACORD
	Small Company,Modern Data StrategyBy Ying Zhao and Win Georg
	Introduction toDistributed ComputingBy Jason Altieri
	Parallel CloudComputing: MakingMassive Actuarial RiskAnalysis PossibleBy Joe Long and Dan McCurley
	Large Portfolio VariableAnnuity ValuationPowered by GPUs andDeep LearningBy Huina Chen and Henry Bequet

