

Article from:

CompAct

April 2009 – Issue 31

CompAct | APRIL 2009 | 9CompAct | APRIL 2009 | 9

Steve Craighead,
ASA, MAAA, is an
actuarial consultant
at TowersPerrin in
Atlanta, Ga.
He can be reached at
steven.craighead@
towersperrin.com.

R Corneri

By Steve Craighead

In the last article, I discussed how to get data into
and out of the R platform, by either using comma
delimited formatted files or using ODBC techniques

to query data from Microsoft Access. In this article I
will discuss how to use data once it is within R.

There are many different ways that one can store and
access data within R. The primary ones that I want
to discuss will be scalars, vectors, matrices and data-
frames. More advanced structures are lists and objects
that can be specifically designed for your applications,
which I will not be able to address in this article.

Effectively one can assign a value to a variable by
the use of the “<-“ assignment symbol within R. For
instance the command (following the “>” symbol)

a<-1

assigns the value of 1 to the variable “a”. In this case
the variable “a” is a scalar. To display the content of
“a”, all one needs to do is type the command

a

and R returns

[1] 1

Note how the [1] indicates the number of the element
starting in the row displayed by “a”. If you want to
assign a series of values to a vector, you can do this
several ways.

The most primitive is to assign a list by

a<- c(1,2,4,10,25,67,4)

Notice how the data is encapsulated within a “c(…)”
structure. If you display “a”, you get:

[1] 1 2 4 10 25 67 4

Warning: Don’t use “c” as a variable, since the
“c(…)” structure may produce very odd results, if
used as a variable name.

Another way to get data within a variable uses the “:”
symbol. Type

a <- 1:20

This stores the values 1 through 20 within “a”. If you
would like to count down instead of up, you would
use

a<- 30:1

R would display “a” in this way:

a
[1] 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
13 12 11 10 9 8 7 6
[26] 5 4 3 2 1

Notice how [26] is displayed in the second row. So the
26th element of vector “a” is “5”.

To create lists of values that skip at different than
unit intervals use the seq() command. For instance the
commands

a<- seq(10,20,.5)

a

[1] 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0
15.5 16.0 16.5 17.0

[16] 17.5 18.0 18.5 19.0 19.5 20.0

demonstrates the method to count from 10 to 20 by
0.5.

To concatenate two vectors, you can use the “c()”
structure again. For example, notice how

b<-c(1:5,a)

b

[1] 1.0 2.0 3.0 4.0 5.0 10.0 10.5 11.0 11.5 12.0 12.5
13.0 13.5 14.0 14.5

[16] 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5
20.0

CONTINUED ON PAGE 10

Editor’s note: R Corneri is a series by Steve Craighead introducing readers to the “R” language used for statistics and
modeling of data. The first column was published in the October 2008 issue, and explains how to download and install
the package, as well as providing a basic introduction to the language. Refer to each CompAct issue since then for addi-
tional articles in the series. The introductory article can be found on p. 24 of the October 2008 issue on the SOA Web
site: http://soa.org/library/newsletters/compact/2008/october/com-2008-iss29.pdf

10 | APRIL 2009 | CompAct

To access a specific element within the matrix “d”,
again you use the “[]” structure, but you need to insert a
comma to distinguish the dimensions. For instance

d[1:2,3]

[1] 3 6

extracts the values from column 3 of rows 1 and 2 of
the matrix “d”.

Just like “length()” specifies the length of a vector
“dim()” specifies the dimensions of a matrix.

dim(d)

[1] 3 3.

If you want to extract the second dimension of the
results of “dim()”, do this

dim(d)[2]

[1] 3.

To insert a new value within either a vector or a matrix,
use the “[]” structure on the left-hand-side of an assign-
ment statement. For instance, if you want to insert the
value “200” into the middle of “d”, you would do the
following:

 d[2,2]<-200

> d

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 200 6

[3,] 7 8 9.

If you would like to add a row (or column) to a matrix
you can use rbind() (cbind()). For instance,
e<-rbind(d,c(3,4,5))

produces

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 200 6

[3,] 7 8 9

[4,] 3 4 5.

combines the 1:5 vector with the “a” vector immediate-
ly above. Notice how the two types (1:5 vs. the vector
“a”) can be easily mixed.

To access various elements of a vector, you will use the
“[]” structure. For instance

b[3:8]

[1] 3.0 4.0 5.0 10.0 10.5 11.0

displays the third through the eighth value in “b”.
To drop a value, append a negative sign “-” to
the numeric reference with the “[]” structure.
For instance:

b[-26]

[1] 1.0 2.0 3.0 4.0 5.0 10.0 10.5 11.0 11.5 12.0 12.5
13.0 13.5 14.0 14.5

[16] 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5

removed the last value “20.0” from “b”. To determine
the length of a vector use the “length()” function. So,

length(b)

[1] 26

Next let’s look at some of the basic commands when
using matrices.

MATRICES
To work with matrices you will use the matrix() com-
mand. For instance

d<-matrix(1:9,nrow=3,byrow=T)

> d

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

Notice, how we used the vector “1:9” to load the
matrix, we specified the number of rows with the
“nrow” component and we had to use the “byrow=T”
component to make sure that we loaded the matrix row
by row. If this component is left out, the default is to
load the matrix by columns. Examine further use of the
matrix() function, by using the ?matrix command.

R Corneri | fRom PAge 9

CompAct | APRIL 2009 | 11

[1] “DriversKilled” “drivers” “ front” “rear”
“kms” “PetrolPrice” “VanKilled” “law”

There are several means to access these fields. One
way is to reference the data by name. So, to display all
of the data associated with drivers killed, you would
use either the command “Seatbelts$DriversKilled”
or “Seatbelts[,1]”. Notice how the second command
displays all of the data in the first column, which cor-
responds to the “DriversKilled” field.

To obtain specific values within a dataframe you can
use the same “[]” structure that was discussed regarding
matrices earlier. However, you can also use conditional
statements as well. For instance, if you wanted to know
how many months the number of drivers killed exceeds
100, you could use the following command

sum(Seatbelts$DriversKilled > 100)

[1] 157

or you could use

sum(Seatbelts[,1]>100)

[1] 157

If you wanted to know the total number of deaths to
rear seat passengers (the field “rear”) in the months
where the number of Drivers killed exceeds 100, you
would use a conditional command like this

sum(Seatbelts[Seatbelts$DriversKilled>100,]$rear)

[1] 64586

or

sum(Seatbelts[Seatbelts[,1]>100,4])

[1] 64586

If you wanted the average you could replace the “sum()”
function with the “mean()” function, or if you wanted
the variance you would use the “var()” function.

If you wanted to replicate compound conditionals
you can use the “|” construct for the “OR” logic
operator or the “&” construct for “AND”. For instance,
the command

mean(Seatbelts[75 < Seatbelts$DriversKilled &
Seatbelts$DriversKilled <= 110,]$rear)

[1] 367.7761

Other useful matrix functions and operators are “t()”
for transpose, “%*%” for matrix products, and “diag()”
to manipulate the matrix diagonals.

Next, let us look at dataframes.

DATAFRAMES
In the prior article we examined how to get data into and
out of R and our emphasis was on storing the results in
a dataframe. A dataframe has the basic attributes of a
matrix except the dataframe columns don’t have to be
just numeric. The basic field types of dataframe can be
numeric, alphanumeric or categorical. We will take as
our example of a dataframe one of the existing datasets
that is installed in the base R application. If you enter
the “data()” command R will display a window of
the various data sets in the package “datasets”. If you
would like to see all of the data sets available from all
packages that you have installed in R, execute the fol-
lowing command:

data(package = .packages(all.available = TRUE))

To store a dataset in your current R application from
the stored datasets just use the “data()” command as
follows (we will use the “Seatbelts” dataset, which is
the Road Casualties in Great Britain from 1969 through
1984)

data(Seatbelts)

If you type the “objects()” command, you should see
the dataframe “Seatbelts” displayed as an object in
your application.

If you want information on the contents of the data-
frame, type the command “help(Seatbealts)” and R will
display a help screen giving an extensive description of
the data. Actually, Seatbelts is a much more complex
object called a multivariate time series, but we will
recast it to the simpler dataframe object by the follow-
ing command:

Seatbelts<-data.frame(Seatbelts)

One basic command that is very useful when using
datasets is the “names()” command. For instance, to
display the names within the dataset do the following

names(Seatbelts)

CONTINUED ON PAGE 12

12 | APRIL 2009 | CompAct

next article, we will discuss how R uses the Model
Formulae framework to allow you to create multiple
statistical models.

If you have found these articles to be beneficial, you
might consider obtaining the “The R Book” by Michael
J. Crawley, published by Wiley and Sons. This is
an excellent book on R which can benefit both the
amateur and professional in the pursuit of using the
R language.

displays the average number of rear seat passenger who
died in the months where the number of drivers killed
was between 75 and 110 (inclusive).

Another useful function that you can use on the data-
frame is the “summary()” function. This function will
produce a table of various statistics on each of the data
fields. Observe its use in Figure 1.

CONCLUSION
This article has discussed some of the fundamen-
tals required to manipulate your data in R. In the

Figure 1: Results of the use of the “summary()” function.

FOOTNOTES

i R Development Core Team (2008). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

R Corneri | fRom PAge 11

