

Article from

CompAct

April 2018
Issue 57

22 | APRIL 2018 COMPACT

Large Portfolio Variable
Annuity Valuation
Powered by GPUs and
Deep Learning
By Huina Chen and Henry Bequet

Recent technological advancements in Graphical Pro-
cessing Units (GPUs) and deep learning are drastically
changing the landscapes of many fields, including finan-

cial analytics. In this paper, we apply GPUs and deep learning
to address computational challenges in the valuation of large
portfolios of variable annuities. Our numerical experiments
show that using GPUs leads to a 10 times speedup compared
with traditional Monte Carlo valuation on multi-threaded
CPUs; while using GPU-based deep learning achieves another
order of magnitude performance improvement.

INTRODUCTION
Variable annuity is a type of insurance contract that allows
for asset accumulation via investing in mutual funds provided
by insurers. It often provides guarantees, also called riders, to
protect the policyholder from market downturns, such as the
2007–2008 financial crisis. The predominant guarantees are
Guaranteed Minimum Death Benefits (GMDB), Guaranteed
Minimum Accumulation Benefits (GMAB), Guaranteed Min-
imum Income Benefits (GMIB), and Guaranteed Minimum
Withdrawal Benefits (GMWB).

Insurance companies holding large portfolios of variable annu-
ity policies are exposed to risks from honoring the guarantees
should adverse events occur. A popular risk management practice
is to dynamically hedge these guarantees. Insurers buy hedg-
ing portfolios consisting of financial derivatives, hoping their
payoffs offset the payouts of the guarantees to policyholders.
The hedging portfolio requires intraday rebalance according
to the Greeks, such as dollar delta, of the guarantee liabilities.
Traditionally, the guarantees are evaluated using Monte Carlo
simulations on every policy in the portfolio. This is because
the product structure is complicated and the portfolio is highly
heterogeneous (Gan and Lin, 2015). Monte Carlo simulations
can be time consuming. For example, in one of our experiments,
it took 64 CPU cores 44 minutes to calculate the dollar deltas

for a portfolio of one million synthetic variable annuities with
either a GMDB rider or both GMDB and GMWB riders for
10,000 scenarios.

Several papers have been published to efficiently evaluate the
dollar deltas of large portfolios of variable annuities using a
spatial interpolation framework (Gan, 2013; Gan and Lin,
2015; Hejazi et al., 2015). The idea is to select a small sample of
variable annuity policies (the representative contracts), calculate
their dollar deltas with the expensive Monte Carlo simulations,
and then estimate the dollar deltas of other policies in the port-
folio as weighted sums of the pre-calculated dollar deltas of the
representative policies. The weights are determined according
to the distances between the focal policy and the representative
ones. Gan and Lin (2015) pointed out that a number of mod-
eling choices significantly impact the accuracy of the spatial
interpolation results, including the sampling method and the
number of the representative contracts, as well as the distance
function used to calculate the weights in the weighted sum.
Hejazi and Jackson (2016) proposed a partial neural network to
learn the distance function.

In this article, we use GPUs and deep learning to solve large
portfolio variable annuity valuation problems with high speed
and accuracy. It takes a GPU card with 4,992 cores less than
one minute to calculate the dollar deltas for the one million
policies using Monte Carlo simulations. The speed is attrac-
tive for intraday rebalances of the dynamic hedging program.
However, GPUs alone cannot compute fast enough for capital
calculation when nested simulations are required. If the inner
loop simulations are replaced with the approximation function
trained by deep learning, we can perform capital calculation on

 APRIL 2018 COMPACT | 23

the same portfolio 10 times faster than the nested Monte Carlo
simulations, cutting computation time from days to hours.

GPUS
GPUs were initially designed to perform graphical operations
for video games. These operations often involve similar or
repeated computations on multiple frames, and need to be com-
pleted as fast as possible. The technology was later used in the
non-graphical areas, such as solving large systems of equations.
These non-graphical tasks gave rise to the General Purpose
GPUs or GPGPUs. Good candidates of GPGPUs are applica-
tions that require identical processing on many versions of the
data, and have a high ratio of computations versus the amount of
data that needs to be processed. For the rest of this article, when
we refer to GPUs, we really mean GPGPUs.

The real power of GPUs lies in its price tag. One NVIDIA Tesla
K80 GPU card has 4,992 threads and costs less than $4,000. We
can easily insert four K80 cards into a computer and compute
20,000 tasks simultaneously. Computing 20,000 tasks in parallel
using CPUs will require a computer grid of millions of dollars.
The low cost of GPUs makes daunting computation tasks
such as deep learning economically possible. In the meantime,
machine learning software, such as SAS (Bequet and Chen,
2016), provide data scientists with an easy methodology to call
GPU functions without the knowledge of GPU languages. Inex-
pensive hardware and easy-to-use software liberate application
developers from computational challenges, and enable them to
focus on what they are good at: defining problems, collecting
and processing data, designing algorithms and analyzing results.
Consequently, more and more deep learning applications are
springing up in a wide range of fields including health care,
transportation, speech recognition, environmental science and
more.

DEEP LEARNING
Deep learning is a branch of machine learning. It is inspired by
the human brain’s biology and its ability to learn via observing
and experiencing. Deep learning models are large multilayer
artificial neural networks. Artificial neural network started in
the 1940s. Its winding journey finally entered into a productive
era in recent years, thanks to fast and economical computer
accelerators such as GPUs, a flood of digitalized data from the
Internet, and virtually infinite storage spaces.

An artificial neural network is a network of computational neu-
rons organized in layers. It has one input layer, at least one hidden
layer, and one output layer. We call a neural network a deep net
when there are more than one hidden layers. The quintessential
deep learning models are the feedforward deep networks. In a
feedforward deep net, the input data enter the input layer, go
through one hidden layer after another in sequence, and reach

Consider a feedforward deep network with L layers, and for each
layer l, there are Il nodes, in which the first layer output x1 equals
to the feature vector x from the input data, and the last layer
output xL corresponds to the calculated target variable vector ŷ.
The calculation in each node through the neural network can be
recursively represented as

x l

i = gl
i (w l

i
T x l-1

 + bl
i) for l = 2, … L and i = 1, … Il ,

in which function gl
i is an activation function, such as RELU,

logistic sigmoid, or hyperbolic tangent functions; vector w l
i

contains the weights; and scalar bl
i is a bias term. For notational

simplicity, we use vector θ to include weights and biases from
all the nodes in the model. The objective is to choose θ to min-
imize a cost function J (θ). The cost function defines the error
between the target value ŷ calculated by the network, and the
desired value y passed from the input data. J (θ) can be mean
square error (MSE) for regression problems, or cross-entropy
for classification problems. It can be other function depending
on the specific application.

Two types of financial applications are good candidates for
function approximation using feedforward deep network.
1) Fit functions for hard-to-model assumptions, like pol-
icyholder behaviors. 2) Approximate functions to replace
computational intensive calculation, such as seriatim valuation
or stochastic simulation. An advantage of using feedforward
deep network to approximate functions is that there is no

Input
Layer

Hidden Layers Output
Layer

Figure 1
A Feedforward Deep Learning Network

the output layer to produce the target value(s). Neurons of one
layer take as input the outputs of neurons in the previous layer.
There are no feedback connections in which the outputs of a
layer are fed back to itself or the previous layers. The feedfor-
ward computation can be described as a directed acyclic graph
shown in Figure 1.

24 | APRIL 2018 COMPACT

Large Portfolio Variable Annuity Valuation Powered by GPUs and Deep Learning

need for prior knowledge about the true model. Constructing
a neural network is more art than science. Financial analysts,
such as actuaries, can construct a feedforward network by try-
ing different combinations of hyperparameters. There are two
types of hyperparameters. 1) Model hyperparameters, such as
the total number of neurons, the connection between neurons,
and the activation functions. 2) Training method hyperparam-
eters, such as cost function, optimization solver, learning rate
and initial weights. Often, there is not a single best combination
of hyperparameters for a particular problem. Usually the bigger
the network and the larger the training data size, the better
approximation the trained network achieves. However, it comes
with the price of computational efficiency. Our goal is to find
a satisfactory set of hyperparameters to achieve target accuracy
and efficiency with the constraints of available computation
power and training data.

NUMERICAL EXPERIMENTS
In this section, we use an example of large portfolio variable
annuity valuation to demonstrate the speed and accuracy that
GPUs and Deep Learning can achieve.

We compare the performance of the valuation in the following
three settings: Monte Carlo valuation using multi-threaded
CPUs, Monte Carlo valuation using GPUs, and GPU-based
deep learning valuation. All tests are done in the testing com-
puter with 500GB RAM, 64 hyper-threaded cores at 2.30GHz,
and an NVIDIA Tesla K80 GPU card with 4,992 CUDA threads.

Portfolio Data
The portfolio consists of one million synthetic variable annuity
policies with either a GMDB rider or both GMDB and GMWB
riders. Each policy has seven attributes which contribute to the
policy’s valuation. They are guarantee type, gender, age, account
value, guarantee value, GMWB withdrawal rate and maturity.
Each policy is generated by uniformly drawing values of each
attribute from its respective range. For the purpose of comparison,
we use the same attributes and value ranges of the input portfo-
lio listed in Table 1 in Hejazi et al. (2015). We also use the same
log-normal distribution with a 3 percent risk-free rate and a 20
percent volatility to generate 10,000 risk neutral equity scenarios.
The mortality rates follow the same 1996 IAM tables provided by
the Society of Actuary. The projection horizon is 25 years.

The model calculates the dollar delta for each of the one million
variable annuity policy.

Monte Carlo Valuation
The Monte Carlo valuation algorithm follows Gan (2013). For
each policy, we calculate the dollar delta for each of the 10,000
equity scenarios. A policy’s dollar delta is the average of the dollar
deltas across all scenarios. It takes 44 minutes using the 64 CPU

cores, or 52 seconds using the 4,992 GPU threads, to compute
the million policies’ dollar deltas on the testing computer.

Deep Learning Valuation
To achieve higher performance, we use deep learning to approx-
imate Monte Carlo valuation on the million variable annuities.

In our experiment, we construct a fully connected feedforward
deep neural network with one input layer, eight hidden layers,
and one output layer. The input features include two categor-
ical features and six numerical ones. Categorical features are
guarantee type (zero for GMDB and one for GMDB+GMWB)
and gender (zero for male and one for female). Numerical
features are maturity, age, account value, GD/AV (the ratio of
guaranteed death benefit over account value), GW/AV (the
ratio of guaranteed remaining withdrawal amount over account
value) and withdrawal rate. GW/AV and withdrawal rate are
zero for policies with only the GMDB rider. For policies with
both GMDB and GMWB riders, the time zero values of GD/
AV equal to GW/AV equal to the ratio of guarantee value over
account value. To ensure fast convergence for network training,
we standardize the numerical feature values by taking their
z-scores. Each hidden layer has 1,024 neurons with RELU acti-
vation function. The output layer calculates the weighted sum
of the eighth hidden layer’s 1,024 outputs to produce the value
of target variable dollar delta.

To train the network, we generate 10,000 variable annuity
policies, 8,000 for training and 2,000 for validation. They are 1
percent the size of the input portfolio we need to evaluate. They
follow the same distribution as the million-policy portfolio we
want to evaluate. We calculate their dollar deltas using Monte
Carlo valuation, which takes half a second on the GPUs. Should

 APRIL 2018 COMPACT | 25

valuation results from past valuation dates be available, there
would be no need to generate new training data with Monte
Carlo simulations. Actuaries who are working on production
have plenty of historical data to use as inputs for network training.

We train the network using back propagation with the Adam opti-
mizer to find a set of weights and bias to minimize the cost function

J (θ) = 1
2N

i =1

N∑ ŷi - y i

1+|y i|)()2

.

To speed up training, we employ a mini-batch training tech-
nique with a batch size of 100. The learning rate is set to 0.001.
The initial weight values are generated using truncated normal
with mean 0 and standard deviation 0.1. The initial bias values
are set to zeros. The network is trained for 88,800 iterations
within 14 minutes on the GPUs. The values of J (θ) are 0.0005
for the training set and 0.0028 for the validation set.

It is worth pointing out the importance of selecting a good cost
function that suits the particular problem we are solving. The
dollar deltas can vary in a wide range among different variable
annuity policies in a portfolio. We do not choose

MSE(θ) =

i =1

N∑ (ŷi - y i)
21

2N
,

because it favors those weights and bias that reduce the errors
for the y i’s with large absolute values; therefore the accuracy of
the model for the y i’s with wsmall absolute values compromised.
We also choose not to use

 MSE(θ) =
i =1

N∑1
2N

 ŷi - y i
y i

()2 ,

because it is very likely that some policies have dollar deltas at
or very close to zero. Using MSRE as the cost function would
cause numerical problems. We try a few variations of MSRE.
Cost function

 J (θ) = 1
2N

 i =1
N∑ ŷi - y i

1+|y i|)()2

gives us the best optimization result.

Once the network is trained, it can be used to approximate
the Monte Carlo valuation for variable annuity policies
with similar characteristics as the training data, so long as
the risk neutral assumptions for equity scenarios stay the
same. The trained deep net can replace the entire one-level
Monte Carlo valuation. It can also substitute each inner loop
Monte Carlo valuation at all time steps along the outer loop
scenarios for a nested simulation. In our example, it takes
four seconds to compute the dollar deltas for the 1,000,000
policies using the trained deep net. The relative error of the
portfolio dollar delta

i=1
∑N

i=1
∑Nŷi - y i

i=1
∑N y i

is 0.0004. It would have taken the same GPU card eight days
to complete the nested Monte Carlo valuation for the same
portfolio with 1,000 outer loop real world scenarios each hav-
ing 10,000 inner loop risk neural paths. With the trained deep
net to perform the inner valuation, we can complete the nested
calculation in 14 hours. We can further reduce the computation
time by using more GPU cards simultaneously.

Using the Many Task Computing framework (Bequet and Chen
2017), we are able to integrate CPU and GPU tasks in the same
computation job flow without any manual data movement. The
end-to-end computation seamlessly conducts data generation
and enrichment on CPUs, Monte Carlo simulation and neural
network training/inference on GPUs. Figure 2 shows the high
level computation job flow.

Performance Results
Table 1 shows the performance results for evaluating one mil-
lion variable annuity policies using different technologies. We
list the hardware information to provide reference for inter-
ested readers.

Figure 2
An End-to-End Job Flow for Variable Annuity Valuation With Deep Learning

generation_va_policy va_valuation_monte_carlo train_deep_net va_valuation_deep_net

26 | APRIL 2018 COMPACT

Large Portfolio Variable Annuity Valuation Powered by GPUs and Deep Learning

Table 1
Performance under Different Technologies

Technology Hardware
Monte Carlo

Simulation Times
(in seconds)

CPU
Monte Carlo
Valuation
with SAS

64 HT Intel E5-2698 v3
@ 2.30 GHz
500 GB RAM

2,640

GPU

Monte Carlo
Valuation
with CUDAC

NVIDIA K80
@ 840 MHz
4,992 CUDA Cores

52

Deep Learning
with CUDAC

NVIDIA K80
@ 840 MHz
4,992 CUDA Cores

4

The four-second computation time with deep learning is the
time for inference only. We do not include the network training
time here because the neural network only needs to be trained
once, and can be used for inference many times, as long as the
portfolio’s characteristics and company’s long term view on
equity movements do not change.

CONCLUSION AND FUTURE WORK
We have shown that GPUs and GPU-based deep learning can
improve computation efficiency by several orders of magnitude.
This facilitates timely analysis for better decision making.

As actuaries continue pushing the boundary of product innova-
tion, more complicated modeling is expected, which demands
higher computing performance. Fortunately we are living in a
world of constant technology breakthroughs. Application Spe-
cific Integrated Circuits (ASICs) designed for deep learning
training and inference will perform analytics even faster than
what we have described in this paper. Preliminary results (Joupi,
et al., 2017) indicate that we would at least get another order
of magnitude of performance improvements. We will work on
financial analytics with ASICs-based deep learning and share

Henry Bequet is a director of development at
SAS Institute. He can be contacted at henry.
bequet@sas.com.

Huina Chen is a principal research statistician
developer at SAS Institute. She can be contacted at
huina.chen@sas.com.

REFERENCES

Bequet, H., Chen, H., 2016. Many Task Computing With GPU Acceleration: An Infra-
structure for Easy Principle-Based Modelling. 2016 Society of Actuary Annual Meeting
& Exhibit.

Bequet, H., Chen, H., 2017. Accelerate your SAS Programs with GPUs. Paper
SASSD706-2017.

Gan, G., 2013. Application of Data Clustering and Machine Learning in Variable Annu-
ity Valuation. Insurance: Mathematics and Economics 53 (3) (2013) 795–801.

Gan, G., Lin, X.S., 2015. Valuation of Large Variable Annuity Portfolios under Nested
Simulation: A Functional Data Approach. Insurance: Mathematics and Economics 62,
138-150.

Hejazi, S.A., Jackson, K.R., Gan, G., 2015. A Spatial Interpolation Framework for Eff i-
cient Valuation of Large Portfolios of Variable Annuities.

Hejazi, S.A., Jackson, K.R., 2016. Eff icient Valuation of SCR via a Neural Network
Approach.

Joupi et al., 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit.
44th International Symposium on Computer Architecture (ISCA), 2017.

the findings with readers in the future. Meanwhile, we see deep
learning as a nice tool to help actuaries discover the real patterns
of policyholder behaviors. Policyholder behaviors, such as guar-
anteed living benefits utilization and dynamic lapse, are hard to
model. Because deep learning algorithms learn models directly
from data, we believe actuaries can train deep neural networks
with relevant data and find the credible policyholder behavior
assumptions for better valuations. ■

	Letter From the EditorBy Ravi Bhagat
	Chairperson’s CornerBy Mark Africa
	The How of DataVisualizationBy Mary Pat Campbell
	ACORD: SettingStandards for the GlobalInsurance IndustryBy ACORD
	Small Company,Modern Data StrategyBy Ying Zhao and Win Georg
	Introduction toDistributed ComputingBy Jason Altieri
	Parallel CloudComputing: MakingMassive Actuarial RiskAnalysis PossibleBy Joe Long and Dan McCurley
	Large Portfolio VariableAnnuity ValuationPowered by GPUs andDeep LearningBy Huina Chen and Henry Bequet

