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Large Portfolio Variable 
Annuity Valuation 
Powered by GPUs and 
Deep Learning
By Huina Chen and Henry Bequet

Recent technological advancements in Graphical Pro-
cessing Units (GPUs) and deep learning are drastically 
changing the landscapes of many fields, including finan-

cial analytics. In this paper, we apply GPUs and deep learning 
to address computational challenges in the valuation of large 
portfolios of variable annuities. Our numerical experiments 
show that using GPUs leads to a 10 times speedup compared 
with traditional Monte Carlo valuation on multi-threaded 
CPUs; while using GPU-based deep learning achieves another 
order of magnitude performance improvement. 

INTRODUCTION 
Variable annuity is a type of insurance contract that allows 
for asset accumulation via investing in mutual funds provided 
by insurers. It often provides guarantees, also called riders, to 
protect the policyholder from market downturns, such as the 
2007–2008 financial crisis. The predominant guarantees are 
Guaranteed Minimum Death Benefits (GMDB), Guaranteed 
Minimum Accumulation Benefits (GMAB), Guaranteed Min-
imum Income Benefits (GMIB), and Guaranteed Minimum 
Withdrawal Benefits (GMWB).

Insurance companies holding large portfolios of variable annu-
ity policies are exposed to risks from honoring the guarantees 
should adverse events occur. A popular risk management practice 
is to dynamically hedge these guarantees. Insurers buy hedg-
ing portfolios consisting of financial derivatives, hoping their 
payoffs offset the payouts of the guarantees to policyholders. 
The hedging portfolio requires intraday rebalance according 
to the Greeks, such as dollar delta, of the guarantee liabilities. 
Traditionally, the guarantees are evaluated using Monte Carlo 
simulations on every policy in the portfolio. This is because 
the product structure is complicated and the portfolio is highly 
heterogeneous (Gan and Lin, 2015). Monte Carlo simulations 
can be time consuming. For example, in one of our experiments, 
it took 64 CPU cores 44 minutes to calculate the dollar deltas 

for a portfolio of one million synthetic variable annuities with 
either a GMDB rider or both GMDB and GMWB riders for 
10,000 scenarios. 

Several papers have been published to efficiently evaluate the 
dollar deltas of large portfolios of variable annuities using a 
spatial interpolation framework (Gan, 2013; Gan and Lin, 
2015; Hejazi et al., 2015). The idea is to select a small sample of 
variable annuity policies (the representative contracts), calculate 
their dollar deltas with the expensive Monte Carlo simulations, 
and then estimate the dollar deltas of other policies in the port-
folio as weighted sums of the pre-calculated dollar deltas of the 
representative policies. The weights are determined according 
to the distances between the focal policy and the representative 
ones. Gan and Lin (2015) pointed out that a number of mod-
eling choices significantly impact the accuracy of the spatial 
interpolation results, including the sampling method and the 
number of the representative contracts, as well as the distance 
function used to calculate the weights in the weighted sum. 
Hejazi and Jackson (2016) proposed a partial neural network to 
learn the distance function. 

In this article, we use GPUs and deep learning to solve large 
portfolio variable annuity valuation problems with high speed 
and accuracy. It takes a GPU card with 4,992 cores less than 
one minute to calculate the dollar deltas for the one million 
policies using Monte Carlo simulations. The speed is attrac-
tive for intraday rebalances of the dynamic hedging program. 
However, GPUs alone cannot compute fast enough for capital 
calculation when nested simulations are required. If the inner 
loop simulations are replaced with the approximation function 
trained by deep learning, we can perform capital calculation on 
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the same portfolio 10 times faster than the nested Monte Carlo 
simulations, cutting computation time from days to hours.

GPUS
GPUs were initially designed to perform graphical operations 
for video games. These operations often involve similar or 
repeated computations on multiple frames, and need to be com-
pleted as fast as possible. The technology was later used in the 
non-graphical areas, such as solving large systems of equations. 
These non-graphical tasks gave rise to the General Purpose 
GPUs or GPGPUs. Good candidates of GPGPUs are applica-
tions that require identical processing on many versions of the 
data, and have a high ratio of computations versus the amount of 
data that needs to be processed. For the rest of this article, when 
we refer to GPUs, we really mean GPGPUs.

The real power of GPUs lies in its price tag. One NVIDIA Tesla 
K80 GPU card has 4,992 threads and costs less than $4,000. We 
can easily insert four K80 cards into a computer and compute 
20,000 tasks simultaneously. Computing 20,000 tasks in parallel 
using CPUs will require a computer grid of millions of dollars. 
The low cost of GPUs makes daunting computation tasks 
such as deep learning economically possible. In the meantime, 
machine learning software, such as SAS (Bequet and Chen, 
2016), provide data scientists with an easy methodology to call 
GPU functions without the knowledge of GPU languages. Inex-
pensive hardware and easy-to-use software liberate application 
developers from computational challenges, and enable them to 
focus on what they are good at: defining problems, collecting 
and processing data, designing algorithms and analyzing results. 
Consequently, more and more deep learning applications are 
springing up in a wide range of fields including health care, 
transportation, speech recognition, environmental science and 
more.

DEEP LEARNING
Deep learning is a branch of machine learning. It is inspired by 
the human brain’s biology and its ability to learn via observing 
and experiencing. Deep learning models are large multilayer 
artificial neural networks. Artificial neural network started in 
the 1940s. Its winding journey finally entered into a productive 
era in recent years, thanks to fast and economical computer 
accelerators such as GPUs, a flood of digitalized data from the 
Internet, and virtually infinite storage spaces.

An artificial neural network is a network of computational neu-
rons organized in layers. It has one input layer, at least one hidden 
layer, and one output layer. We call a neural network a deep net 
when there are more than one hidden layers. The quintessential 
deep learning models are the feedforward deep networks. In a 
feedforward deep net, the input data enter the input layer, go 
through one hidden layer after another in sequence, and reach 

Consider a feedforward deep network with L layers, and for each 
layer l, there are Il nodes, in which the first layer output x1 equals 
to the feature vector x from the input data, and the last layer 
output xL corresponds to the calculated target variable vector ŷ. 
The calculation in each node through the neural network can be 
recursively represented as

 
x l

i  = gl
i  (w l

i 
T x l-1

 + bl
i ) for l = 2, … L and i = 1, … Il , 

in which function gl
i is an activation function, such as RELU, 

logistic sigmoid, or hyperbolic tangent functions; vector w l
i 
      

contains the weights; and scalar bl
i is a bias term. For notational 

simplicity, we use vector θ to include weights and biases from 
all the nodes in the model. The objective is to choose θ to min-
imize a cost function J (θ ). The cost function defines the error 
between the target value ŷ calculated by the network, and the 
desired value y passed from the input data. J (θ ) can be mean 
square error (MSE) for regression problems, or cross-entropy 
for classification problems. It can be other function depending 
on the specific application. 

Two types of financial applications are good candidates for 
function approximation using feedforward deep network. 
1) Fit functions for hard-to-model assumptions, like pol-
icyholder behaviors. 2) Approximate functions to replace 
computational intensive calculation, such as seriatim valuation 
or stochastic simulation. An advantage of using feedforward 
deep network to approximate functions is that there is no 

Input 
Layer

Hidden Layers Output  
Layer

Figure 1 
A Feedforward Deep Learning Network

the output layer to produce the target value(s). Neurons of one 
layer take as input the outputs of neurons in the previous layer. 
There are no feedback connections in which the outputs of a 
layer are fed back to itself or the previous layers. The feedfor-
ward computation can be described as a directed acyclic graph 
shown in Figure 1. 
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need for prior knowledge about the true model. Constructing 
a neural network is more art than science. Financial analysts, 
such as actuaries, can construct a feedforward network by try-
ing different combinations of hyperparameters. There are two 
types of hyperparameters. 1) Model hyperparameters, such as 
the total number of neurons, the connection between neurons, 
and the activation functions. 2) Training method hyperparam-
eters, such as cost function, optimization solver, learning rate 
and initial weights. Often, there is not a single best combination 
of hyperparameters for a particular problem. Usually the bigger 
the network and the larger the training data size, the better 
approximation the trained network achieves. However, it comes 
with the price of computational efficiency. Our goal is to find 
a satisfactory set of hyperparameters to achieve target accuracy 
and efficiency with the constraints of available computation 
power and training data.

NUMERICAL EXPERIMENTS
In this section, we use an example of large portfolio variable 
annuity valuation to demonstrate the speed and accuracy that 
GPUs and Deep Learning can achieve.

We compare the performance of the valuation in the following 
three settings: Monte Carlo valuation using multi-threaded 
CPUs, Monte Carlo valuation using GPUs, and GPU-based 
deep learning valuation. All tests are done in the testing com-
puter with 500GB RAM, 64 hyper-threaded cores at 2.30GHz, 
and an NVIDIA Tesla K80 GPU card with 4,992 CUDA threads.

Portfolio Data
The portfolio consists of one million synthetic variable annuity 
policies with either a GMDB rider or both GMDB and GMWB 
riders. Each policy has seven attributes which contribute to the 
policy’s valuation. They are guarantee type, gender, age, account 
value, guarantee value, GMWB withdrawal rate and maturity. 
Each policy is generated by uniformly drawing values of each 
attribute from its respective range. For the purpose of comparison, 
we use the same attributes and value ranges of the input portfo-
lio listed in Table 1 in Hejazi et al. (2015). We also use the same 
log-normal distribution with a 3 percent risk-free rate and a 20 
percent volatility to generate 10,000 risk neutral equity scenarios. 
The mortality rates follow the same 1996 IAM tables provided by 
the Society of Actuary. The projection horizon is 25 years.

The model calculates the dollar delta for each of the one million 
variable annuity policy.

Monte Carlo Valuation
The Monte Carlo valuation algorithm follows Gan (2013). For 
each policy, we calculate the dollar delta for each of the 10,000 
equity scenarios. A policy’s dollar delta is the average of the dollar 
deltas across all scenarios. It takes 44 minutes using the 64 CPU 

cores, or 52 seconds using the 4,992 GPU threads, to compute 
the million policies’ dollar deltas on the testing computer. 

Deep Learning Valuation
To achieve higher performance, we use deep learning to approx-
imate Monte Carlo valuation on the million variable annuities.

In our experiment, we construct a fully connected feedforward 
deep neural network with one input layer, eight hidden layers, 
and one output layer. The input features include two categor-
ical features and six numerical ones. Categorical features are 
guarantee type (zero for GMDB and one for GMDB+GMWB) 
and gender (zero for male and one for female). Numerical 
features are maturity, age, account value, GD/AV (the ratio of 
guaranteed death benefit over account value), GW/AV (the 
ratio of guaranteed remaining withdrawal amount over account 
value) and withdrawal rate. GW/AV and withdrawal rate are 
zero for policies with only the GMDB rider. For policies with 
both GMDB and GMWB riders, the time zero values of GD/
AV equal to GW/AV equal to the ratio of guarantee value over 
account value. To ensure fast convergence for network training, 
we standardize the numerical feature values by taking their 
z-scores. Each hidden layer has 1,024 neurons with RELU acti-
vation function. The output layer calculates the weighted sum 
of the eighth hidden layer’s 1,024 outputs to produce the value 
of target variable dollar delta.

To train the network, we generate 10,000 variable annuity 
policies, 8,000 for training and 2,000 for validation. They are 1 
percent the size of the input portfolio we need to evaluate. They 
follow the same distribution as the million-policy portfolio we 
want to evaluate. We calculate their dollar deltas using Monte 
Carlo valuation, which takes half a second on the GPUs. Should 
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valuation results from past valuation dates be available, there 
would be no need to generate new training data with Monte 
Carlo simulations. Actuaries who are working on production 
have plenty of historical data to use as inputs for network training.

We train the network using back propagation with the Adam opti-
mizer to find a set of weights and bias to minimize the cost function 

J (θ ) = 1
2N

 
i =1

N∑ ŷi - y i

1+|y i|)( )2

.

To speed up training, we employ a mini-batch training tech-
nique with a batch size of 100. The learning rate is set to 0.001. 
The initial weight values are generated using truncated normal 
with mean 0 and standard deviation 0.1. The initial bias values 
are set to zeros. The network is trained for 88,800 iterations 
within 14 minutes on the GPUs. The values of J (θ ) are 0.0005 
for the training set and 0.0028 for the validation set.

It is worth pointing out the importance of selecting a good cost 
function that suits the particular problem we are solving. The 
dollar deltas can vary in a wide range among different variable 
annuity policies in a portfolio. We do not choose

  
MSE(θ ) =  

i =1

N∑ ( ŷi - y i )
21

2N
,

because it favors those weights and bias that reduce the errors 
for the y i’s with large absolute values; therefore the accuracy of 
the model for the y i’s with wsmall absolute values compromised. 
We also choose not to use

 MSE(θ ) =  
i =1

N∑1
2N

 ŷi - y i
y i

( )2 , 

because it is very likely that some policies have dollar deltas at 
or very close to zero. Using MSRE as the cost function would 
cause numerical problems. We try a few variations of MSRE. 
Cost function

 J (θ ) = 1
2N

 i =1
N∑ ŷi - y i

1+|y i|)( )2

gives us the best optimization result.

Once the network is trained, it can be used to approximate 
the Monte Carlo valuation for variable annuity policies 
with similar characteristics as the training data, so long as 
the risk neutral assumptions for equity scenarios stay the 
same. The trained deep net can replace the entire one-level 
Monte Carlo valuation. It can also substitute each inner loop 
Monte Carlo valuation at all time steps along the outer loop 
scenarios for a nested simulation. In our example, it takes 
four seconds to compute the dollar deltas for the 1,000,000 
policies using the trained deep net. The relative error of the 
portfolio dollar delta 

i=1
∑N

i=1
∑Nŷi - y i

i=1
∑N y i  

 
is 0.0004. It would have taken the same GPU card eight days 
to complete the nested Monte Carlo valuation for the same 
portfolio with 1,000 outer loop real world scenarios each hav-
ing 10,000 inner loop risk neural paths. With the trained deep 
net to perform the inner valuation, we can complete the nested 
calculation in 14 hours. We can further reduce the computation 
time by using more GPU cards simultaneously.

Using the Many Task Computing framework (Bequet and Chen 
2017), we are able to integrate CPU and GPU tasks in the same 
computation job flow without any manual data movement. The 
end-to-end computation seamlessly conducts data generation 
and enrichment on CPUs, Monte Carlo simulation and neural 
network training/inference on GPUs. Figure 2 shows the high 
level computation job flow.

Performance Results
Table 1 shows the performance results for evaluating one mil-
lion variable annuity policies using different technologies. We 
list the hardware information to provide reference for inter-
ested readers.

Figure 2 
An End-to-End Job Flow for Variable Annuity Valuation With Deep Learning

generation_va_policy va_valuation_monte_carlo train_deep_net va_valuation_deep_net
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Table 1
Performance under Different Technologies

Technology Hardware
Monte Carlo 

Simulation Times 
(in seconds)

CPU
Monte Carlo 
Valuation 
with SAS

64 HT Intel E5-2698 v3 
@ 2.30 GHz
500 GB RAM

2,640

GPU

Monte Carlo 
Valuation 
with CUDAC

NVIDIA K80 
@ 840 MHz
4,992 CUDA Cores

52

Deep Learning 
with CUDAC

NVIDIA K80 
@ 840 MHz
4,992 CUDA Cores

4

The four-second computation time with deep learning is the 
time for inference only. We do not include the network training 
time here because the neural network only needs to be trained 
once, and can be used for inference many times, as long as the 
portfolio’s characteristics and company’s long term view on 
equity movements do not change. 

CONCLUSION AND FUTURE WORK
We have shown that GPUs and GPU-based deep learning can 
improve computation efficiency by several orders of magnitude. 
This facilitates timely analysis for better decision making. 

As actuaries continue pushing the boundary of product innova-
tion, more complicated modeling is expected, which demands 
higher computing performance. Fortunately we are living in a 
world of constant technology breakthroughs. Application Spe-
cific Integrated Circuits (ASICs) designed for deep learning 
training and inference will perform analytics even faster than 
what we have described in this paper. Preliminary results (Joupi, 
et al., 2017) indicate that we would at least get another order 
of magnitude of performance improvements. We will work on 
financial analytics with ASICs-based deep learning and share 
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the findings with readers in the future. Meanwhile, we see deep 
learning as a nice tool to help actuaries discover the real patterns 
of policyholder behaviors. Policyholder behaviors, such as guar-
anteed living benefits utilization and dynamic lapse, are hard to 
model. Because deep learning algorithms learn models directly 
from data, we believe actuaries can train deep neural networks 
with relevant data and find the credible policyholder behavior 
assumptions for better valuations.  ■
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