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Summary:  Complex financial instruments like collateralized mortgage obligations
(CMOs) and complex financial operations like asset/liability management can only
be valued using Monte Carlo methods.  Whenever we average a series of values
that use different scenarios, we are using Monte Carlo methods.  There cannot be
simple, straightforward formulas that give quick answers.  However, Monte Carlo
may produce biased expected values and seems useless for the determination of a
risk profile of the asset or the asset/liability match.  Learn the background of Monte
Carlo and see whether the use of low-discrepancy points will improve these
impediments to it.

Dr. Irwin T. Vanderhoof:  Dr. Anargyros Papageorgiou is from Columbia University
where the use of low-discrepancy sequences for valuation was invented.  He just
returned from a conference on complexity theory in Frankfurt where icons in this 
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area, Tezuka and Neiderreiter made presentations .  Dr. Papageorgiou is currently
doing postdoctoral work with Joe Traub.  They are investigating the use of low-
discrepancy sequences and building the Finder software for identifying such
sequences.  His bachelor of science degree is from the University of Athens and his
Ph.D. is in computer science from Columbia University. 

Graham Lord is a Fellow of the Society of Actuaries (FSA).  He received his under-
graduate degree from the University of Auckland and has his Ph.D. in analytic
number theory.  After coming to North America, he became a tenured professor of
actuarial science at Lavalle University.  Graham has worked for Morgan Stanley, the
consulting firm Mathematica and has also taught at Wharton.  He now lives in
Princeton working as a teacher at Temple University and as a consultant.

Leonard Wissner is a fund manager and originally studied at City College of New
York.  He went on to study for his Ph.D. in operations research, but before he
finished his dissertation, that branch of New York University closed.  Leonard
manages about half a billion dollars for pension funds and has run his business
using immunization techniques for matching duration and convexity of pension
liabilities.

Finally, thank you to Chalke and Tillinghast who have cooperated by allowing us to
use their software so that we can show the impact of using low-discrepancy se-
quences in choosing scenarios to run on asset/liability problems. 

This session will be broken into several sections:  
Graham is going to present an introduction to Monte Carlo, describing why
it, rather than other numerical methods, is used for integration and valuation
of complex formulas. 

I will discuss the paper in the current issue of Contingencies which presents
our results using low-discrepancy points.  

Leonard Wissner will share results using low-discrepancy sequences instead
of the usual Monte Carlo simulation for pension fund analysis. 

Graham will return to discuss an example applying low-discrepancy se-
quences to an insurance company problem.

Finally, Dr. Papageorgiou will fill us in on the most recent and spectacular
developments in speeding up the processing of these complicated problems.
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All my life I have heard people saying that making things go faster does not create
anything new.  I disagree.  When you get improvement in the speed of calculation
of several orders of magnitude, all of a sudden you find you are able to do things
you never thought were possible.

What we are doing with computers and personal computers (PCs) is not just a faster
way of doing what we used to do by hand.  We are now doing things that we never
would have bothered to even think about doing by hand.  Due to the increase in
precision and speed of convergence available and because of the use of low-
discrepancy sequences, we are going to be able to do things that we never thought
were possible and that we never dreamed of doing in the past.  
  
Dr. Graham Lord:  My role is to give an overview of the fundamentals of low-
discrepancy sequences.  Development of this topic goes back to another area,
namely to Monte Carlo simulation, which, incidentally, has not been around that
long either. 
  
Monte Carlo was a code word intended to disguise what was being attempted.  The
purpose of Monte Carlo simulation was to help physicists work through equations
that did not have solutions which they could nicely compute.  The work was in
connection with developing the parameters for the atomic bomb, the Manhattan
project.  These methods are the process or the bag of methods used to simulate the
process or model, and in that simulation, random variables are used.  I am drawing
a distinction here between deterministic scenarios and Monte Carlo simulation. 
Regulation 126, for example, has seven deterministic scenarios.  Monte Carlo
simulation of some annuity products, for example, processes the annuity product
through a model and its behavior is determined by random variables rather than by
pre-determined, pre-set interest rates such as those in the New York seven. 
  
The key is random variables.  We are trying to mimic a process which would
otherwise be very difficult to understand, study its sensitivity to the input parame-
ters, and examine the behavior of a model of some real-life process.  

In most actuarial applications we tend to see an examination of the effect of
increasing surrender charges or changing other product design features.  If we
consider the behavior of a bond portfolio, we are making some statement about
future interest rates.  We are not modeling the actual bond, but are determining the
model which determines the interest rates, which in turn determines what the bond
value is.  
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If we knew the closed-form solution in the first place, we wouldn’t bother with
simulation.  This procedure of Monte Carlo simulation is undertaken when we don’t
have an analytical solution.
  
As a test, we will consider a case where an analytical solution exists.  We will
simulate a three-dimensional integral, and, since we know the answer, we can see
how good the Monte Carlo method is.  The test is not only for Monte Carlo meth-
ods, but also for quasi-random variables, that is, low-discrepancy sequences.  The
problem is the evaluation of integrals, not necessarily of one dimension like we
learned in calculus one, but of multiple integrals.  Within that framework, think in
terms of the price of a collateralized mortgage obligation.  Because the price is an
expected value, the economic value is an expected value, and the expected value is
an integral.  Modeling a collateralized mortgage obligation month-by-month means
evaluating 360 integrals.  

Wall Street uses Monte Carlo methods to evaluate collateralized mortgage obliga-
tions, by, in essence, tossing a coin in order to evaluate the high-dimensional
integral.  Jim Tilley is an actuary who has been instrumental in the valuation of
insurance company liabilities using Monte Carlo methods.  Much of the work Jim
has done at Morgan Stanley is in connection with the economic valuation of
insurance liabilities, as they tie into the economic valuation of an asset portfolio,
namely asset/liability management or asset/liability analysis.  These are some of the
techniques and topics we are thinking of when doing Monte Carlo simulation.  

Let’s return briefly to this application in the evaluation of an integral.  A Monte
Carlo simulation is equivalent to the toss of a coin, and the outcome of that coin
toss will determine how the function we are evaluating is going to be estimated. 
We do not toss the coin just once, we toss it many times.  The coin we toss is not a
two-sided coin, but a multifaceted coin.  A computer helps with this process, and in
the simplest application, the tossing of the coin is telling us the distribution; one toss
of the coin would be one point from the uniform distribution.  
  
Some of the mathematical distributions we meet, particularly when modeling
interest rates, are not uniform, but are lognormal, Brownian motion, white noise or
other far more complicated probability distributions that we can approximate using
something other than uniform random variables.  Underlying most of the applica-
tions, we evaluate our integral via the uniform random number process.  Rather
than talk about how to approximate a normal by Monte Carlo methods, a Gamma,
exponential, or Poisson, each of which has very special techniques for Monte Carlo
simulation, I will take as my sole example simulating a uniform random variable. 
These other distributions, such as exponential and normal, have some desirable
properties.  The choice of the pseudo-random number generator with certain
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desirable properties is crucial to the success of the Monte Carlo simulation method. 
What do we mean by desirable?  If we consider uniform random numbers, there are
many tests we could force our random number generator to satisfy.  Here is a list of
some of them.  It is not an exhaustive list, but they give a sense of what we are
looking for.  

The one particular thing that we would like is a random number generator that does
not repeat.  A computer generates the random numbers, and the computer will use
an algorithm to determine those numbers.  In other words, there is a mathematical,
deterministic formula used to come up with what we believe to be a random
number.  We look at the output and say, this is random.  The density of the result, if
we measure it, will be the uniform distribution.  

The input is a deterministic sequence, and for many desirable random number
generators, that deterministic sequence cycles.  You start off with one value, and
after a thousand or two thousand tosses or pulls of the random number, you come
back to where you started.  Obviously, a generator that repeats after one thousand
or two thousand tosses, is just too short.  If you were doing a simulation of 100
thousand runs, you would be using the same numbers over and over again.  One
desirable property is to have the period, or the length of the cycle of your determin-
istic algorithm that generates your pseudorandom numbers, be very long.  Also,
since we are talking about uniform random numbers, we would like the resulting
sequence of numbers to be uniformly distributed between the limits of your
intervals (usually zero to one).  

Next, we would like statistical independence between the numbers that we pull. 
This can be made very precise by saying we want independence between succes-
sive ones.  However, this is impossible, because we are using a mathematical
formula to get the numbers.  We should really put the word independence in
quotes, or add, statistical almost independence.  What would that accomplish?  We
would have to define it.  You can see that some of these tests can be somewhat
arbitrary or subjective.  
  
There is another test we will speak about when we look at low-discrepancy se-
quence.  We do not want numbers lining up in a row or regular gaps or jumps that
are regular.  In other words, there should not be patterns emerging in the numbers. 
We do not want to see a lattice structure.  

When you think of usual random numbers, you are thinking of numbers between
zero and one.  These patterns do not emerge so clearly.  Think of a 50-dimensional
vector, say a set of one thousand, 50-dimensional pseudorandom vectors.  Consider
the 39th dimension.  Sometimes you see disturbing patterns in that dimension, or
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some other high dimension.  One can control for this in a number of ways, and
we’ll touch on this briefly.  

I’m not going to spend much time on nonuniform pseudorandom numbers, but a
determinant of the properties of those pseudorandom numbers, say for the normal,
is the process by which you generate them.  Think of the Box-Mueller method or
other methods which produce the normal distribution or bivariate normal distribu-
tion more easily than going through uniform random numbers.  However, there are
problems within.  Box-Mueller fails in the tails of the normal distribution.  If you are
interested in an insurance application and are concerned about the probabilities of
insolvency, and somewhere along the line you are using a normal distribution, then
you should not be using Box-Mueller because that is where it is apt to break down. 
One must be careful.  
  
This is meant to be an overview, so I am not giving you any details on how to test
for the period length, other than it has to be long.  The question is, how long?  I
have an example that will perhaps impress upon you how long is long.  

For the equi-distribution properties, there are a number of very refined statistical
tests, the s-dimensional Kolmogorov tests are similar to what you might have
learned if you had done nonparametric statistics.  There are other tests which are
used.    

So that we do not lose sight of where we are going, let me give you one example,
perhaps the most famous example, of a pseudorandom number generator.  That is
the circular linear congruential method.  It is a very simple one, but this is the one
that is in almost every piece of software which is commercially available, whether it
is a spreadsheet program like Lotus, Excel, or some of the more sophisticated
software statistical packages.  Invariably, they have some form of the linear
congruential algorithm.  You take the pseudorandom number which was just
generated, multiply it by a constant A, add another constant C, divide by M, and
look at the remainder;  that remainder is your next pseudorandom number.  This is
looking at remainders after dividing by this number M.  

Those who have done number theory will realize that this cycle length is going to
be less than M or it is going to be at most M.  If you divide a number by ten, you
can get only ten remainders.  What we take is very large.  In fact one that is com-
monly taken, though it is not the only one and is not necessarily the best one, is one
where the first constant is 397,204,094.  The B is equal to zero and the M is 231

minus one. This is a large prime number, and the question is, what is the length of
this cycle?  The cycle length of this is something bigger than 2.8 times 10 .  That is 13

large.  Suppose when using this linear congruential method, this particular 
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generator, we wanted to pick a thousand random numbers every second.  The
question is, how long would we be picking until we came back to where we
started.  That will be a measure of our cycle length.  The time required to come
back to the start, that is, to cycle, is about 800 years.  
  
What is of interest to us is not picking a linear sequence of pseudorandom numbers,
but choosing the vectors, a linear sequence of vectors, of pseudorandom numbers. 
Think of the collateralized mortgage obligation example.  If we do a simulation of
10,000 runs, every run must have something like 360 components, the random
vector must have 360 components.  

Let me do a pick of one thousand pseudorandom numbers and then pick two-
dimensional pseudorandom numbers, and see what they look like.  More than
words, Chart 1 tells why we are looking at low-discrepancy sequences rather than
continuing to look at Monte Carlo methods exclusively.  We have two coordinates
and we have a thousand or just over a thousand pairs of random numbers. 

What I see is bad.  There is bunching up or points where the crosses are very close
to each other.  At the same time, there are areas where there are big gaps.  Look at
the center.  Where is the equidistribution property we wanted?  There may be an
equal distribution in one direction, and there may be an equal distribution in the
other direction, but when the two are put together, we start to get the undesirable
properties.  We would like a way of better filling the unit square with points so that
we have better representatives when we are using the numbers, whatever the
application.  Keep this picture in mind because we will compare it to a picture
using low-discrepancy sequences.
  
The researchers in this area have realized that many of these early pseudorandom
number generators are flawed because of the patterns one can see, the gaps etc. 
The search for better pseudorandom numbers is underway, and in the future there
will be even better ones.  If you do go to a particular piece of statistical software,
you are not going to see just one random number generator, but a whole slew of
them.  Each one will be using a particular method.  Some others are:  multiple
recursive congruential, shift register (GFSR), nonlinear congruential, recursive
inversive, explicit inversive, and digital inversive.

I am not going to talk about them, but one tends to think the only way that random
numbers are generated is by the linear congruential method or some variant of it;
but, in fact, that is one of many methods.    
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Some of these methods are so new that they have only been around for the last six
years.  Be aware that Monte Carlo methods are not dead; it is just that we may have
something that is superior for many of our applications.  
  
From the point of view of applications to finance, including actuarial applications,
one of the biggest drawbacks, even with the more refined methods, is the time it
takes to do them.  If you consider the worst error you would get, the worst length of
time, or the precision of the results, then we can show that the measure of the
maximum error in a Monte Carlo run tends to be one over the square root of the
number of trials.  If you are doing 10,000 trials, the error is bounded by 1/100.  Also 

(one over the square root of M) is the bound on the error.  

There have been a variety of methods which have been developed to get around
this problem of how many numbers you have to pick to get a desired level of
accuracy.  Some of the classic methods are:  antithetic variables, stratified sampling,
control variate, and importance sampling.

The one that is the easiest to understand is the antithetic variables.  If you pick a
pseudorandom number, and the number is say a one-third, then you also use the
complement of that random number, namely one minus one-third, which is
two-thirds.  Instead of picking 1,000 random numbers, you only choose 500 and
take the complement of that 500 to get a full set of 1,000.  

You can become more sophisticated about it and combine it with some other
methods in order to help reduce your variance.  Stratified sampling is a way of
reducing variance by looking at the interval over which you are doing your simula-
tion, chopping it up into little intervals, and doing the simulation over each interval. 
If you do it right, the variance over each interval added up will be less than the
variance if you did not constrain it by this stratification.    

Control variate uses another variable which is already known, and combines it in a
linear way.  

Y=X+c(Z )

The classic way is:  I want to estimate the variable X.  In fact, I want the expected
value of X to be the estimate, and I know a random variable Z which I can estimate
easily, and its mean is .  

I take a simple linear combination of the two, let’s call it Y, and then I simulate Y. 
What is the expected value of Y?  It is the expected value of X.  Depending on how
X and Z are correlated, the variance of Y can be less than the variance of X.  By
using this control variance Z, I replace my problem of estimating the expected value
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of X by estimating the expected value of Y, and I have a smaller variance to deal
with.  We can talk about the best choice for c which enables us to reduce the
variance by the most.    

Importance sampling, the last one I am going to mention, is a way in which you
give additional weight to parts of the function you are estimating, and give less
weight to the sections of the function where it has less of an impact on your overall
estimate.  

These methods have been used to either reduce the number of overall runs needed,
such as antithetic variables, or reduce the variance in some other way.  I can reduce
my variance even further than these methods do.  Think of the original work of
calculating an integral.  

Suppose we have a curve and put it in a box.  Then we just fire two-dimensional
random points at it, count the number of crosses underneath the curve, and divide
by the total number that fall within the box.  This is the so-called hit or miss
method.  You either hit by getting underneath the curve or you miss by getting
outside it.  

Next, do this method in a sneaky way by forming a grid.  Then choose the pseudo-
random points, say, at the points on this grid, in other words, the points of intersec-
tion.  Randomness enters by how the points are ordered.  With this grid process the
variance is reduced from  to being no worse than 1/n, where n is the
number of points.   Depending upon the nature of the function, using this grid
approach, I might reduce my error dramatically.  I have to know how fine to make
my grid, and hence, how many points to do.  Although this looks nice in theory, in
practice we do not know how fine to make our grid.   

That leads to the question of a way other than using pseudorandom numbers to
keep the grid, and choose points that might not necessarily be at the corners of each
square, but somewhere inside each square.  That way we may be able to preserve
the bound on the error to be 1/n and better than the  of the Monte Carlo
method or pseudorandom number method.  Is that possible?  The answer is yes, and
that is what discrepancy points are.  

From the Floor:  When you draw the grid, do you count how many across?

Dr. Lord:  Yes, you have to.  

From the Floor:  It works with random?
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Dr. Lord:  I mentioned what the randomness is.  You have to write down the
sequence of points that you picked, and it is the order that you write them down
that is random.  It is the logical extension of the hit-and-miss method that is used to
evaluate very complex functions.  
  
The problem with the grid size is that in order to have any accuracy, you are going
to get a prohibitive number of points.  The question is, can we still use this grid
approach and do better?  

Quasi-Monte Carlo methods are deterministic, but the points are no longer random. 
We define a quasirandom method or a quasi-Monte Carlo method as a simulation
based upon what we are going to call quasirandom sequences.  These are determin-
istic.  There is going to be a formula to calculate them, and it is going to have the
very nice property that we had in our hit-and-miss example; the points are going to
fill up our space.  It could be just the unit integral, or two dimensions (as we had in
our pseudo-random number example), or multidimensional.  Later on we are going
to have a number of different examples.  

The points we are going to talk about will have properties such that they fill in that
grid in a very uniform way.  We will give you an introduction to the definition of
what we mean by uniform way.  It does cover the unit cube or the hyper cube, but
it does so in an extremely parsimonious way.  No point is too close to another
point, which is what I mean by, “they avoid each other,” so that a point is playing
the role of many points around it.  You can think of little spheres working in
spherical coordinates.  

From the Floor:  Is it really a question of the size of the grid, or do they not really
follow the grid?
  
Dr. Lord:  We disguise the grid in the algorithm that is used to construct them.  The
quasi-Monte Carlo points which we choose, and you will see my example, are
points which are inside each cell.  The measure we are going to use of how uniform
these are is called discrepancy.  

I will give you an introduction to the definition of discrepancy in a moment.  Chart
2 shows only two-dimensional points and is one example of a sequence of low-
discrepancy points.  It is created by an algorithm named after Faure, the French
mathematician who developed it.  

When comparing Chart 2 to Chart 1 which showed 1,024 pseudorandom numbers,
we see there is a far better distribution of the points within the square.  I will explain
in more detail what base three means when I actually give you the Faure points.  
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If 512 points do so well, you may ask what the corresponding 1,024 quasi-Monte
Carlo points look like?  How do these fill up?   Chart 3 is the picture for them.  

You can see how the quasi-Monte Carlo points in Chart 3 avoid each other com-
pared to the pseudo-Monte Carlo points in Chart 1.  If we are going to simulate
interest rates as we do later on in our applications, then I want to make sure that
when I do toss my quasi-Monte Carlo or my interest rate generator, I can be better
guaranteed that I will have a better representation of interest rates.      

From the Floor:  If you were to complete a whole grid, you might have lower
discrepancy, but the problem is that at any given time, when you are working
halfway through a grid, then you are much worse off.  Wouldn’t that be true?  If you
complete a whole grid, you are going to have lower discrepancy at that particular
number of points.  It looks that way when you look at those charts.  Are you saying
that is wrong?
  
Dr. Vanderhoof:  That’s wrong.  I cannot give you the proof as to why it is wrong,
but I have seen the formulas.  What you say is correct.  For two dimensions, the grid
is better.  Once you go over three dimensions, then the grid falls apart.  I have seen
the formulas for it, but I cannot give the proof of the formulas. 
  
Dr. Anargyros Papageorgiou:  The discrepancy is a function of the number of the
points, so you cannot compare two point sets that are different in size and talk
about the discrepancy.  If you consider the grid, even in its most trivial form, let’s
say a three-dimensional grid, then you have at 2  or eight points, one on each3

vertex.  If you take a 360-dimensional grid, you have 2  points, again with one on360

each vertex.  This is what leads to the combinatorial explosion which does not
allow you to solve these problems.  You want to come up with sequences that, for a
fixed number of points have as little as possible deviation from normality.  If I keep
on filling the grid, yes, that diminishes the discrepancy.  But you are paying more
because you are taking more and more points.  Fix the cost.  Find a point set that
has a fixed number of points, and among all point sets, choose the one that has the
lowest discrepancy.  
  
From the Floor:  I think what you just said was slightly different from what Irwin
said.  You are saying, “Yes, you could fill in the whole grid in ten or 15 dimen-
sions.”  For that huge number of points you might actually do better, but there is no
way you are going to do it. 

Dr. Papageorgiou:  No, that is wrong.  If I keep on filling, it is as if I keep on taking
more points.  It does not have anything to do with the grid or any other way of
selecting the points.  It is misleading for one to think that I can reduce the 
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discrepancy by increasing the number of points.  You have to keep the number of
points fixed and then look at the placement of those points and decide what is the
deviation.  

From the Floor:  If you compare two sets of points which have say 100  of points,360

one of which is done this way and the other is done on the points of the grid (the
same number of points) which one would do better?  

Dr. Papageorgiou:  They are proportionately the same.  

Dr. Lord:  This is the measure of discrepancy, which looks more forbidding than it
really is:  

DISCREPANCY

Here are all eight points, all together in the unit square.  Define the subinterval,
which is J, and count up the number of points that fall within J.  In this example,
there are only three.  What is the portion of those points relative to the total number
of points, and how does that compare with the actual area of the square?  In other
words, how good is it?  It is like hit and miss.  The area of the square, J, using the
point system measure, is 3/8, compared to what the area should have been, which
is a quarter.  The difference between these two, the one done by counting points,
3/8, minus the true area, 1/4, is the discrepancy for that particular J.  
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The definition makes it a bit more formal but just think of the picture.  Instead of
just two dimensions, consider as many dimensions as you want.  

From the Floor:  Explain what the advantage of using Faure points is over using the
straight Monte Carlo method.
  
Dr. Lord:  There is a dramatic reduction in the error.  There is a speed-up with
which you attain your results, and in some cases that speed-up is phenomenally fast. 
Irwin mentioned a 100-fold increase.  

To get the accuracy of an analysis using 100,000 Monte Carlo runs, you need to use
only 1,000 low-discrepancy points or the quasi-Monte Carlo method.  In fact, let’s
briefly touch on what I am going to be talking about later—the study of a single
premium deferred annuity (SPDA) block of business.  It took 16 hours to do the
pseudo-Monte Carlo run on a computer, and it took 2 hours to do it using these
quasi-Monte Carlo methods.  Most of the work was not the low-discrepancy points,
it was the actual computer model of the SPDA and assets that took so much time. 
That is a dramatic savings.  
  
From the Floor:  Every time you take a different interval you get a different discrep-
ancy number?
  
Dr. Lord:  Every time you take a different interval J, you get a different D(J;N).  What
you want to look at is the worst example or the worst measure and that leads to
what the discrepancy is.  It is given the name D*, and it is the maximum of all the
Js.  There is the final definition of discrepancy.  Take the maximum or the
supremum over all those little discrepancies.  
  
From the Floor: This works for Js of all sizes?

Dr. Lord: This is for Js of all sizes within the unit interval.  The reason it is starred is
because all those Js are anchored at the origin.  They all have one vertex at the
origin.  There are other measures of discrepancy which are more general, but this is
the one that is perhaps the easiest to use.  It also leads to some interesting proper-
ties.  For a uniformly distributed infinite sequence then the D* is equal to zero. 
This is what you were asking about?  Does it actually fill up everything?  The answer
is, it fills it up very fast.    

From the Floor:  Why are they all started at the origin?

Dr. Lord:  It is just mathematically convenient to do that.  I could have had Js
anywhere in the interval, all over the place.  It is just quicker to do it this way.  
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Mr. Thomas N. Herzog:  Do you lose generality?  

Dr. Lord:  You do not lose too much generality by anchoring them.  
  
From the Floor:  What if there’s a problem, for whatever reason, in the upper box?
  
Dr. Lord:  Remember this is just one J.  One of the Js would be from 0–15/16.  That
would capture the behavior in the corner.  You can see the J is an increasing family
of little squares.  That way everything is covered.  You do not lose too much
generality by considering only these, as compared to considering all possible little
squares all over the place.  
  
Mr. Thomas J. Mitchell:  Isn’t that supremum hard to calculate for general 
sequences?

Dr. Lord:  I do not think so.  You are taking areas of squares or hyper cubes.  
 
Mr. Mitchell:  You take the maximum, and then you would have to look at a large
number?  
  
Dr. Lord:  Yes.  I am not saying you can do it quickly.  
  
Mr. Mitchell:  By hard, I meant slow.  
  
Dr. Lord:  Yes, slow.  In fact, it is so hard in that sense that we only know of special
cases.  The example I am going to share with you is the one-dimensional case.  Take
the unit interval from zero to one.  Answer the question, “What is the discrepancy
of the points?”

Take any bunch of points, x(1)...x(N), and the discrepancy will be equal to this
formula.  

D*  DiscrepancyN 



lim
N

D N 0,

D N
1

2N
max

i 1,2,...,N
xi

2i 1
2N

xi
2i 1
2N

D(J;N) A(J;N)
N

V(J)
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Therefore,

a uniformly distributed infinite sequence.

In the one-dimensional case the D*  discrepancy of the sequence N
0  x  < x  < ... < x  11  2    N

Thus to obtain the lowest discrepancy sequence, we should pick

This special case reduces to the midpoint rule!

Then in the true spirit of mathematicians, we ask, “What is the smallest value this
thing can have?” 

Consider N points x ,x , ..., x  in the s-dimensional unit cube1 2   N

I  = (0,1) , s 1, and a subinterval J  I , the local discrepancy, D(J;N), is3  3         3

defined by

Where A(J;N) is the number of n, 1  n  N with x   J and V(J) is then

volume of J.

Because this was an arbitrary sequence of N points, take the smallest or minimum of
this value.  You end up with all the points in the odd parts of the interval.

If there were ten points, they would be at 1/20, 3/20, 5/20, 7/20, 9/20, and 11/20. 
That is the mid-point for a mid-point numerical integration formula for the area
underneath the curve.  

This example can be misleading.  If the solution to the problem is equally-spaced
points between zero and one.  This would imply if you are looking at a square, a
two-dimensional problem, that you should be using equally-spaced points in both
dimensions and putting them together.  That is not the lowest discrepancy se-
quence.  Some of the other examples which we explain do fall into the lowest
discrepancy sequence.  



n
j 0

cj p j

f(n)
j 0
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The one I am going to show you in some detail goes by the name of the van der
Corput sequence.  Take a prime number, say the number three.  If I take a number
like 11, I can write 11 in base three.  Let’s use the example shown below. 

CONSTRUCTION

P is a prime number

Any non-negative integer n can be expressed

(e.g., if p=3, n=7 = 1*3  + 2*3 )0  1

Define the radical-inverse function f in base p by

(e.g., if p = 3, n = 7, f(7) = 1/3 + 2/9)

Note for n >0, 0 <f(n) < 1

The van der Corput sequence in base p is then:
f(0), f(1), f(2), ... , f(n), ... .

The van der Corput sequence is “uniformly scattered” or “self-avoiding”, and is “uniformly
distributed” in the sense that its discrepancy tends toward 0 as the number of points in the
sequence gets larger.

In fact, the discrepancy of the sequence is (k*log n)/n
(k is a function of the base p)

The best value of k is 1/(2 log 3) and occurs when p = 3

The constant can be improved by permuting the coefficients c   in the representation—thej
resulting sequence is called the generalized van der Corput sequence.

I can write seven in base three because it is two times 3 , plus one times 3 .  If you1     0

are going to do a base three representation of the number 7, it is going to be 21. 
The two and the one are the numbers that appear in the sum.  They are the
co-efficient in the basis expression in base three.  We can write any number, a
number in the millions or a number as small as seven, in base three.  

Now, define the radical inverse function which takes those same coefficients, the
two and the one, and now puts the base in the denominator.  It says, you had two



1/ n
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and one next to each other, and you did a reflection after the decimal point.  The
digit that is in the units place becomes the digit immediately following the three-
base point.  The digit that is in the second place to the left of the decimal point now
becomes the digit in the second place to the right of the decimal point, and so it
goes on.  Why are we doing this?  Because we end up with a number, f(7), which is
between zero and one.  If I keep doing this, starting at zero and going on to n, then I
will get a sequence of numbers between zero and one, and these will be my quasi-
Monte Carlo points.   
  
It is a very simple construction.  You can do it even in a spreadsheet program and
generate quasi-Monte Carlo points, or one-dimensional van der Corput sequences. 
They are uniformly distributed in the sense of our discrepancy.  If I let the n go to
infinity, the limit of the discrepancy goes to zero.  I gave a slightly different defini-
tion as equivalent.  

One can show that the discrepancy of van der Corput sequence is (k log n)/n. 
Discrepancy is the measure that is somewhat similar to the variance, in that it gives
an estimate of what the error is in some applications.  It is what you are missing by. 
It is approximately 1/n, which is much better than .  The k is a constant, and it
depends upon the base.  This proof is for any arbitrary prime.  Where do you get the
best discrepancy?  It is when p=3, and k=1/(2 log 3).  
  
We can play fun games like this.  This one blows Irwin’s mind in that we are talking
about derandomization and getting away from random points.  I can improve
discrepancy by commuting the digits in some random way.  I leave you with that
thought because I want to talk about higher dimensional quasi-Monte Carlo points.  
  
This was an example of a quasi-Monte Carlo sequence, which has a low discrep-
ancy, p=3, and the sequence is named after its inventor, van der Corput.  

From the Floor:  So you have given us a different Monte Carlo method. 
  
Dr. Lord:  Yes.  I gave you a way of generating numbers between zero and one.  
  
From the Floor:  If we use that, we will get a better discrepancy than if we use
linear congruential modeling.

Dr. Lord:  Yes.  For a fixed number of points.  
  
From the Floor:  Those points are f?
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Dr. Lord:  They are f(n).  If I decide I want 1,000 points, then I am going to go from
f(0) to f(999), or I could go from f(13) to f(1,012). 
  
From the Floor:  Are the ns in sequence? 
  
Dr. Lord:  In the original way it is defined, yes.  The reason is so it fills out the unit
interval.  
  
From the Floor:  I could have done 1,000 points of the linear congruential method. 

Dr. Lord:  Yes.  That is the pseudorandom number.  
  
From the Floor:  I can do it this way following the formula, and I will get 1,000
numbers, f(0) to f(n), suggesting that if I use p=3, I get the best numbers.  With
those 1,000 numbers, my simulation will give me a better result.  

Dr. Lord:  Right. 
  
From the Floor:  It will be more evenly distributed. 
  
Dr. Lord:  What you would have to do is take your application of 1,000 Monte
Carlo random numbers and repeat it say 100 times, and look at the error over those
hundred.  Then compare that to the corresponding thing if you did 100 replications
of 1,000 using these sequences.  You will find that the error in the latter case is less. 

From the Floor:  Why do you call this quasi-Monte Carlo?
  
Dr. Lord:  It looks like it is random, but in fact it is deterministic.  The people who
invented the word called them quasi, because they look as though they are tradi-
tional Monte Carlo, but they are not.    
 
From the Floor:  You have just given us a better formula than random numbers?
  
Dr. Lord:  In essence, yes. 
  
From the Floor:  The limitation on this is that it is one dimensional?
  
Dr. Lord:  On this one, yes. 
  
Mr. Herzog:  Those cases are really deterministic.
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Dr. Lord:  It is correct that they are formulas.  You can think of this as a different
class of formulas, though we’re looking at a slightly different measure of its 
effectiveness.

Mr. Mitchell:  When you say the error, are you talking about the error in pricing
something using these numbers?
  
Dr. Lord:  Yes, it could be.  Let’s talk about the introduction to the real applications. 
We were not doing one dimension, because that is a bit simple.  We were doing
many dimensions.  This algorithm was developed by Faure and is what was behind
Chart 2. 

Higher Dimensional Sequences

One technique  -- the Faure sequence:

   Generate successive coefficients   c(n)   recursivelyi
j

(where c(n) = c (n) )1
j   j

Now define the vector sequence, the Faure sequence: 

Of 1,024 two-dimensional Faure points, base 3 could be used in comparison to two-
dimensional pseudo random numbers.

Note discrepancy can be improved by permuting the coefficients as in the one-
dimensional case.

We start with the same base three representation.  That would generate coefficients. 
I have made the coefficients a function of n.  Then add up these coefficients after
multiplying them by a binomial coefficient.  That c(i,j) is our old friend. 
  
From the Floor:  What is the summation over? 

Dr. Lord:  It’s over i.  That is the only thing that is moving.  
  
From the Floor:  What does i equal?
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Dr. Lord:  Wherever the binomial coefficient is not zero.  
  
From the Floor:   Zero to j?  
  
Dr. Lord:  The i has to be bigger than j, otherwise it is zero.  It is going to stop when
you get to p.  
  
From the Floor: It’s from i equal j to p.
  
Dr. Lord:  Yes.  I’ve iterated once.  Then I use the result and the same formula for
both.   I no longer have c but c , and that will give me c.  Then I use c in this2        3      3

formula in place of the c and that will give me c.  By repeating this formula, that4

will generate k, a sequence, c, c, c, c, etc.  I keep getting more and more num-2  3  4

bers.  Each one of these is the next element in my vector.  If I want a three-
dimensional vector, then I am going to generate c c  and then c, and that will be2     3

the three components of my vector, and that will be the first Faure point.  To get the
second Faure point, take n equals another integer, and go through the same process
again.   

From the Floor:  In this process, are the measures meant to have literally one, two,
three, or a random?
  
Dr. Lord:  Yes, one, two, and three.  Anargyros will probably talk about what is the
best choice for picking that consecutive sequence.  You can skip over say the first
thousand and then start N equals 1,001, for example.  Then we do exactly what we
did in the van der Corput sequence, which was a reflection about the decimal point,
and create those numbers that are between zero and one by taking those coeffi-
cients and dividing by appropriate powers of three.  What we end up with is a
sequence of vectors of three elements, and that is our Faure sequence.
  
From the Floor:  Is that j equals zero to p?

Dr. Lord:  Yes, j starts at zero.  The first thing is going to be one-third, or 1/p.  It
goes to the coefficients that are zero.  After a while the coefficient becomes zero.  

It is this algorithm that I use to generate Chart 2 and the other one that was like it in
Chart 3.  The cs are on the x-axis, and the cs are in the y-axis, or the vertical axis. 2

Those crosses were obtained by just doing one iteration of this thing and correlating
a point, a point which has the component c(n) and 2c(n).  If I want to do a 360-
dimensional Faure sequence, then I am going to choose a prime, in fact you choose
a prime immediately larger than the dimension, and then do this process iteratively
359 times to get every component in the Faure vector.   
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  From Numerical Recipes in C by Press, et al.     1

The Faure sequence is only one of many such low discrepancy or quasi-Monte
Carlo algorithms.  Some of the early ones were mentioned because of their historic
interest rather than their practicality.  The equally-spaced one on the unit interval is
a Hammersley sequence.  LaCot is another one.  The Russian mathematician Sobol
extended Faure to come up with a comparable sequence.  Neiderreiter did work
which developed a whole theory of what Sobol was doing and came up with a very
comprehensive class of quasi-Monte Carlo sequences and low-discrepancy se-
quences.  The Japanese mathematician Tezuka came up with an extension of what
Faure did, which in some sense could be considered a special case of Neiderriter,
but we call it the generalized Faure sequence.  The examples we will see later all
use this latter algorithm.  Perhaps these simple examples will show you the advan-
tage that we have observed in using low-discrepancy points. 

This first example is maybe unpleasantly mathematical, so let’s imagine you have a
doughnut in three space and a function that is defined on the inside of the donut.  I
want to evaluate that function, in other words, take the integral.  Even though it
looks formidable, you can get an answer.  It is .

The question is, can we estimate the correct answer by using pseudorandom
numbers?   How does that compare if we use Sobol numbers?  

Pseudo versus Sobol1

Example 1

Integrate f(x,y,z)=1+cos             where  r < a,

inside the doughnut in 3-D;  B is the major radius of the torus, and a the minor radius 

Answer : 

Example 2

Integrate  f(x,y,z)  =  1  when  r < a, inside the same doughnut as in Example 1.

Answer :

Chart 4 shows the results of repeated trials of 100 using 
 (a) pseudorandom numbers

(b) Sobol numbers 
   
Note the 100 fold speed up with the Sobol sequence.
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If we use pseudorandom numbers, the variance is going to be 1/n.  We do repeated
trials of 100.  Choose 100 pseudorandom numbers and use them to estimate this
integral and put down the number.  Then do a second one, keep doing 100, and
then look at the error in those 100 trials.  Chart 4 is from a book which has become
almost a bible in numerical methods, Numerical Recipes in C, by W. Press, et. al.
The other line on the graph are Sobol numbers.  The other generator, the quasi
Monte Carlo generator that is used here is the Sobol numbers, and we can show
that the discrepancy for those is (log n  )/n.  3

What you should be looking at in Chart 4 is the upper dotted line and the thinner
solid line.  The upper dotted line is the pseudorandom number result, doing the
graph against the number of points in my test.  The solid thin line is the result when
I use the Sobol points.  The scale is logarithmic so that the curves look as though
they are nicely behaved.  You see the error is far smaller for the Sobol points than it
is for the pseudorandom number points.  It is true even if we only take 100 points. 
The difference between the dotted line and the solid line is still there.  As you go
further down and increase the number of points, that difference becomes even
greater.  Note the pseudorandom numbers are asymptmatic to that line, which is
what we predict from the theory; the error behaves like  (in the log scale).

This line for Sobol points is 1/n, the theoretical error we claim for the low-
discrepancy points.  This line lies below the Sobol points because the Sobol point
error is not 1/n, but (log n  )/n.  That is why the curved line and the solid line do not3

come together.    

The significance of this Chart 4 is that if, in estimating my integral, I only want an
error of say 0.1%, then I will be able to use 100 fewer points generated by the
Sobol method than if I use the pseudorandom number.  In other words, the speed
up in my estimation is 100 times faster.  That is quite significant.  

You see on Chart 4 that there are two other lines, the heavy dotted line and the
heavy solid line.  That is a second function and speaks to some of the weaknesses of
the quasi-Monte Carlo method.  If your function is not smooth, then the quasi-
Monte Carlo methods do not give as good results as we have just talked about. 
Even though they do not do as well, they still do better than the pseudorandom
numbers or the dotted lines.  This function is the simple cliff function, that is, one in
some places and zero elsewhere.  

The last example was done by Phelim Boyle and some of his students.  This one
may be closer to our hearts than those doughnut examples.  That is when we have
an option.  It is a European option to make it simpler, and here are some of the
statistics.  The current value is 100, and the exercise or strike price is 100.  Looking
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over a year, volatility is 30%, and the riskless discount rate is 10%.  Since it is a
European option, we know the answer from Black-Scholes.  We plug it in and we
come up with the number of $16.73.  If pricing a put, we get $7.22.  

The question is, what happens if we try to estimate the value of these two options,
the call and the put using low-discrepancy sequence, using Faure points?  We are
going to get a graph for the call and a graph for the put.  (See Chart 5.)

The upper graph is the call, and the little diamonds are the results, the error of doing
repeated trials of the pseudorandom numbers, the crude Monte Carlo method.  You
can see that with a few runs, they are quite scattered around.  After a while, it settles
down.  However, even when you get close to 10,000 simulations, the crude Monte
Carlo method, the pseudorandom numbers, is still not giving reliable estimates of
the value.  Compare that with the value using the Faure points, the quasi-Monte
Carlo one, or the solid line.  Even though, at the beginning, the error is high, it
drops down quickly and becomes very stable.  Quite a telling example of the power
and the improvement in efficiency and speed with the quasi-Monte Carlo points.  It
is even more dramatic in the case of the put. 

How come it seems to work better for the put than for the call?  The put was in the
money.  Current value is 100, and the exercise price is 100.  From the point of view
of the purchaser, the value of the put is bounded.  The intrinsic value of the put will
never exceed the strike price of 100.  It is going to be between zero and 100.  The
call can go up to infinity if the price of the security goes very high.  
  
From the Floor:  It doesn’t seem to improve.  This one comes very near to zero and
the one on top seems to come to almost 6,000, and 100,000 will still not get to
zero?
  
Dr. Lord:  It gets much closer.  We created a binomial model of interest rates, and
when you discretize, you are putting an additional wrench in the results.  Some of
that lack of convergence could be because we use a somewhat crude model to
value the options.  Maybe using a stochastic differential value of the security would
produce a better result.     
  
From the Floor:  Is there any software available?
  
Dr. Lord:  Yes, there is.  
  
Dr. Vanderhoof:  A researcher in Japan solved the same CMO problem.  That is
what IBM is saying they have done.  Actually, they took the idea and the problem
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from Spassimir Paskov.  It is now being actively worked on around the world by
many different people.  
  
What is the intuition?  This is crucial.  Graham has talked about what a low-discrep-
ancy sequence means and what low-discrepancy points are.  

Figure you have a box.  The low-discrepancy problem is that I have 100 points. 
How do I fit those 100 points in the box, so that any volume in the box that I picked
has a number of points in it that is proportional to the volume?  Think of the box as
being a unit cube, because then the volume is always between zero and one.  How
do you arrange those points?   

That problem was a classic problem in measure theory, and it was solved by
mathematician Roth.  Roth came up with low discrepancy.  Discrepancy is the
difference between the percentage of points in a particular volume and the volume
itself, the volume in the unit cube.  One of the solutions was Hammersley points,
and Hammersley was a pioneer in Monte Carlo methods.  Hammersley speculated
that the van der Corput sequence would work better than traditional Monte Carlo
methods.  That was in 1957 I believe.  Nothing further was done on it until
Wozniakowski and Traub showed that this would also be useable for integration.    

Let’s go back to that unit cube.  Consider that each dimension is a cumulative
distribution function, that is, it is a probability.  The unit cube represents the
probability that everything would happen, and it is one.  Each volume in that unit
cube represents a probability of occurrence corresponding to the three different
distribution functions for that volume.  If we say certain points have a low discrep-
ancy, then we are saying that each of those points must have about the same
probability volume associated with it

I have not mentioned interest rates, prices on stocks, or anything like that.  It does
not matter.  Once you have cumulative distribution functions, you can go from the
cumulative distribution function, say of 0.4, back to whatever the function was, and
get a real value.  The important fact is that each of those points seems to have about
the same probability volume associated with it, and that is why the whole thing
works.  It works in higher dimensional arrays also.  

If each of these points has essentially an equal probability, because an equal
probability space volume is affiliated with it.  It is in that neighborhood, then the
worst result of those points has the worst possible value in that number of points.  

If we do 200 calculations, there is less than a 1% chance that the worst of those
possible results will be worse than the worst of the 200.  If I do 200 calculations of
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the price of this stock, then no matter how many more I did, there is less than a 1%
chance the price would be worse than the worst of those 200.  That is a very strong
statement.  I have never heard anybody say that with a finite and reasonably small
number of Monte Carlo calculations you could make any probability statements at
all.  This is important because value at risk is becoming a key item in the statements
of financial companies.  You need to be able to say something about the probability
of a bad result, and nobody has set up any paradigm or demonstration that you can
do it with Monte Carlo calculations.   

The September/October 1996 issue of Contingencies has an article on “Using Low-
Discrepancy Points to Value Complex Financial Instruments.”  The bibliography
was published by New York University with the paper “Strategic Function of Life
Insurance.”  If you would like a copy of the bibliography, or the Contingencies
article, please contact Faye Albert at her Directory address.  There was also an
article, "Breaking and Tractability,” in Scientific American on this subject in January
1994 by Wozniakowski and Traub.    

I will share some results from Spassimir Paskov’s dissertation.  One was shown in
the Contingencies September/October 1996 article.  The question is posed, if we do
a valuation of a tranche of a CMO, what kind of results do we get?  (See Chart 6.)

Using traditional Monte Carlo methodology with random numbers, results differ
depending on the seed.  Graham discussed this with regard to the linear
congruential method for generating random numbers.  If you start with a different
seed, you end up with a different answer.  How much different?  It depends.  But
you will end up with different answers.  This does not happen with either the
Halton or the Sobol sequences.  These techniques give an answer which is more
dependable and probably more correct.

Chart 7 shows a change in the generator.  Using Ran 2 you get better convergence,
closer to the Sobol sequences.  Even with Ran 2 or Ran 1, results depend on the
seed.  The random number generators are not dependable. 

The antithetic variable question was raised.  In Chart 8, 20 runs were done using the
antithetic variable technique.  For an antithetic variable approach, use pseudo-
random numbers, the traditional methodology, but with 20 different seeds.  Then
the average of all 20 runs, i.e., runs using different seeds.  The same calculation is
based upon 100,000 points for each of the Sobol and Halton sequences.  Consider
the number of calculations, 100,000.  This is 100,000 using Sobol or Halton.  In
fact, it is 2,000,000 calculations, 20 times as many for the antithetic variable, since
there were 20 different runs of 100,000 each.  You can see that the Sobol line
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shows a very slight difference on a large CMO, and that is with a very small number
of runs.

Mr. Leonard H. Wissner:  To many plan sponsors, the asset allocation decisions of a
defined-benefit pension plan is a “no-brainer.”  With the stock market roaring the
way it is, and with historical studies done by Ibbotson saying that stocks out-
performed bonds for the last two centuries, what is the sense in going through the
trouble?  Why not put the whole pension plan in the stock market and then just ride
it out?  I have a problem with that for a couple of reasons.  One reason is obvious
from the introduction Irwin gave about me—I would be out of a job.  The other
reason is that in my experience over the last 20–25 years, I have found there is no
easy way to make money in the financial markets.  

If things were that easy, why couldn’t people just buy the Standard and Poor’s
(S&P), short the bond, go home, and become rich?  If it was that easy, wouldn’t
everyone be doing it, and consequently pricing the asset to such a rich value that
the opportunity would be removed from the market?  Markets generally price assets
to a certain point; but then there comes a point where the market becomes over-
valued.  My job as an investment manager is not only to look at price, but also at
value.  It is the synthesis between price and value which determines investment
opportunity.  
  
To examine the allocation problem, I decided to build a simple Monte Carlo
simulation to assess the stock/bond decision over a long time horizon, say 30 years. 
The only place I could build the model was on a spreadsheet program, and the only
random numbers I knew about were the random numbers that spreadsheet program
gave me.  I picked 1,000 because that sounded like a round number.  Then I saw a
session on low-discrepancy points.  I wasn’t really sure what 1,000 random num-
bers meant.  But if 200 or 1,000 low-discrepancy points would give me more
confidence in the results and be more robust, I was willing to try.  Graham helped
me with the simulation trials.

Before founding Ward & Wissner Capital Management, Inc. in 1981, and prior to
joining the Equitable where I met Irwin, I was in the brokerage industry.  The
change was a big culture shock because, in the brokerage industry, the time horizon
is ten seconds.  What is the price of the stock market or what is the price of a long
bond?  In an insurance company, time horizons are considered for 20 and 30 years. 
Consider a long time horizon, say a simple 30-year 8% bond.  What proportion of
the total 8% return is coming just from the coupon stream?  For a 30-year time
horizon, almost 87% of the bond return is from the coupon stream, and the price of
the return of principal at the end comprises only 13% of the return.  Although
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papers report every day the fluctuation of the prices of bonds, it is really the coupon
stream that will ultimately determine the return on a bond.    

A very simple valuation model used for stock is called the dividend discount model. 
It says that the real long-term return on stock is simple to calculate.  The current 
dividend yield is unfortunately, at one of the lowest points in the century.  There is
only about a 2% dividend yield on the S&P.  Add dividend growth, which has
historically been only about 5% over 30-year time periods.  Add the 2% and the 5%
to get 7%, and then we have a little correction factor based on regression analysis. 
Come up with a long-term return of 7%.  If I went back and used the Ibbotson data
from 1926 to the present and calculated 30-year holding period returns, almost 88%
of the return can be determined just by looking at the initial dividend yield and the
dividend growth on the stock.  The error in your estimate is only about 1%. 
Although everybody is talking about where the price of the S&P is, what is really
going to be driving ultimate return on equity are just two factors:  the initial divi-
dend yield originally bought, and the dividend growth throughout the 30-year time
period. 

Chart 9 will give you an indication of how slow the bond business is right now. 
The dividend discount model (DDM) estimates a 30-year return.  What would
happen if we knew the dividend yield and dividend growth 30 years prior, for
example in 1956?  We do know the initial dividend yield in 1926, and say we knew
with perfect hindsight what the dividend growth over the 30-year period 1926–56
was going to be.  What would be the equilibrium price of the S&P in 1956 for the
model to have a perfect fit?  What was the percentage error of the prediction of the
dividend discount model.  In other words, if you predicted seven and it came out
eight, that would be a 1% error.  
  
In Chart 9, we looked at the actual price of the S&P, and compared that to what the
DDM prediction would have been with perfect knowledge of the growth of the
dividend stream and the initial dividend yield from 1956 to 1996.  Our conjecture
was that there was some type of a mean reversion in this process.  In other words,
there were times when the S&P and the dividend discount model were in perfect
sync.  There were times when the stock market was undervalued compared to what
the DDM prediction was.  Finally, there were times when the stock market was
overvalued.  

What happened when we applied this?  There were some notable periods, for
instance in the 1970s, when the stock market looked tremendously undervalued. 
Now it looks like it is tremendously overvalued.  It looks like a graph of the Tokyo
stock market in 1988 or 1989.  There’s a tremendous divergence from the model.  If
we carry the trend dividend growth forward for the next five years, and if there is
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some type of mean reversion, somewhere in the next five-year period, the stock
market could correct to a very big degree.  That being said, we have looked at price
and value.  

What is going on in the real world as far as the asset allocation decision?  Deep in
everyone’s heart, they want to be in stocks.  As a consultant or as an advisor, one
must come up with a model that will put them there.  In this country, in 98% of the
situations that I have been involved in, that is the state of the art.  How many of you
have been invited to an investment allocation meeting?  In my experience, the two
are distinct.  In other words what the asset managers are doing and what the
actuaries are doing are two separate processes.   

The most popular model used is the capital asset pricing model (CAPM), which was
developed by Markowitz and came into vogue in the early 1960s.  It is a model that
does not look at the liability side of the equation at all, and defines risk as the
standard deviation of the annual return of the asset.  

As you know, in a pension plan, the purpose is to pay the pension obligation as it
falls due in the future, and the risk is not having enough assets to fund the pensions
when they come due.  Funny things start to happen when you just look at the asset
side of the ledger.  From the point of view of an investment person, the salary
growth and interest rate assumption are critical assumptions on what the eventual
liability structure of the plan would be, and these have to relate to the investment
environment itself.  As a result of the Financial Accounting Standards Board (FASB),
liabilities are segmented.  The liability that we are going to be keying in on, is the
projected benefit obligation (PBO), which is the actuarial accrued liability of the
plan.  This tells you if the plan is sufficiently funded to date.  The scheme that I am
going to be employing is like a paid-up immunization scheme.  In other words, if I
have sufficient assets to fund the PBO, I will let the contributions of the plan fund
the future service.  
  
I was fortunate many years ago to have a copy of a book by Howard Winklevoss on
pension mathematics and also a paper by Irwin which looked at the sensitivity of
the Equitable liability to a fluctuation in interest rates and a fluctuation in inflation
rates; in other words, it was a parallel shift of the interest/inflation yield curve
structure.  

Let’s discuss the sensitivity of the pension liability to changes in interest rates,
inflation rates, or salary growth. The example I’ll use is taken from the Winklevoss
book and shows that if you decrease the interest assumption and salary growth
assumption by 1%, the present value of the future benefit obligation would increase
by about 12%.  This is a very critical number to me.  Without considering the total



Values and Risks of Complex Financial Instruments 29

obligation, but just the PBO obligation, the sensitivity is near 12%.  An immuniza-
tion scheme which is going to always keep assets in line with the PBO needs an
asset structure or a bond portfolio duration of 12 years.    

The paper that Irwin wrote looked at an immunization scheme not only immunizing
with respect to the PBO, but also immunizing such that the contribution as a
percentage of payroll remains constant.  These structures are interesting from the
point of view of an asset manager.  Let’s say the assets in the portfolio comprise
three-fifths, or 60% of the total benefit obligation (TBO).  If the duration of the TBO
is 12, then five-thirds times 12, or 20 years, would be the duration of the asset
structure.  Some of these structures were unavailable when Irwin wrote your paper.
However such asset structures are very possible with cash bond instruments, strip
securities, or principal only (PO) mortgages.  What’s even more interesting, you can
create synthetics with the futures markets that will actually dominate the yield of
these duration structures in the cash market and produce immunized structures as
well.  What’s exciting here is that it is possible to immunize a pension plan with
debt instruments.  When one goes into the asset allocation problem as it is prac-
ticed, there are probably something like 108 assumptions which go into the
analysis.  The fact that you can do it with bonds in almost an assumption-free
system is truly a remarkable development.  This gets into an appreciation of what
the bond instrument can do for the risk reduction process and for performing a
funding process in an assumption-free manner. 

In this particular problem, we are going to work with the PBO obligation.  Our risk
measure is the probability that the assets in the plan will be less than the PBO
liability, given that the plan starts out in a fully funded status, and the plan is
invested 100% in the stock market for 30 years.  In other words, what is the
probability that the funding ratio would be less than 1 after 30 years?  

Funny things start happening in the traditional process when one does not look at
the pension liability.  Given a 1% increase in inflation and interest rates, you need a
12% increase in asset value.  Also, if you are carrying an 8% assumption, you will
need a 20% return to keep pace with the liability.  What people do not realize is
that even though stocks are behaving very well, bonds are indexed to a short
duration index, such the Lehman Bond Index.  At the investment committee
meeting everybody is going to be happy with a falling rate environment because the
stock and bond assets are performing very well.  Few realize that the liability in
such a setting is growing at the rate of 20%.  You get a false sense of security in a
disinflationary environment where the stock market is rallying.  Even though in the
1980s there was a disinflationary environment, the stock market was rallying.  In the
1930s in a disinflationary environment, the stock market was falling.  Such an
environment is a disaster for the pension plan, because the liability is growing at an
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astronomical rate.  Everybody is saying, “Let’s load it all up with stocks,” the asset
side of the structure is not only unable to keep up, but it is actually going down.  
  
The risk of many of the plan structures is precisely a disinflationary environment,
where stocks are not performing well and the bond rates are going down.  That is
the purpose of the bond in the plan.  You might have seen an article about a month
ago basically saying there is no purpose for bonds in a pension plan.  This is the
state of where the market has gotten to.  Looking at the 1980s was a very eye-
opening experience.  The later part of the 1980s was an environment of disinflation
which followed the high inflation rates of the early 1980s, and basically good stock
returns and good bond returns.
  
A Buck study which was recently done looked at the period 1988–94.  Despite very
good stock and bond performance, the percentage of companies which reported
fully funded plans with respect to the accumulated benefit obligation (ABO) liability
actually went down.  Moreover, we constructed a pension surplus index which
started back in 1981 with a plan that was 160% overfunded.  We then looked at
what the funding status would be at the end of 1995 and found that based on a 12-
year duration liability structure, the pension surplus ratio of the typical plan which is
60% stocks, 30% bonds and 10% cash, would have gone down.  Although every-
body was celebrating the fact that we have had great asset markets, based on the
status of the pension plan, surplus actually eroded during these good market years. 
You can imagine what it would be like if there were a correction in the equity
markets. 
  
Mr. Herzog:  Do you think it has to do with the interest rate policy of the federal
reserve?
 
Mr. Wissner:  The strip yield went from around 14% down to 6%.  One of the
stated objectives of the federal reserve is price stability.  Let’s say that is such a
setting they bring the inflation down to 2%.  In other words, a disinflationary setting
as an objective of the federal reserve policy is a very real possibility.  If you look at
the mechanism of the capital asset pricing model, one of the inputs to it is the
correlation between stocks and bonds, usually a correlation coefficient of about
38%, which precludes the possibility that the bond market could go up and the
stock market could go down.  Yet, that is precisely what happened during the
1930s.  In other words, not only does the model fail to look at the liability, it does
not address the principal risk in the pension plan of the two markets decoupling as
they did in 1987.  

From the Floor:  You mentioned surplus as being static at a point.
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Mr. Wissner:  Contributions would come in at the rate of 60% stock, 30% bonds
and 10% cash defining the asset mix.  Assets would stay in that and then be
compared to a 12-year duration liability.  

From the Floor:  There are some new products which allow the credit to treasury
bill function of the S&P 500 gross rate.  Would that be a better instrument than
actual stocks or bonds?  

Mr. Wissner:  I am not familiar with the product.  The problem that I would see
though is that you need the bond because that is your disinflationary hedge.  It is
not just good enough that you are keeping up with the S&P 500.  In a disinflationary
environment, the only thing that is going to save you is the long duration bond.  The
other problem this points out is the bonds are typically indexed too short.  The
duration of the Lehman index is typically five years; that is the most popular index
in most of these plans.  The duration of the liability is at least 12 years.  The bonds
are positioned about half the length of what they should be.  

From the Floor:  Can we use any kind of a stock index, like call or put option so
somehow we can stabilize these stock market variations?

Mr. Wissner:  I do not believe the problem is the stock market variation.  I think the
problem is that the effective duration on the stock is too short.  In other words,
given a 1% decline in interest rates, the stock market is not sensitive enough to
produce the market appreciation of the long-duration bond.  Moreover, if you get
into a bad economic setting, one would expect stock prices to go down.   

From the Floor:  Your focus is primarily on the pension funds, U.S. insurance
companies have not typically had a significant investment in equities primarily
because of the regulatory environment.  Outside the U.S., especially in the Far East,
insurance companies often operate with significant equity positions.  Your analysis
is applicable to insurance companies.  My question is, are you finding an ideal ratio
between equities and fixed-income instruments which would be appropriate for
pension funds?  

Mr. Wissner:  It would depend on the liability structure.  What I am finding are the
ones that look at the liability structure generally have more bonds, and the durations
are sometimes two to three times longer than the durations of funds that do not look
at the liabilities at all.  This is where actuaries come in to give the sensitivities of the
liabilities.

We are going to get into the actual simulation model itself, trying to value the return
on stocks without making it an input.  In most situations I have observed that a
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model is employed which makes no mention of the liability and is preloaded with
an assumption that says stocks will perform 7% better than bonds, no matter what. 
When this is put into the Markowitz model or this capital asset pricing model, these
models will always tell you to buy stocks.  Much of that is because you said that
stocks will outperform bonds by 7% in the first place. 

In contrast, what we try to do is come up with a way of figuring out what the total
return on the stock would be, and what the return on the pension liability would be,
and then come up with what the probability is that the funding ratio, which started
out at 1, would be less than 1 after 30 years.  We used a simple spreadsheet model
with four equations.  The first two equations look at the return on stocks.  We use
the dividend discount model, where the return on stocks is dividend yield plus
dividend growth.  We know the dividend yield we buy is 2%, but we do not know
the dividend growth.  We went back historically and measured the relationship
between dividend growth and gross domestic product (GDP) growth.  In the last
two equations, we estimate what the bond yields will be over the next 30 years. 
We know that the bond yield will be related to the inflation rate, and the inflation is
taken to be the nominal GDP minus the long-term trend for real growth of the
economy.  

The variable which is driving the model is the GDP.  In other words, given a 30-
year GDP path, we can derive dividend growth; and therefore we can derive the
total return on stock.  Given the 30-year GDP trend, we can derive what the
inflation is each year and therefore the nominal yield on the bond.  Once we know
the nominal yield on the bond over the 30-year path, we can compute the total
return of a 12-year duration liability and then compare that to the total return of the
stock.  

We used a distribution of GDPs which was based on the historical pattern of GDP
growth from 1926 to the present.  On average, that led to a GDP growth of about
6.6%.  Then we wanted to put a stress on the model to see what would happen if in
the future things did not behave as they did according to the pattern of GDP growth
over the last 50 years.  What happens if we get into a protracted period of disinfla-
tion, in other words if GDP growth is 2% less?  What if GDP growth is 2% more?
How would that affect the funding ratio?
    
How bad was the first equation, the dividend discount model?  When we do
regression analysis over 30-year holding periods, the model would predict a return
on stock within about 1%.  In other words, if the model said the return should be
7%, it would be between 6% and 8%, and that was basically the standard error of
the regression.  The dividend yield and dividend growth were significant.  What you
should realize is that although stocks returned 10% from 1926 to 1995, almost half
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of that came from the initial dividend yield.  This raises the red flag given that
dividend yields are currently only 2%.  Can you really expect that great long-term
return off the stock market?  

You would imagine that dividend growth would be related to the growth in the
economy.  We tested that particular relationship and found that dividend growth
lags the growth in the economy by about 2.5%, with a standard error of the regres-
sion of about two-thirds of a percent.  Given the 2% dividend yield, if dividend
growth reverts back to its historical mean, in order to produce the 10% historical
return on equity, you will be more than 3 standard deviations away from the mean
dividend growth of 6.2%.  In order to produce a 6% premium, which is one of the
assumptions put into the capital asset pricing model (CAPM), dividend growth will
have to actually exceed the growth in the economy by a wide margin.  That does
not seem very likely based on historical results.   

One of the problems with equity values is they compete with an attractive bond
yield above 7%.  Chart 10 analyzes the nominal yield on 12-year duration immu-
nized bonds based on a core inflation, and compares it to the rate on treasury-
index-linked gilts  Any time bonds have more than a 4% real yield, they look very
attractive.  The nominal yield on bonds less the floor rate of inflation compared to
the dividend yield on stocks is at a very high margin.  It means that the bond looks
attractive compared to the stock.  As people keep believing that stocks are a better
buy, they are going to drive that relationship wider apart.  That is going to make the
hurdle rate for stocks greater when compared to the pension liability.  

Let me get into the simulation trials.  Chart 11 is the probability that the funding
ratio will be less than one.  If you are 100% invested in stocks over the 30-year
period, given 1,000 trials and 200 low discrepancy point trials, the results are very
similar.  In the 1,000-trial run, the GDP is off by maybe five-basis-points compared
to the 200-point sequence.  All the statistics are close to one another.  You come up
with a significant 55% probability of the pension plan being underfunded, or the
funding ratio being less than one with the all-stock strategy at this point in time.  It is
not that good a bet, and as more people are driven into the stocks as long as bond
yields remain high, that bet becomes worse and worse.  When you stress test the
situation, as you might imagine, the results become even more dramatic.  (See Chart
12.)

If the federal reserve is successful in producing a disinflationary environment, this
would be a very poor environment for stock investment and pension plans.  In this
case, the probability of an underfunded plan would be almost 79%.  The results
again are very close to the 200 low-discrepancy point results which Graham
produced for us.
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The environment that will bail most people out will be the high-inflation, high-
growth environment, which is the environment that most people who are currently
investing in stocks today grew up in.  It is characterized by rising interest rates and
rising inflation.  In that particular environment, the odds are overwhelming that the
funding status of the plan would actually improve 73% versus 27%.  Again, they
agree for the 200-trial run and the 1,000-trial run (See Chart 13.).  

This says to me that most people’s behavior is determined largely from their
experience.  The baby boomers have experienced mostly inflationary type environ-
ments and that is why they are led into the stock market.  What I remember about
my father, who lived in the depression, was that he did not want to touch a stock
with a ten-foot pole.  However, if he had used the dividend discount model back in
1947, stocks were a very good buy.  Right now, using the dividend discount model,
the value does not seem to be in equities as long as dividend yields are low
compared to the high yield on a long-duration bond portfolio.  

Dr. Vanderhoof:  This is actually a 32-dimensional example, 30 years and two
separate variables relating the growth to the dividend and the return.

From the Floor:  Why is it 32?  I think all they did was GDP.  

Dr. Vanderhoof:  It was done by taking each year separately for 30 years; 30 values
compounded to make one 30-year growth rate for that year.  Then go on for that
trial.  The trial had 30 different values of growth on a yearly basis.  They were put
together to get the 30-year figure with two separate variables relating the growth to
the dividend and the return.  

From the Floor:  When you ran 1,000 trials under the old way of calculating, how
many numbers do you need?  

Mr. Wissner:  There were at least 30,000 for that trial, but then there were other
error functions from the regression that come into it, and also from the two regres-
sion equations.  

Dr. Vanderhoof:  Basically, you need 32,000.

From the Floor:  The purpose of this meeting is to show the value of the random
numbers.
  
Mr. Wissner:  I had no confidence in whether 1,000 would have been enough.  
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From the Floor:  I appreciate that, but is the distribution equivalent?  Does the
distribution which comes from the 200, give you a sense of the highs and lows?
  
Dr. Vanderhoof:  At this point, you know as much as we do because these are the
tests that have been done.  It is not that we are taking a sample of many tests that
have been done previously.  This is it.  

If you use 1,000 randomly generated numbers you are in the position which Len
has been in.  You do not necessarily have the confidence that 1,000 or 5,000 is
enough.  By showing that 1,000 and 200 produced essentially the same answer, it
gives you not only confidence in the 200, but it also gives you much more confi-
dence that 1,000 is plenty.  You can do it using random numbers and I invite you to
do it.
  
From the Floor:  What I am saying is if we ran the old way, 100,000, would the
annual GDP growth be 4.62?
  
Dr. Vanderhoof:  It would be essentially the same, unless the particular random
number generator you had involved the kinds of bias which I demonstrated.  All the
random number generators seem to have a built-in bias based on the seed.  I can
say this does not seem to have a built-in bias.
  
Dr. Lord:  In the example I am going to discuss we took a real $400 million block of
business which had somewhat mature policies in it, issue years 1987–95, and an
average policy size of $33,000.  For this particular test, the crediting strategy was
the portfolio method.  The policies that are in the block of business have different
guarantee periods.  In some cases they are one year, and in other cases, the initial
guarantee period was as long as five years.  In each case, it seems as though the
reset was annual thereafter.  For this test, one had to choose what the competitors
were doing.  It was essentially spread off a medium-term rate, and an algorithm was
used to determine whether the policyholders would lapse depending upon the
difference between the current portfolio rate, the rate that the SPDAs were earning,
and what the competitors were doing.  The surrender charge was declining.  In
many cases it was seven, six, five, four, three, two, one.  The average was not 5%,
perhaps because some of these policies having been there since 1987 had no
surrender charge left.  Five percent is too high. 

The initial yield curve was valued as of the end of the first quarter 1996.  We
generated interest rates using a log normal process which had certain constraints on
it to make it look more reasonable than just tossing a coin.  The model that this was
run through was the Tillinghast Actuarial Software (TAS).  Rather than look at a real
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live portfolio, we selected generic assets, medium-term notes, the asset class, I think
grade A, term of 5–7 years, and reinvestment in medium-term notes.  

We used low-discrepancy points to come up with two sets of interest rate scenarios.
Just to give you a flavor of what these are about.  Chart 14 is the summary of the set
of scenarios from the 200 low-discrepancy run.  

What the model requires is the constant maturity yield curve, which is ten points.  I
did not draw a ten-dimensional yield curve, but rather I took two paths of the yield
curve.  Because it is an investment horizon of ten years, quarter by quarter, and I
cannot do 40 quarters, I have done a rather crude statistical average by taking
percentiles at every quarter.  Chart 14 will give you the percentiles—the 95th, the
75th, the median, the 25th and the 5th—as we go down.  These were generated by
generalized Faure sequences and it produced these envelopes.  There is some
volatility.  There is a mean reversion displayed by the stability of the median.  In
case of the question, “Did you have arbitrage-free scenarios?,” the quick answer  is
“no”.  If you do use the switch in TAS for arbitrage-free scenarios, that tends to
reduce the volatility.  Since this exercise was to bring out the distinction between a
run of 200 and a run of 1,000, not having the arbitrage-free scenarios would make
this comparison a more stringent one. 

The results are shown in the following three tables.  The tests only allow 999
scenarios because there is only a three-digit field for how many scenarios you can
run, and 999 is the maximum.  It is not 1,000, although I keep saying it is 1,000. 
First is the present value of book profit (Table 1).  

This helps with the question, do you reproduce the distribution with the set of 200
compared to a much larger set?  Without sophisticated statistical tests, if you
compare the two columns, the percentiles match up surprisingly well.  This tells me
the distribution of book profit for 1,000 runs is being mimicked well by the distribu-
tion with 200.  Averages and standard deviations are reported, although these are
not a particularly robust measure in the TAS model, because once the company
goes insolvent, even if it is in the first quarter and stays insolvent, the system does
not seem to handle the future behavior of the company after the period of insol-
vency.  That affects the average.   
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TABLE 1
ASSET/LIABILITY STUDY

Present Value Book Profit (BFIT) $(MM)

Percentage 200 Scenarios 999 Scenarios

       95%    60.1   59.9

       90 55.7 56.1

       85 53.5 53.4

       75 48.5 48.9

    Median 37.5 37.3

       25 27.7 27.3

       15 21.0 20.1

         5   7.4   7.4

   Average 36.3 35.9

  Standard 18.3 18.5

      Comparison of results based on 200 and 999 interest rate scenarios 
      generated by low-discrepancy sequences

Table 2 shows the present value of book and market surplus. It depends on how
you value your assets.  Again, you compare 200 to 1,000.  Again you see compara-
ble results.  The conclusion is that the 200 is mimicking the 1,000.  

Depending on how you value your assets, book or market, and again comparing the
corresponding columns, you get the similar conclusion.  Not only are we reproduc-
ing the expected value as captured by the mean or average and also partially by the
median, we are reproducing the actual probability distribution of ending surplus.  
That enables us to ask the question, “If I were to make a statement about the
probability of insolvency, am I going to be robust in finding what that probability of
ruin is if I have only 200?”  Looking at the last line of Table 3, 200 scenarios is not
that different from the probability of ruin under 1,000.  You would expect that due
to your percentile distribution higher up in the table of 1,000 is being paralleled in
the 200. Table 3 is ending surplus.  
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TABLE 2

Present Value Present Value 
Book Surplus ($MM) Market Surplus ($MM)

Percentage 200 Scenarios 999 Scenarios 200 Scenarios 999 Scenarios

95% 78.5 86.9 78.3 87.2

90 72.2 81.3 72.8 81.6

85 69.6 76.5 68.8 76.7

75 62.5 68.2 62.3 68.1

Med 46.4 51.5 46.1 49.2

25 32.2 28.8 32.2 30.0

15 24.0 20.9 23.4 19.4

10 19.5 15.1 17.4 12.7

5% 9.7 5.9 7.3 5.2

Average 45.7 47.9 47.9 47.6

Standard 25.6 26.0 26.0 23.1
       Comparison of results based on 200 and 999 interest rate scenarios generated by low-discrepancy sequences

TABLE 3

Ending Book Surplus ($MM) Ending Market Surplus ($MM)

Percentage 200 Scenarios 999 Scenarios 200 Scenarios 999 Scenarios

95% 119.2 132.3 119.1 133.2

90 113.0 124.5 113.8 125.0

85 109.3 119.6 109.7 120.6

75 103.0 111.0 102.8 111.3

Med 84.8 91.1 84.4 89.1

25 66.1 60.7 66.0 62.2

15 55.5 50.5 52.6 45.2

10 47.5 34.9 42.6 31.4

5% 24.0 16.7 20.4 14.7

Average 79.9 82.6 79.0 82.3

Standard 34.4 39.6 35.6 41.0

Probability of 0.0300 0.0350 0.0360 0.0390
ruin

       Comparison of results based on 200 and 999 interest rate scenarios generated by low-discrepancy sequences
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Not only can we use low-discrepancy points for calculating prices, expected values,
or economic values in the case of liabilities, but we actually can make some
comment about the distribution of our actuarial and financial variables.  Just to
summarize, what we concluded from the results is that the key variables were
similar in value.  The distributions between the 200 scenarios and the 1,000
scenarios were similar.  The probabilities of insolvency were also relatively close.   

One thing I did not tell you was how long it took TAS to run the 1,000.  It took 
between 16 and 18 hours.  This is before they started printing the results.  How
many hours did it take to run the 200 scenarios?  The answer is two hours.  Here
you have an enormous savings in time efficiency, and you preserve the results
which you had for 1,000.  The key thing is this allows you to do stress testing and
product design testing in less time, and you can be assured that the results you are
getting are solid.  The thing that I like is whatever decision you make based upon
doing 200 scenarios will be the same decision you would make if you had gone 16
hours and done the 1,000-scenario run.  Where it would take you a weekend to do
1,000, now on a Friday you can do five or six tests.
  
We are also doing other studies on other models and other interest rate generators.
It is coming out that the results are very similar to the ones that we just presented.   
  
Dr. Vanderhoof:  Denny Carr made available the services of the portfolio to do this
particular test.  I like this because it says something else to me.  It says I have a
reason to have confidence that if it shows up with seven ruin scenarios, those seven
ruin scenarios are the only ones with which I can be comfortable over the range of
possibilities.  If the underlying model is correct, I have covered it.  If I do it on
Monte Carlo, I still want to check as to why those ruin scenarios existed.  I never
had a good feeling that there was not some other thing that was not hit by the
Monte Carlo that was equally bad, because Monte Carlo doesn’t really try to cover
the entire probability space.   

Dr. Papageorgiou:  I am going to describe the work on deterministic pricing of
financial instruments we are currently doing at Columbia.  This is joint work with
Joe Traub.  I will discuss financial instruments, low-discrepancy sequences, a review
of the current state of affairs, and finally some test results which show speed-up
factors much larger than those you saw already.  In some sense they are very
surprising.  

Typically with financial problems, you have to compute the expectation of a
function of a random quantity.  This function tends to be multivariate and the
dimension is usually high.  You want to do this at a high-speed despite the fact that
the instruments can be complicated in terms of models, or the fact that you may
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have to price a large number or a book of instruments.  The accuracy is relatively
low, i.e., low as compared to other engineering problems; here you are satisfied
with ten to the minus two, ten to the minus four, one basis point, and so on.  

For problems which involve expectations, such as the computation of an integral,
the Monte Carlo method was the choice until the early 1990s.  Low-discrepancy
methods and deterministic methods in general were not used at all.  Up to that time
everybody believed that low-discrepancy methods, or deterministic methods, would
be good as long as the problems had very low or moderate dimensions.  However,
they would lose any theoretical advantage over Monte Carlo once the dimensions
would grow to 10 or 30 dimensions.  On the other hand, what we have shown is
that for a range of financial instruments, low-discrepancy methods beat Monte Carlo
in the sense that they produce small errors using a small number of samples, and
when the accuracy demand grows, the speed-up factors can be huge. 
  
The work started in 1992 at Columbia and led to a sequence of papers.  Spassimir
Paskov got his Ph.D. working on a model problem.  The most recent paper ap-
peared in Risk magazine, and it is by Joe Traub and me.  It deals with one of the test
examples I am going to discuss.   

Let me summarize what we do with a financial instrument.  

0   T
Present Future

S = underlying, asset follows model
For example,  ds = µsdt + sdz

G = derivative instrument, function of s, mode
E[G(S)] (expected value)?

Example 1:  Asian Options
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Example 2: 

Usually you have a time frame from now to some time, T, in the future.  Discretize
the time frame into periods, and then observe the value of an asset, let’s say a stock. 
You also have a derivative, that is a financial product, which depends on the stock. 
The question is, how am I going to compute the expected value of the derivative
product?  A typical example is an Asian option where you have arithmetic mean
average strike options.  This is a call option to buy the asset at its average price over
a particular period.  In general, the parameters may vary, and depending on the
financial instruments, these quantities can be different.  You can have a look-back
option, where now you are looking at the maximum of the price of the stock during
a certain period of time.  

Let me come to low-discrepancy sequences, because we were using Monte Carlo
sequences for these problems, and low-discrepancy sequences is what we are
suggesting.  One thing I would like to make clear is that discrepancy is a global
property that we would like our point set to have.  It is not a particular number
which we are trying to achieve.  Discrepancy says that I have a measure of unifor-
mity for n points.  The most characteristic of the properties, or at least the one you
can visualize, is that the points that are in the d-dimensional cube do not have
clusters.  

Going to some examples of low-discrepancy sequences, I would like to mention the
Halton sequence is a unique sequence.  On the other hand, the Sobol sequence is
not unique; it’s a class.  You have instances that differ between them.  All of them
obtain the same asymptotic discrepancy bounds.  All of them are low-discrepancy
and they have discrepancy equal to a constant times log n to the d/n.  The constants
however, differ between the instances, and the constants also depend on the
dimension.  The Faure sequence is just a single sequence; this is work of the 1980s. 
Later work led to the generalized Neiderreiter sequences.  Finally, the generalized
Faure sequence, which is also a class of sequences, not a single sequence, was
obtained by Tezuka in 1995.  

The clustering in Monte Carlo methods is shown in Chart 15.  There is also an
example of a low-discrepancy sequence in Chart 16.  

This is an instance of generalized Faure sequence for you to contrast with the Faure
sequence which Graham gave you before.  You can see certain patterns.  There is a
great deal of work currently going on in algebraic curves that produce such se-
quences.   
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The following are some formulas about the low-discrepancy sequences.  The (t,d)
sequences are low-discrepancy sequences that have to satisfy even stricter unifor-
mity properties.  The generalized Neiderreiter sequences are obtained in the
following way.  For every natural number n, you expand it in some basis, by let’s
say b.  For simplicity, I would assume that b is a prime.  This expression is unique. 
Once you have this, you create, coordinate-wise, sums that depend on the coeffi-
cients c .  These are the important numbers that one has to consider; a (n).  Theij j

coefficients of n in base b are easy to obtain.  The quality of the sequences depends
on these generator matrices.  The task is how to obtain these.  

NEIDEREITER CONSTRUCTION (t,d) Sequences

For example, Generalized Faure Sequence [Tezuka]

b-prime ( d)

c  =   a  p(h)    (h) (h-1)

Nonsingular lower triangular

In the generalized Faure sequence, the generator matrices are given as the product
of some lower triangular and nonsingular matrix multiplied by a power of the Pascal
matrix.  Graham showed you the Faure sequence.  In that example, a was identity.
If, however, you take various choices of a, then you get various instances of the
generalized Faure sequence.   

Let me tell you what we have done at Columbia.  Spassimir Paskov began by taking
a model problem and comparing the Halton sequence, the Sobol sequence, and the
Monte Carlo sequence.  He concluded that the low-discrepancy sequences were
better than Monte Carlo and that the Sobol sequence was the method of choice.  He
also did some improvements on Sobol itself.  He even found that Monte Carlo
exhibits a tremendous sensitivity with regard to the seed.  You may end up with
different results using different seeds, which is important because this can put you in
a very difficult situation.  Later on we started using the generalized Faure sequence,
and we applied it to a number of financial instruments ranging from options for
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equities, to bonds, to our collateralized mortgage obligation.  In all cases, we found
that up to this point generalized Faure was the method of choice.  All this work was
put in Finder which is a software package originally built by Paskov, and it included
Halton and Sobol along with some random number generators.  We have recently
added various instances of generalized Faure.  Finder is available from Columbia
University. 

The test results will give you some idea.  We considered a CMO based on 30-year
mortgages with monthly cash flows.  You end up with a 360-dimensional problem. 
Because it is a CMO, you have ten tranches which would leave you having to
compute ten 360-dimensional integrals.  Some tranches were easier to approximate 
than others.  We have chosen to show results on the residual tranche which was the
hardest to approximate, because it was influenced by all of the 360 interest rates.  

The situation was quite surprising because you have a 360-dimensional problem.
Chart 17 shows a simulation where the number of points is shown along the x-axis.
These are 5,000 points and on the y-axis you have the relative error.  What you see
is that the generalized Faure sequence that achieves an accuracy of 10 and2 

remains there, and that is at about 170 points.  Monte Carlo achieves the same level
at about 2,700 points.  Sobol is somewhere in the middle at about 600 points.  In
this respect, we were very surprised. 

We went on to look at the convergence rate of the method.  As you already know,
the error of Monte Carlo is proportional to .  What you see in Chart 18 is the
number of points along the x-axis came up to 100,000.  I am showing that the error
using the generalized Faure sequence is equal to 1/N, times a constant of moderate
size.  The constant is shown by the line.  You see the constant does not exceed 20. 
On the other hand, you see that the Sobol constant is bounded by 80; Sobol was a
little bit worse. 

Table 4 summarizes the results for tranch R where you see that for accuracy 10 ,2 

Monte Carlo will take 2,700 points, and generalized Faure needs only 170 and we
found this to be extraordinary.  As the accuracy demands grow, you see that Monte
Carlo may require 800,000 points versus 16,000  points for generalized Faure.  

The speed-up factor is the number of points that Monte Carlo requires in order to
achieve an accuracy epsilon and stay there.  It is not to exit that band, relative to the
number of points that generalized Faure requires for the same amount of accuracy. 
You see that the speed-up factor starts at 16 and goes all the way up to about 500 as
the accuracy demands grow.  It is not just five PCs that can do the job; but you need
more than 500 PCs to do the same job.  
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Let me give you another example, before I summarize.  This is our discount bond. 
This is a five-year bond, and you end up with a problem in 1,439 or almost 1,500
dimensions.  The interest rate is modeled by the Vasicek model, dr = a(b-r)dt +

dz, where a, b, and  are given, and r  is also given.  This was one of the test0

candidates that Tezuka used to test his implementation of generalized Faure.  We
did the same test, and the speed-up of generalized Faure relative to standard Monte
Carlo can be 1,000.  

TABLE 4
SUMMARY OF RESULTS FOR TRANCH R

CMO, D=360: TRANCHE R

Rel. Error   E Method Number of Points

10 MC 2,7002

Sobol 600
G. Faure 170

MC 800,000
Sobol 96,000

G. Faure 16,000

SPEEDUP

N (E)/N (E) N (E)/N (E) Enc GF SOB GF

16 3.5 10 2

50 6

> 500 4 10  <4

In Chart 19, you have 100,000 runs and the value of the points.  In the bottom, you
see the error of generalized Faure and Monte Carlo.  Generalized Faure is clearly
much superior.  I should mention that the generalized Faure method requires at
most 30,000 points to give you one basis point accuracy, while Monte Carlo would
require 30,000,000.    

One of the important features of this method is that it is able to generate samples at
a cost proportional to the cost of a linear congruential generator for those same
samples.  Changing and comparing it to other techniques is not always fair.  The
idea is that you have two methodologies:  one Monte Carlo as expressed by a linear
congruential generator, and then a low-discrepancy method as expressed by a



Values and Risks of Complex Financial Instruments 45

cheap-to-compute scheme.  You compare the two of them.  Otherwise, you could
spend the extra time in generating more samples, and then you would break even.  

To summarize, we have tested low-discrepancy sequences in a fairly wide range of
financial instruments ranging from options on equities, to CMOs, and to bonds, and
to options on swaps that depend on these bonds.  We have found that the low-
discrepancy methods, in particular our improvements of the low-discrepancy
methods, give you small errors, using very small samples.  The speed-up factors can
be very huge and up to this point our improvements of the generalized Faure
sequence make it the candidate of choice.

Dr. Vanderhoof:  I would like to point out that the use of low-discrepancy 
sequences is independent of the problem.  If you use the independent variable
techniques or any of the other methods, such as variance reduction techniques, they
tend to be specific for the problem and they must be handled for the problem.  For
this one, the only thing you need to hand tool is the inverse function where you go
from the cumulative distribution function back to the actual value of the parameters
involved.  It is a one-size-fits-all-problems situation, and one set of software is used
to create the low-discrepancy points.    

It’s very exciting because in what amounts to a research environment, it is possible
to do things people had not thought were possible.  It is possible to make reason-
able numbers of calculations and arrive at a value at risk.  That is the probability of
ruin, the probability of losses beyond a certain point without an exorbitant cost, and
that is something people haven’t generally tried before.  


