
T E C H N O L O G Y S E C T I O N
“A KNOWLEDGE COMMUNITY FOR THE SOCIETY OF ACTUARIES”

CompAct Electronic Newsletter • Issue No. 18, Volume 1 • December 2005 • Published in Schaumburg, Ill. by the Society of Actuaries

Inside

Articles Needed for the CompAct Electronic
Newsletter 2

The Need For Speed 3
by Phil Gold

CompAct

Computer Science Section Newsletter
Issue Number 18 • Volume 1
December 2005

Published quarterly by the Technology Section
of the Society of Actuaries

475 N. Martingale Road, Suite 600
Schaumburg, IL 60173
phone: 847.706.3500
fax: 847.706.3599

World Wide Web: www.soa.org

Nariankadu D. Shyamalkumar
CompAct Editor
Assistant Professor
Statistics and Actuarial Science
241 Schaeffer Hall
The University of Iowa
Iowa City, IA 52242-1409
phone: 319.335.1980
fax: 319.335.3017
e-mail: shyamal-kumar@uiowa.edu

Technology Section Council
Philip Gold, Chairperson
Paula M. Hodges, Vice-Chairperson
Dwayne S. McGraw, Treasurer/Secretary
Charles S. Fuhrer, Council Member
(2006 Spring Mtg. Prog. Comm. Coordinator)
Kevin J. Pledge, Council Member
(2006 Annual Mtg. Coordinator)
Frank G. Reynolds, Council Member
Timothy Lee Rozar, Council Member
N.D. Shyamalkumar, Council Member
Dean K. Slyter, Council Member

SOA Staff Contacts
Joe Adduci, DTP Coordinator
jadduci@soa.org

Clay Baznik, Publications Director
cbaznik@soa.org

Sue Martz, Project Support Specialist
smartz@soa.org

Meg Weber, Staff Partner
mweber@soa.org

Facts and opinions contained in these pages
are the responsibility of the persons who
express them and should not be attributed
to the Society of Actuaries, its committees,
the Technology Section or the employers of
the authors. Errors in fact,if brought to our
attention, will be promptly corrected.

Copyright© 2005 Society of Actuaries.
All rights reserved.
Printed in the United States of America.

Articles Needed for the CompAct
Electronic Newsletter
Your help and participation is needed and welcomed. All

articles will include a byline to give you full credit for your

effort. CompAct is pleased to publish articles in a second

language if a translation is provided by the author. For

those of you interested in working on CompAct, several

associate editors are needed to handle various specialty

areas such as meetings, seminars, symposia, continuing

education meetings, new research and studies by SOA

committees and so on. If you would like to submit an

article or be an associate editor, please call Nariankadu

Shyamalkumar, editor, at 319.335.1980.

CompAct is published as follows:

Publication Date Submission Deadline

March 1 December 15

Preferred Format
In order to efficiently handle articles, please use the

following format when submitting material:

Please e-mail your articles as attachments in either MS

Word (.doc) or Simple Text (.txt) files. We are able to con-

vert most PC-compatible software packages. Headlines are

typed upper and lower case. Please use a 10-point Times

New Roman font for the body text. Carriage returns are put

in only at the end of paragraphs. The right-hand margin is

not justified.

If you must submit articles in another manner, please call Joe

Adduci, 847.706.3548 at the Society of Actuaries for

assistance.

Please send electronic copies of the articles to:

N.D. Shyamalkumar

Technology Section Editor

e-mail: shyamal-kumar@uiowa.edu

Thank you for your help.

The Need for Speed
by Phil Gold

T
oday, actuarial modeling software
requires blistering calculation speed to
cope with the ever-increasing com-

plexity of products and reporting bases, par-
ticularly deriving from risk management
requirements and stochastic analysis.

This article will discuss how to keep up with
the ever-increasing need for speed.

You can get speed in a stochastic actuarial
model through three approaches: you can
write fast code, you can use parallel process-
ing techniques or you can introduce approxi-
mations. Approximations include simplified
models, running fewer or representative sce-
narios, sampling, grouping and using less fre-
quent time periods.

This article will focus on the first two of these
approaches. If you use approximations, you
will need to test your preferred approach
against a complete calculation in order to cal-
ibrate your model, so you will still need an
accurate baseline model on hand.

The further you can get using the first two
techniques, the less use you will need to make
of the various approximation methods. The
objective is to make the software and hard-
ware run fast enough that you don’t have to
make approximations.

Language
The first step is to choose an appropriate
development language. Today’s languages are
mostly object oriented, and for very good rea-
son. Object orientation allows you to build and
maintain powerful complex systems, which
would be almost impossible using traditional
approaches.

C++, in the right hands, is capable of
extremely high processing speeds, higher
than other modern object-oriented languages.

On the down side, C++ is extremely demand-
ing of developers, and I would only recom-
mend it for full-time professional program-
mers. Messing with pointers and multiple
inheritance can be a double-edged sword—it
can yield remarkable results, and it can get
you into trouble very quickly. C++ is my per-
sonal recommendation for the professional
developer. Not only does it offer the highest
speed, but it also offers the greatest control
over the environment.

Each language has its own strengths and
weaknesses. Visual Basic allows you to get a
lot of code written very quickly, but that code
will not run at the same speed as C++. The
good news is that some of the other modern
languages such as Java, C# and VB.NET come
with some pretty smart compilers which are
reducing the performance gap between them
and C++ and are well suited to smaller-scale
development.

Database
The database engine will support both the
input and the output of your model. There are
many such engines on the market, and your
first decision is whether to use an embedded
engine, or to rely on an external relational
database such as Oracle™, UDB™ or SQL
Server™.

Extensive research reveals that there is sim-
ply no one database that does everything
well. Each database engine is optimized for a
different purpose. There are many bench-
marks posted for the different engines on the
market. You will find these on the sites of each
major vendor.

Phil Gold, ASA,

FIA, MAAA, is a

founding partner

of GGY and

chairperson of

the Technology

Section. He can

be reached at pg@

ggy.com.

CompAct • 3

(continued on page 4)

• The Need For Speed • continued from page 3 •

4 • CompAct

Example
www.sleepycat.com/products/pdfs/wp_perf_07
05c.pdf or

www.microsoft.com/presspass/press/2002/Dec
02/12-18TPCBenchmarkPR.mspx.

These benchmarks may bear little relationship
to the particular tasks for which you need the
database engine. Those that look best on
paper are often resource hogs and unreliable.
Those that work best are often the ones with
the longest history of development behind
them, not necessarily the latest and greatest
object databases. Preconceived ideas may be
dangerous.

A word or two about XML: Although very use-
ful for many different purposes, you will be
best advised not to make any use of XML in
time-critical processing because it is very
wordy compared to regular Database
RecordSets, and it takes longer to read and
write than traditional methods.

Binary Storage
File storage is about the slowest thing you can
do on a computer, so you should take steps to
optimize it as much as possible. If you have
to read or write data, it is much faster to do
so in large blocks rather than field-by-field or
record-by-record. Since you’re extracting the
data in blocks, you lose the ability to perform
database operations within the database
engine but you gain speed.

Data Compression
We normally think of data compression as
trading speed for file size, but if you are care-
ful, data compression can save you time as
well as disk space. Consider a set of model
projections; with maybe 100 lines being
tracked for say 50 years monthly. If you can
compress the data first, and then save it as a
binary block, you will save a lot of hard disk
writing time, often much more than the time
it takes to do the compression.

Micro Optimization
If you are after the highest performance, you
need to pay attention to the relative speed of

those simple operations that may be called
billions of times in your modeling run.

We all know that raising to the power is slow-
er than multiplication. So your standard opti-
mizations should always include replacing
powers by multiplications, and multiplications
by additions wherever possible.

There is a big payoff from fundamental opti-
mizations to the root and power functions,
which are used extensively in interest rate
conversions. If the calculation you are trying
to perform is the same as one you have
recently performed, then by caching the pre-
vious inputs and outputs to the power func-
tion, you can save time. Your cache can be a
simple one-element structure or a complex
one with an extensive history. Alternatively
you can use maps or lookup tables, or write
your own optimized power and root algo-
rithms.

Order of Calculation
Each way to arrange the loop, for records,
scenarios and time periods has its advantages
and disadvantages. Some are faster, some
are more memory efficient and some work
better with certain product features or match-
ing strategies. You may end up supporting
multiple methods.

Memory
Memory is faster than disk, so a good deal of
optimization work is to replace disk read with
memory reads. The danger in this approach is
that your model quickly becomes a memory
hog. A great deal of attention to detail is
needed so that memory is allocated to the
most significant items.

The most successful techniques for optimizing
performance through the use of memory
involve caching, where you devote a specific
amount of memory for a given purpose. For
example, you might dedicate 10 megabytes
for holding recently used tables. Other tech-
niques involve the use of global and static
memory. If you use memory in this way,
make sure the arrays are set up and
refreshed at the right time.

• The Need For Speed •

CompAct• 5

Profiling
When you have your model programmed,
you can see how fast it runs. A profiler, such
as Metroverks Code Warrior™ or Compuware
DevPartner Studio™ can calibrate your soft-
ware to show how many times each proce-
dure or even each line of code is called, and
estimate how much time is spent executing
each procedure or line of code. You can see
where the bottlenecks are and where you
should concentrate your efforts to improve
the algorithms. Some profilers are much bet-
ter than others, and none are perfect. Some
do a better job of estimating where the time
is spent, some have much better user inter-
faces than others, some require special
builds of your software to perform their
magic.

Just in Time Initializations
Originally in the C language, there was a
requirement that all the variables used by a
function were to be declared at the start of
that function. C++ by design permitted vari-
ables to be declared on just about any line,
even nested at any level of indentation.

You can exploit this new C++ rule. For exam-
ple some code may only become active when
certain controlling assumptions are met.
Therefore code nested three levels deep can
include its own set of working variables nest-
ed at the same level. If the code is executed,
the corresponding variables are initialized just
in time; otherwise the initialization for those
variables is skipped.

Object Sizes and Lifetimes
You can break objects into two categories—
those that need time-consuming dynamic
memory allocations, “fat” and those that do
not, “thin”.

You can use thin objects liberally throughout
your program. Declare and use them at any
point in your code and allow them to be cre-
ated and destroyed frequently.

The fat objects need to be carefully managed
so that you keep them for much longer dura-
tions. You should avoid any pass-by-value

uses of fat objects since these perform waste-
ful memory allocations.

Accuracy of Calculations
We quickly forget that our actuarial assump-
tions are pretty rough—can we really estimate
a lapse rate to more than two significant fig-
ures? So we should think carefully before
using the slower double-precision variables.
You may need them sometimes, but probably
not as much as you think.

The Hardware
The next big thing, of course, is 64-bit archi-
tecture. Together with the appropriate soft-
ware it offers improved access to large
amounts of memory. We can expect some sig-
nificant improvements from this source in the
near future. The other development we are
seeing on CPUs is dual core, and in the future,
4 or 8-core processors. Each core functions as
an independent CPU.

Distributed Processing
Distributed processing can be used to acceler-
ate a modeling system by running parallel cal-
culations on multiple processors, in one box or
over multiple boxes. Ideally if you have 20
processors, your program should run 20 times
faster. The more research and development
you do in this area, the closer you will come
to this ideal. It takes a lot of work to provide
a simple but fully scalable method for the
users.

You need to think carefully about which parts
of your software need the benefit of parallel
processing. How are the various threads or
processes going to communicate with each
other? Remember that memory messaging is
much faster than file messaging. You need to
minimize network traffic and response times.
Do you split the work by policy, by scenario or
by some other characteristic? How do you min-
imize the overhang time when some proces-
sors are busy but others are finished? You also
need to think about how to bring the results
together from all the different processors.

(continued on page 6)

6 • CompAct

Just speeding up the calculations is only part
of the job. You also have to make it reliable
and easy to use. You need to develop fault-
tolerance logic, because the user probably
cannot afford the time to run the job again if
a network connection goes down the first
time, or if the cleaners turn off a machine
they see left on after hours!

Dynamic load balancing is the process of
making sure the work is being distributed
optimally all the way through, even if condi-
tions change during the run. This is complex
to program, but will contribute significantly
to scalability.

Grid Computing
As you add more and more machines to a dis-
tributed processing farm, the complexities of
managing it become ever greater. The answer
to this problem is grid computing, which auto-
mates the task of managing a farm so that
many more processors can be used. Grid
computing may handle many tasks, such as
resource optimization, failure recovery,
deployment and monitoring and can also sup-
port the sharing of a farm between multiple
independent types of software.

As you scale up the number of processors,
maintaining run-time scalability becomes
tougher and tougher. Even more attention
must be paid to error recovery and scheduling
for multiple users. In this area it may pay to
find partners with special expertise.

Admitting Mistakes
With the best will in the world, everyone
makes mistakes. If it is a simple code error,
you can fix it readily, but what if it is more
basic than that? What if you have some of our
fundamental architecture wrong? You can
plow on regardless, you can go back and
change the architecture or you can offer two
different ways to run the software—the old
way and the new way. The really big deal here
is admitting the mistake—the bigger the mis-
take, the harder it may be to admit it.
Admitting mistakes can be very expensive,
but if you don’t do it, your ultimate progress
may be severely limited.

You won’t necessarily find your mistakes
unless you specifically look for them. This
should be a continuous process. You need to
set up a structure for peer review of the archi-
tecture and the code, regular regression test-
ing and strictly enforced programming stan-
dards.

Pulling It All Together
Speed is not something you can eke out of a
system after you have developed all the func-
tionality. Rather you need to consider your
speed target up front, since it can affect the
programming language you use and the
equipment you target.

Then you need to have speed in mind as a
prime requirement all along the way, and you
must be willing to go back and fix past mis-
takes, since no one has perfect foresight. It
takes more than good decision-making and
efficient code.

As your application develops, you need to use
profiling tools to discover the roadblocks pre-
venting your software from running at high
speed, and you have to be willing to invest a
lot of time and effort into fine details.

You need to research ways to introduce paral-
lel processing into your code and take advan-
tage of distributed processing and grid com-
puting to scale up your application to meet
the ever-increasing demands. :

• The Need For Speed • continued from page 5 •

	Table of Contents
	Articles Needed for the CompAct Electronic Newsletter
	The Need for Speed by Phil Gold

