
T E C H N O L O G Y S E C T I O N
“A KNOWLEDGE COMMUNITY FOR THE SOCIETY OF ACTUARIES”

CompAct Electronic Newsletter • Issue No. 21 • October 2006 • Published in Schaumburg, Ill. by the Society of Actuaries

Inside

Articles Needed for the CompAct Electronic
Newsletter 2

Goodbye to All That 3
by Phil Gold

Letter from the Chair 4
by Paula Hodges

An Analytics Manifesto 5
by Neil Raden

Open and Closed Code Myths 12
by Kevin Pledge

Open Versus Closed Software Code 14
by Mark Evans

Open or Closed Code: A Response to
Mark’s Article 16
by Nazir Valani

Annuity Calculations Using SQL 18
by Sheila Silva

CompAct

Technology Section Newsletter
Issue Number 21
October 2006

Published quarterly by the Technology Section
of the Society of Actuaries

475 N. Martingale Road, Suite 600
Schaumburg, IL 60173
phone: 847.706.3500
fax: 847.706.3599

World Wide Web: www.soa.org

Nariankadu D. Shyamalkumar
CompAct Editor
Assistant Professor
Statistics and Actuarial Science
241 Schaeffer Hall
The University of Iowa
Iowa City, IA 52242-1409
phone: 319.335.1980
fax: 319.335.3017
e-mail: shyamal-kumar@uiowa.edu

Technology Section Council
Philip Gold, Chairperson
Paula M. Hodges, Vice-Chairperson
Timothy Lee Rozar, Treasurer/Secretary
Joseph Alaimo, Council Member
Charles S. Fuhrer, Council Member
(2006 Spring Mtg. Prog. Comm. Coordinator)
Kevin J. Pledge, Council Member
(2006 Annual Mtg. Coordinator)
N.D. Shyamalkumar, Council Member
Dean K. Slyter, Council Member
Stephen J. Strommen, Council Member

SOA Staff Contacts
Joe Adduci, DTP Coordinator
jadduci@soa.org

Meg Weber, Director, Section Services
mweber@soa.org

Susan Martz, Project Support Specialist
smartz@soa.org

Glenda Maki, Senior Editor
gmaki@soa.org

Facts and opinions contained in these pages
are the responsibility of the persons who
express them and should not be attributed
to the Society of Actuaries, its committees,
the Technology Section or the employers of
the authors. Errors in fact, if brought to our
attention, will be promptly corrected.

Copyright© 2006 Society of Actuaries.
All rights reserved.
Printed in the United States of America.

Articles Needed for the CompAct
Electronic Newsletter
Your help and participation is needed and welcomed. All

articles will include a byline to give you full credit for your

effort. CompAct is pleased to publish articles in a second

language if a translation is provided by the author. For

those of you interested in working on CompAct, several

associate editors are needed to handle various specialty

areas such as meetings, seminars, symposia, continuing

education meetings, new research and studies by SOA

committees and so on. If you would like to submit an

article or be an associate editor, please call Nariankadu

Shyamalkumar, editor, at 319.335.1980.

CompAct is published as follows:

Publication Date Submission Deadline

January 1, 2007 October 15, 2006

April 1, 2007 January 15, 2006

July 1, 2007 April 15, 2007

Preferred Format
In order to efficiently handle articles, please use the

following format when submittingmaterial:

Please e-mail your articles as attachments in either MS

Word (.doc) or Simple Text (.txt) files. We are able to con-

vert most PC-compatible software packages. Headlines are

typed upper and lower case. Please use a 10-point Times

New Roman font for the body text. Carriage returns are put

in only at the end of paragraphs. The right-hand margin is

not justified.

If youmust submit articles in anothermanner, please call Joe

Adduci, 847.706.3548 at the Society of Actuaries for

assistance.

Please send electronic copies of the articles to:

N.D. Shyamalkumar

Technology Section Editor

e-mail: shyamal-kumar@uiowa.edu

Thank you for your help.

Goodbye to All That
by Phil Gold

I
t seems like just yesterday that I startedmy
three-year stint on Council. I didn’t know
what to expect at the time but my parting

advice is, “Thewater’s warm–jump in!”

During these last three years I have met many
people, made lots of new friendships and
cemented some old ones: I have been exposed
to the workings of the SOA to a degree I did not
expect. You may not know this but as Section
Chair and Vice-Chair, you get invited to regular
meetings in Chicago as well as monthly Internet
based sessions. You learn all about consent
agendas and other techniques that can find
good application not just here but also back in
the office. By attending and speaking at meet-
ings you get to know your own subject much
better, you meet others with different perspec-
tives, and you quickly find out just how hetero-
geneous a group we actuaries are.

Is there a lot of work? Sure. Is it worth it?
Certainly. Is the SOA changing? You bet!

The title of my piece, “Goodbye To All That,” is
a little tongue in cheek. You don’t get rid of me
that easily. First of all, I’m still King, sorry, Chair,
until Paula secures my abdication at the Annual
Meeting in Chicago. Second, when you step
down, the next Chair may invite you back to sit
among the “Friends” of the Section Council.
Finally, the SOA has your number and there’s no
telling how often they may call.

To be honest, I have been able to float through
this year’s responsibilities because I am blessed
with a superb set of Council members who have
done all the heavy lifting. One huge thank-you
to all the members and friends who have done
so much so well this year. Guiding us and facil-
itating our efforts is a very strong and friendly
team at the SOA HQ, and, if I may, I will single
out Meg Weber and Sue Martz for their support.

At the beginning of the year I promised to
improve the communications the Section has
with its members. Since then, we’ve had four
newsletters, bimonthly Tech Updates, an updat-
ed Web site, a new initiative on Standard
Scenario Formats and a superb program and a
big social event should be awaiting us in
Chicago.

I can promise you one last thing. I will leave the
Section in most capable hands. �

Cheers, bye, shalom, adieu.

Phil Gold
Technology Section Chair 2005-6

Phil Gold, ASA,

FIA, MAAA, is a

founding partner

of GGY and

chairperson of

the Technology

Section. He can

be reached at

pg@ggy.com.

CompAct • 3

4 • CompAct

Letter from the Chair
by Paula Hodges

A
s the Technology Council begins a new
year, it seems fitting to reflect on the
changes that have shaped our industry

in recent decades. I recently completed reading
“The World is Flat” by Thomas L. Friedman. The
theme in the book emphasized tome howmuch
our lives have been changed dramatically and
powerfully, due to forces that are moving at the
speed of light around us.We need to continue to
step up to the challenge of utilizing the capabili-
ties around us, because if we don’t do it, some-
one else will.

To illustrate these changes in our profession, I
recall stories from one of my mentors, from
early in my career. He used to tell of the type of
work assigned to him when he was an actuarial
student in the early 1960s. At that time, actu-
arial students were assigned to such mundane
tasks as manual calculation of dividend tables
and interpolating extended term insurance. This
was all done with paper and pencil, of course,
and assigned to the actuarial students, as they
were the resources capable of the math and
attention to detail required for these tasks. Also
during that era, mortality tables were typed out
and kept in file cabinets. Ratebooks were sent
to the printshop for typesetting, and then sent
to the agents to help them calculate premiums
for their clients.

Flash forward to 2006: Agents don’t use rate-
books anymore—they are connected to home
office and have sophisticated illustration soft-
ware that not only quotes the premium that
their client will pay, but can also produce com-
plicated financial planning scenarios, using
flexible premium products. And they get all
this with just a few clicks of a mouse.
Actuarial students, no longer doing “grunt
work,” are running complex modeling soft-
ware that has the capability of executing hun-
dreds, if not thousands, of financial scenarios.

This metamorphosis of our work and our
industry was only possible by the increased

technology capabilities that are available to
us. It is important that we, as actuaries, fos-
ter a great respect, if not a keen interest in
technology developments. It is this technolo-
gy that will channel our key competencies into
designing our products, pricing our assump-
tions, analyzing capital positions, stratifying
market segments, and dissecting the details
of our own companies’ financial statements.

Not so many years ago, it served us well when
we were spreadsheet wizards. In today’s
world, we need to have technology/actuarial
specialists who understand business intelli-
gence reporting protocols, code optimization,
and XML standards. By building a forum for
collaboration and networking, this group of
technology/actuarial specialists can contribute
considerably to the acceleration of innovation
in the various actuarial disciplines.

It is in this spirit that the Technology Section
was born in 1992 as the Computer Science
Section. It is this same spirit that Phil Gold,
our chair for 2005-2006, brought forth the
power of the volunteers of the section. He re-
energized the CompAct newsletter, kept us
updated with his Tech-Update e-mails, and
encouraged our R&D by starting up a working
group on standardization of scenario genera-
tion. Thank you Phil, for your work and lead-
ership over this last year.

I look forward to serving as Chair of the
Technology Council for 2006-2007. If you are
a member of the section, I urge you to read
our mission statement on the SOA Web site.
Contact me, or any member of the Council, to
contribute to our newsletter, help with the
Technology sessions at one of the SOA meet-
ings, or if you have any other contributions
toward our goals. �

Paula Hodges
Chair, Technology Section 2006-2007

Paula M. Hodges,

FSA, MAAA, is

manager of

Modeling Strategy

with Allstate

Financial in Lincoln,

NE. She can be

reached at phodg@

allstate.com.

CompAct • 5

An Analytics Manifesto
by Neil Raden

Neil Raden is

president & CEO

of Hired Brains,

Inc. in Santa

Barbara, CA. He

can be reached

at nraden@

hiredbrains.com.

T
he size of the Data Warehousing/
Business Intelligence industry pales in
comparison to the operational software

business. In 2005, total spending for software
(globally) reached over $100 billion

1
according

to IDC, but BI’s share was less than 5 percent.
The stated purpose of enterprise systems is to
improve organizations’ effectiveness through
better utilization of information, especially for
decision-making. Yet somehow, analytics have
taken a back seat role in corporate ITmore than
40 years. The forces of technology and business
are about to change that.

The rapid acceptance of open standards like
Web Services, which makes Service-Oriented
Architecture possible, provides an appealing
opportunity for re-architecting business
process software as a set of cooperative serv-
ices. The promise is increased alignment
through vastly improved agility, reduced
maintenance costs, which account for up to 75
percent of IT budgets overall,

2
and a reduction

in integration expenses, which make up a
large portion of IT development budgets.

The element missing from most road maps,
however, is business analytics. Agile organiza-
tions need analytical insight embedded into
their operational processes to “close the loop”
between analysis and action. The lag between
actions taken, results tracked and conclusions
drawn has been getting increasingly smaller,
but the last step—connecting analysis to oper-
ations in a continuous cycle—is restricted by
existing tools, methods and approaches.

Many current analytical tools limit and simpli-
fy the models and scale of data that can be
investigated because of their client-based
architecture. Even in server-based Business
Intelligence (BI), many of the tools scale
poorly and do not leverage the data resources
already available. The loosely-coupled

3
nature

of SOA will expose these shortcomings and
favor those vendors that can provide optimal

functionality for the new architecture. Current
tools for analytics are hampered by a lack of
common semantics, too many proprietary
engines, layers of stand-alone functionality
and poor data federation capabilities.

A combination of forces is working to tip the
scales in favor of a new generation of analytics:

• Moore’s Law: Analytical schemes today
are still managing from scarcity. The con-
tinued rapid increase in capacity and
decrease in relative cost of hardware and
bandwidth allows for the faster and broad-
er analysis of data.

• Service-Oriented Architecture: Open stan-
dards foster an environment where ana-
lytics can cooperate with operational
processes without disrupting or interfering
with the smooth operation of these sys-
tems and processes.

• Maturity: Most organizations, and some of
the people in them, have some experience
with analytics now and are open to
improvement.

• Business Process Commoditization:
Visionaries like Davenport

4
are getting the

word out that a lot of the work in process
optimization has been done.

• On Demand: Opening business up with
the Internet creates an entirely new
timetable for conducting business—on
demand.

• Semantics: The rapidly expanding field of
Semantic Technology will power analytics
to new levels, fueled by open standards
for ontologies such as RDF and OWL.
These are XML variants for representing
ontologies as ‘triples’—subject, predicate,
object, which can be classified (in binary
form) as graphs.

(continued on page 6)

6 • CompAct

• Hegemony of a few vendors and influence
of analysts: These can act as negative
forces, but once enough momentum is
gathered, they tip abruptly.

• The status quo is simply not good enough.
BI has not reached as many people as it
should, and has not been as effective as it
could be.

• Vision of companies like SAP that under-
stand that analytics is an integral part of
almost every application.

The fundamental nature of data warehousing
and Business Intelligence today is the bulk
gathering of data and generic presentation of it
to a wide audience, predominantly for reporting
and extraction to spreadsheets. Analytics must
be a central part of business processes and the
tools, techniques, products and best practices
are just now being formulated.

Manifesto: New Rules
The entire field of analytics has been, to date,
driven by the marketing of BI vendors and
their influential customers. As analytics
emerges from its various niches and proves its
centrality to operational and strategic roles, a
clear set of rules is crucial:

• To achieve its mission, the use of analyt-
ics at all levels of skill and function, has to
be pervasive in organizations.

• Analytics, even complicated analytics,
does not have to be difficult and should
not be the preserve of a cadre of statisti-
cal experts.

• Analytics is useful at achieving ROI at the
operating level. At the same time, it plays
an important role in setting and managing
strategy with tools like CPM (Corporate
Performance Management). Going for-
ward, these roles must be aligned, consis-
tent and seamless.

• Analytics cannot just inform; it has to be
active, stitched into the fabric of work.

• Embedded analytics needs to be com-
posed of standard services with con-
sistent function and metadata across
the enterprise.

• Analysis in isolation is not effective; it
must close the loop within business
action.

• Commodity business processes will be
outsourced, increasing the need for reli-
able measurement.

• The requirements for real-time will grow
as the availability of reliable real-time
tools increases.

• The effects of Moore’s Law will gradually
move thinking about analytics from “man-
aging from scarcity” to capitalizing on its
capabilities.

• Service-Oriented Architecture will move
analytics from a departmental to an
enterprise pursuit.

• Semantic technology promises to be the
fuel behind increased use, utility and
value in analytics. The application of
industry standards to the building, discov-
ery and merging of ontologies will vastly
improve everyone’s ability to inform
themselves of the meanings of complex
terms and their relationships.

• Metadata must rise above proprietary
standards; abstraction layers must be the
preferred path for access to data.

• Analytical tools will eventually learn how
people work, not vice-versa. In the mean-
time, it will still require customization and
configuring to produce analytical tools
that are relevant and understandable to a
wide audience.

• In an SOA world, BI tools that bundle
query, interface, output, metadata and
calculate will have to gradually un-bundle
their services.

• What makes BI difficult for people is the
lack of understanding of the data, models
and tools. Analytics has to be relevant to
work that people do and make their work
easier, not more difficult.

A new generation of analytical tools is needed
that can be seamlessly embedded in business
processes. Ideally, they must:

• Extend from viewing of results to interac-
tive exploration of data and models;

• An Analytics Manifesto • continued from page 5 •

• An Analytics Manifesto •

• Be as tightly connected to the strategy of
the organization as it is to the minute
operations;

• Foster collaboration and group decision-
making;

• Provide the ability to share knowledge
models and techniques across the enter-
prise and beyond, through the easy
assembly of components by business
stakeholders.

Today, fewer than 20 percent of knowledge
workers in organizations avail themselves of
analytics.

Factors Affecting
Analytics
Before e-business and the Internet, before
business process reengineering, organizations
were able to function in a timeframe that
seems inordinately long by today’s standards.
Few decisions needed to be made immediate-
ly, no one was in danger of losing their mar-
ket to a competitor without a protracted fight,
and the process for reviewing results and
deciding on tactics was measured in weeks,
not hours or minutes. It was in this environ-
ment that our current models for analytics
and business intelligence were formed. It
explains why data warehouses are still a
largely batch process, why business intelli-
gence software is still focused on “seats” or
individuals instead of communities of work
and whole enterprises. But today, the luxury
of latency is gone. On demand is not just a
clever TV commercial; it is the way business is
being conducted.

Business Intelligence is still a departmental or
even individual affair in most companies. The
move to Service-Oriented Architecture will
force IT managers to look at analytics as an
enterprise asset. Because analytics will
become an integral part of many operational
systems, the current situation, with many dif-
ferent BI tools in place and skills spread too
thinly to be useful, will become unwieldy.
Standardizing on those analytical services
that are best suited to the propagating “com-
posite” applications (operational and analyti-
cal), instead of each department’s selection,

will have the effect of elevating the visibility of
analytics. It does not mean that all organiza-
tions will need to apply advanced analytics to
their business processes; they will need to
have faith in the output of analytical process-
es. There are various ways for this to happen,
but one method that is gaining notice is to
create a team of specialists who perform most
of the advanced analytics on a centralized
basis, and who have the confidence of the
senior executives of the firm. Their work, find-
ing the underlying causes and relationships
and predictors, can be reduced to models with
a set of parameters that can be run repeated-
ly. FICO® credit scores are a good example of
this, where Fair Isaac develops and continu-
ously tunes a model that can be rendered as
a series of variables that produces a credit
score.

This premise, most recently advanced by Tom
Davenport,

5
historically has some drawbacks,

but they were likely caused by organizational
separation of the modelers and those who
used the models. Nevertheless, Davenport
and others writing on this subject do at least
highlight the need for these capabilities and
focus on executive acceptance of analytics,
which is crucial. In an SOA world, it is likely
that advanced analytics will be palatable to a
wide audience because it will be transparent.

Semantics
A major impediment to the use of BI tools is
not the mastering of the tools themselves.
This is caused by a lack of understanding of
the data, what it means, and its relevance to
the task at hand.

6
Metadata management is

positioned as the solution to the problem, and
it certainly is, but the current discipline of
metadata management is not a complete
answer because, in particular, existing BI tools
provide incomplete and proprietary metadata.
In Figure 1, the location of different sources of
metadata can be spotted in this simplified and
idealized chart of information flow for analyt-
ics. A single BI tool may actually have as
many as five different metadata structures,
but gathering them into a single metadata

CompAct • 7

(continued on page 8)

8 • CompAct

repository without altering their form or func-
tion does not solve the problem.

Ideally, metadata should allow for different
tools used in different locations (logical or
physical) to be able to exchange information
about their semantics and operation. The lack
of uniform metadata across applications
makes it difficult to collaborate and hinders
standardization. BI metadata comes in rough-
ly three flavors:

• Production – Describes the movement
and translation from one data source to
another, establishes ownership and logs
updates.

• Catalog – Definition of tables and
attributes.

• Presentation – Additional data and cal-
culation definitions, report layouts, prefer-
ences and roles in the reporting/analysis
tool.

A great deal of work has gone into defining

metadata standards and attempting to open
up the metadata, but to a lesser degree, com-
petitive pressures between the vendors
impede the effort. To a much greater degree,
however, technology itself stands in the way
of a useful metadata solution. Using relation-
al databases and relational modeling tech-
niques as a solution may be inadequate to
capture the richness and nuance of the data,
models and conditions in even the simplest
business. Using extended relational modeling,
such as UML, offers some marginal improve-
ment, but all of these schemes effectively
leave metadata in a passive state.

Semantic technology holds the promise of
breaking through the metadata ice jam.
Semantic technology is a broad field, but the
rapidly growing commercialized part of it is
called ontology. An ontology goes beyond def-
inition to capture the semantic meaning of
things and, as a result, creates a structure
from which a machine can draw inference. In
a metadata query, all of the knowledge need-

• An Analytics Manifesto • continued from page 7 •

Figure 1: Fractured Metadata
in Current BI Architecture

ed to frame a question is in the query, com-
posed by the query writer. In ontology, the
relationships that are captured are capable of
revealing, through a process of introspection
and inference, more information than was
consciously placed into it. In addition, ontolo-
gies are constructed in a language that is
based on XML, the Resource Description
Framework (RDF), or built with the Web
Ontology Language (WOL), all of which are
open standards that are managed by the
same committee, the W3C that is responsible
for Web Services.

Semantics will play a role in the orchestration
of Servive-Oriented Architecture in a multi-
tude of ways. The discovery of services using
UDDI and WSDL is very limited, but semantic
extensions to these services make it possible
to find a service with a conceptual search such
as “Find a seasonal smoothing function that is
used for consumer products.” The massive
amounts of data in data warehouses no longer
need to be limited to a single, isolated defini-
tion. Semantics can point out which elements
are dependent on others or are predictors.
Semantics can be extremely valuable even
when they are incomplete. Semantics can be
constructed incrementally by many people
simultaneously and incorrect entries can be
handled by the semantic engines. There is
even a name for ontologies that are built by
people over time—folksonomies.

Semantic technology promises to super-
charge analytics by removing the major
obstacle to using analytics by a broad cross-
section of the population—lack of under-
standing. In the near future, metadata built
with semantic technology will glue all of the
disparate services together, with meaning
replacing definitions and patterns. Current
metadata approaches are largely based on
data; with semantics, metadata can marry
data, process, application, use, security—
virtually everything. Furthermore, it will be
able to exchange this information freely
because it is based on open standards that
conform perfectly with an Servive-Oriented
Architectureapproach.

Principles
Many current analytical tools limit and simpli-
fy the models and scale of data that can be
investigated because of their client-based
architecture. Even in server-based BI, many
of the tools offer architectures that scale poor-
ly and simply cannot leverage the volume and
richness of the available data. To claim that a
product is scalable because it can handle
dozens of servers, but only 10-12 users per
server, and perform no real load balancing or
work distribution across servers, only compli-
cates the result. IT groups are forced to limit
access to data warehouses by concealing
detailed data, implementing query governors
and/or limiting live queries to certain times of
the day. As a result, despite huge data ware-
houses housing the freshest and most detailed
data available, the models that are used in BI
are typically summarized, simplified and
denatured to fit into the limited computing
capabilities of most BI tools.

What next-generation analytics promises,
particularly as a result of loose coupling and
open standards, is the horsepower to finally
exercise the investment in data warehouses.
However, these limitations are not the only
factors that limit the reach of analytics
today—they may not even be the most
important factors—but they are the ones
that can be dealt with easily through tech-
nology. Changing the way organizations use
information (analytics in particular) to run
their business, breaking down the practices
that separate knowledge workers from use-
ful tools and information, and educating
people that passive receipt of information is
not sufficient and levels of self-service and
investigation are not beyond anyone’s intel-
lectual reach, all are challenging problems to
solve.

Manipulating very complex models and walk-
ing through reasoning, layers of detail and
concepts does not have to be difficult. Quality
analytical tools should adjust to the user’s
level of skill, and more skilled users will be
able to create analyses for others to share.

CompAct • 9

• An Analytics Manifesto •

(continued on page 10)

10 • CompAct

And finally, because all aspects of the analyti-
cal workplace, including data, relationships,
models, assumptions and report objects will
be recorded in a semantics-oriented abstrac-
tion layer. This will be similar to, but much
more robust than, today’s metadata. The
sharing of knowledge, the ability to use
encoded knowledge in new and creative ways,
and the emergence of collaborative analytical
environments will become the “killer apps” of
the Servive-Oriented Architecture world.

Analytical Functionality
In summary, here is a partial list of analyti-
cal functionality that is needed in the next
generation of Servive-Oriented Architecture-
enabled analytical tools. Many of these fea-
tures already exist today, but in the table
below, the column to the right describes how
they need to change.

• An Analytics Manifesto • continued from page 9 •

OLAP
Separation of navigation/presentation from engine; OLAP-
like manipulations, such as drilldown, need to be available
as services without human interaction.

Descriptive statistics
Common statistical engine across all applications boosts
understanding.

Threshold-based alerting
Event-based service watches and alerts and is configured
for a multitude of processes; this feature should be gener-
alized and not linked to a particular data source or schema.

Predictive modeling

Instead of a variety of specialized tools implemented by
disjointed groups, predictive modeling tools can be imple-
mented as shared and reusable services for all of those
qualified to use them and parameterized models derived
from their discoveries implemented as services and
embedded in many operations.

Optimization
A generic optimization engine with different add-on opti-
mization engines, with domain intelligence, applied to the
right problems.

Automated decisioning

Combination of event manager, predictive modeling, opti-
mization, rules engines and other decision tools to take
over the task of low-risk decisions and inform those
responsible for higher risk ones.

Dashboards that learn
what you want and how
you want to see it

Dashboard software, abstracted from most of its current
functionality, focused on learning patterns and needs of
clients.

Ontologies in place of pro-
prietary rules engines

Semantic technology in open standards such as RDF using
conceptual search techniques to draw inferences without
explicit rules.

Analytical Functionality

Current State Desired Future State

Conclusion
In conclusion, analytics are crucial for both
making policy and managing it. In the past,
different vendors supported different groups
within organizations to provide tools for
planning, budgeting, forecasting, statutory
reporting and other high-level, policy-making
and strategic requirements, on the one hand,
and analytical and reporting functions after
the fact on the other. These efforts were
disjointed, incompatible and often conflict-
ing. To the extent that operational systems
employed analytics, they were typically
embedded in the software and neither
reusable nor transparent to the rest of the
operations.

Thanks to the onward march of technology,
and to Moore’s Law and Servive-Oriented
Architecturein particular, the gap between
strategy, operations and analytics is closing.
The Servive-Oriented Architecture environ-
ment provides an infrastructure to support
dynamic reuse, which requires new classifica-
tion systems for BI services and policies that
are equivalent to operational service policies.
If the function of operational and analytical
software is going to blend, then these ele-
ments will have to come into compliance too.
Analytical software as it is today is not entire-
ly ready to be part of a distributed, enterprise
computing architecture. Many of the products,
including the market leaders, have a lot of
work to do before their products can perform
effectively as a set of loosely coupled asyn-
chronous services.

There is still a great deal of work to be done in
analytics. The past 10 years were focused more
carefully on data management than on the
application of analytics. Though the problems
of data quality, data freshness and data con-
formity have not been solved, and issues about
metadata and master/reference data are still
brewing, an enormous amount of progress has
been made. Ten years ago, data warehousing
was a good idea, but implementing one suc-
cessfully was very difficult. All of the time and
attention spent lessening that risk came at the
expense of understanding good analytical tech-
nique and architecture. Today, there is no time
to waste. Because analytics are critical at both

the strategic and operational levels, engineer-
ing analytics to perform smoothly across the
organization is a top priority. Every organiza-
tion will need to find their own unique way of
implementing it, but we will all depend on the
vendors to provide the tools and the technolo-
gy to get it done. �

Endnotes
1 Enterprise Systems, “IT Spending
Rebounds,” February 15, 2005,
http://www.esj.com/news/article.aspx?
EditorialsID=1280.

2 “AVM Tools Will Reach $500 Million to $700
Million By 2008,” July 22, 2005, Forrester.

3 Loosely coupled refers to the ability of
services to be anywhere on a network, without
regard to platform or development technology
provided they can be discovered and invoked
through the standard methods.

4 Thomas H. Davenport, The Coming
Commoditization of Processes, The Harvard
Business Review, June, 2005.

5 Thomas H. Davenport, Competing on
Analytics, The Harvard Business Review,
January, 2006.

6 http://www.intelligententerprise.com/
show Article.jhtml?articleID=19502113.

CompAct • 11

• An Analytics Manifesto •

12 • CompAct

Open and Closed Code Myths
by Kevin Pledge

Badlydesignedsystems,a curiosityabout
the underlying code and a “not-invent-
ed-here” stubbornness result in the pro-

liferation of myths that support open code.
However, anyone contemplating theuseof open
code systems needs to give serious considera-
tion to the reality behind thesemyths. This arti-
cle discusses some of the myths and
misconceptions associated with open and
closed code.

Before discussing these issues it is necessary
to start with some definitions:

• Closed code may be more appropri-
ately referred to as “vendor main-
tained;” such a system will include
documentation and will provide users
with a method to validate results.
Some closed code systems may also
include “hooks” for user code or user
defined reports.

• Open code is a framework that
enables a large number of developers
to contribute to the development.
Users can review and modify the
source code.

This article does not set out to discuss
whether vendors should expose their source
code; such an action would likley be commer-
cially unviable and does not mean that the
code can be modified.

Myth #1: Open code, or
reviewable code, is easier
to validate.
Busted: Reviewing code is difficult and time
consuming. For any complex system,
reviewing code is not a practical way to
understand the functionality of that system.
In fact, trawling through code is more useful
for learning about the structure of the code
than the validity of the application. A well
designed system will include descriptions of

the methodology employed and output to
enable testing.

Furthermore with modified open code, since
no other companies are using the same code,
there is less peer review.

Myth #2: Open code can be
customized and extended.
Confirmed (but it isn’t simple): Modifying a
system is more than modifying code; it
requires an understanding of the architecture.
A change made in one place may require
changes in numerous other places in the code
that the user may not be aware of.

If multiple people in a single organization
make changes, you either end up with numer-
ous incompatible versions of the software, or
you throw all the changes into one version. In
that case, the individual changes may inter-
fere with each other, resulting in anything
from catastrophic failure to subtle difficulty in
detecting errors.

The intention of open code is to provide a
framework for changes to become part of the
core program. In practice it is really difficult to
develop a good framework without applying it
to a specific problem. If the customizations
cannot be incorporated into core code, this
will result in splinter versions of the system as
has occurred with Unix, or client specific ver-
sions that the client is required to maintain.

Myth #3: Allowing open
modification results in
better performance.
Busted: The idea that a user base would
improve the code is naive. While there may be
some attempts to improve the code, the
potential for improvement is restricted by the
framework. In fact, the vendor would also be
constrained from making performance
improvement, particularly if these involved
changing the programming language, using

Kevin Pledge, FSA,

FIA, is president

and CEO of Insight

Decision Solutions in

Markham, Ontario.

He can be reached

at kpledge@

insightdecision.com.

proprietary routines from a third party, or
even using code that would be more difficult
to interpret. The result is a system con-
strained by its original designed parameters,
likely to be replaced by applications written in
newer generation languages or built on newer
platforms.

Myth #4: Open code contains
less bugs.
Busted: The assumption here is that users will
contribute to fixing bugs. The reality is that no
one actually wants to fix other people’s bugs
and incorporating the solution may conflict
with other development. The developer mind-
set is one that likes to solve problems for
themselves and develop reusable code, rather
than reuse code. It is more important to
ensure that the vendor will respond to bugs
and issues in a timely manner.

Myth #5: Open code enables
self-support.
Busted: Supporting a system requires coding
expertise and detailed knowledge of the sys-
tem design, including features that may have
been incorporated for future enhancements.
Also custom modifications make suporting the
software, including providing upgrades, diffi-
cult for the vendor or a third-party.

Myth #6: Open code wins
on cost.
Busted: Although there are fully functional
versions of open code applications that do
cost nothing, these generally are not com-
mercially supported and may not have ade-
quate documentation or technical support. To
develop, deploy and maintain open code
software involves many costs, just like any
other software.

Myth #7: Open code is
license free.
Busted: Open code is still covered by a license
agreement. In fact, the license may be more
restrictive than you expect, such as clauses
that can change the terms of the license with
30 days notice. Furthermore, you should
understand who is liable if a contributing

developer has used proprietary code and the
possible consequences of this.

Myth #8: Open source code
best allows the incorporation
of contributions from a wide
range of users.
Busted: While user (and developer) feedback is
the driver behind open source software, it needs
to be managed and coordinated. It is difficult to
incorporate unplanned input and multiple
changes made at the same time may well con-
flict with each other. Furthermore, closed code
systems may license components from other
vendors, for example, .NET components can be
licensed to provide non-core functionality.

Conclusion
These aren’t myths because they’re never true,
and in many cases closed code does not auto-
matically provide a better solution. While there
may be examples of successful use of open
code software, these are generally limited to
smaller applications or are successful for a short
period of time in situations where one develop-
er is available to dedicate its time to support the
application. When that developer leaves the
company it is difficult to continue support for
the application and going back to the original
will likely lose much of the client customization.

Vendors do not only protect source code for
their benefit; it also protects the client from
the problems that can occur with unmanaged
development. Vendors, with client input, plan
the direction of product development and
employ sophisticated processes to manage
source code and ensure the legal integrity of
the code. It is important that they recognize
the need for the client to understand the
application, be able to validate the processes
employed and listen to the client with regard
to the direction product development takes.
Whether the first two points are best achieved
by allowing review of the source code will
depend on the application, but one thing that
can be stated with certainty is that fragment-
ed development is a short-term solution at
best. �

CompAct • 13

14 • CompAct

Open Versus Closed Software Code
byMark Evans

T
his article discusses the relative advan-

tages and disadvantages of open versus

closed software code. It also discusses

an intermediate classification: “reviewable”

code. No firm conclusions are drawn, but vari-

ous considerations are outlined. This may help

to determine the appropriate decision in a given

situation.

Closed code may be appropriate when the
problem being solved is well defined and
static. This may apply to an algorithm to per-
form a complex but standard function, for
example, an efficient sort algorithm. Here
the expectations of what is to be performed
are clear. One can specify what fields are to
be sorted, which are primary criteria and
secondary sort criteria, and whether the sort
should be ascending, descending or ordered
in a specified non-standard criteria.

Many general purpose software programs con-
tain specific functions that perform well defined
tasks. The input variables and output variables
are well defined and the relationship between
them is unambiguous. The Sumproduct func-
tion in Excel is a good example. Everyone
knows what the function is supposed to do. It
is a straightforward operation, and the user can
reasonably expect the function to always work
properly. There is not a reasonable need for
open code in this case.

There are different degrees of open versus
closed code. At the extreme, closed code
could be defined as that where the client has
no access to the source code for the system.
At the other extreme, open code can be taken
to mean the source code is delivered to the
client with the expectation that the client will
modify the code without restriction. An inter-
mediate state is to make the source code
available to the client for reference purposes,
but not with the expectation that changes
would be made. Perhaps this could be referred
to as “reviewable” code.

Reviewable code allows the client to under-
stand how the output of the software is deter-
mined. This can help avoid the situation where
output is assumed to be sacred because the
computer produced it.

As an application becomes larger, more gen-
eral and dynamic, open code is more appro-
priate. Consider for the moment, actuarial
modeling software. There are potentially infi-
nite product variations, a wide assortment of
approaches to setting demographic assump-
tions, various company methods for account-
ing for expenses, etc. It is impossible for a
software vendor to anticipate all these possi-
bilities. One solution is for the vendor to
enhance the code as needed to provide new
capabilities. This has problems, however.
First, the vendor may have requests from
multiple clients at the same time that may
not be possible to meet. Second, even if the
vendor can deliver the modifications to the
software in a timely fashion, testing is prob-
lematic. With multiple possible outcomes as
a function of an incredibly large number of
inputs typical of actuarial functions, many of
which drive decision-points within software,
often based on subtle changes in variables
being modeled, it seems unwise for a com-
pany to relegate this task to a “black box”
process.

With open code the clients can see exactly
how various processes are being performed.
They can enhance the code if necessary,
according to their internal priorities. Testing is
improved for a couple of reasons. First, review
of code can help understand different possible
logic branches and lead to a more efficient
test matrix. Second, if a test produces
improper results, having access to the code
makes it easier to understand a given result.

There are some definite disadvantages to an
open approach. The client may have limited
knowledge of the overall architecture of the

Mark Evans, FSA,

MAAA, is vice

president and

actuary with

AEGON USA Inc. in

Louisville, KY. He

can be reached at

mevans@aegonusa.

com.

system and not realize that a change made in
one section of code has ramifications else-
where in the code. Once the system is
changed, it may no longer be practical to
apply vendor supplied upgrades. If a client
buys a system with the intent of altering it to
that client’s particular needs, may lose the
benefits of vendor supplied upgrades. This
means the client needs to establish and main-
tain the expertise to maintain the system
going forward. This is not necessarily a bad
thing as this approach has been executed suc-
cessfully, but one should recognize the impli-
cations.

An intermediate approach is for the vendor to
provide program “hooks” to facilitate migrat-
ing to future vendor upgrades. This means the
“core” functionality of the vendor software is
not altered by the user, but logic modules spe-
cific to the users, needs can be attached to
the vendor supplied software. This requires
careful design by the vendor, but if properly
implemented, provides a balance between
client flexibility and vendor maintenance and
upgrade capabilities that may prove far more
practical than either a totally open or totally
closed approach. Making the “core” code
reviewable has particular advantages here,
because the user may be able to better under-
stand how the hooks interact with the core.
This approach has been successfully employed
in practice. Vendor concerns about maintain-
ing the viability of various client developed
modules, however, may retard advances the
vendor may otherwise be able to introduce.
Advances in software robustness or run time
efficiencies may not be applicable to the core
software as a result. Also, as users make their
own enhancements, the vendor is out of the
loop, even in those cases where multiple
clients (or even multiple users for one client)
need the exact same functionality and each
duplicate the same effort where the more
desirable approach globally would be for the
vendor to provide the solution. Also, vendor

upgrades will be used by a larger population,
increasing the probability that any bugs will be
identified quickly.

To a large extent, this is situational. A vendor
with an unusually talented staff may be able
to maintain a closed system efficiently and
provide frequent upgrades to meet users’
needs. Even in this case, however, the ven-
dor, and in turn, the client, are exposed to
key person(s) risk. On the other hand, a
client should not embark on an effort to mod-
ify an “open” system without proper
resources currently and the commitment to
maintain those resources in the future. It too,
may be exposed to key person(s) risk. A
closed system may be more appropriate for a
stable environment such as a valuation sys-
tem for legacy products. An open system may
be appropriate for a rapidly changing envi-
ronment such as product development for
recent types of variable annuity minimum
guarantees. �

CompAct • 15

16 • CompAct

Open or Closed Code:
A Response to Mark’s Article
by Nazir Valani

M
ark’s article is very interesting. I

would like to provide a perspective

from a consultant who has used both

open and closed code software for many years.

I will end up with the conclusion that is the

opposite of Mark’s (i.e., as an application

becomes larger, more general and dynamic,

closed code may be more appropriate).

We have had excellent experience using

closed code software. Of course, there have to

be a number of things in place for closed

code to work well:

• The software must be designed with user

flexibility in mind.

• The vendor must be capable of making

any required changes in a timely manner.

• If the vendor allows the users to write its

own logic, then user written code must be

isolated from the closed vendor code,

maintaining full compatibility on upgrade.

This means treating user logic as data.

• Code modification process must be cen-

tralized and run in a fully professional

development environment.

• Extensive testing must be conducted

using multiple-user data from multiple

client companies to minimize the like-

lihood of bugs in the software.

I have used a few open code systems as well.

My experience with open code software has

not been so good. In the long run, we seem to

run into the following issues:

• The users have made many customized

changes to the software. In addition, the

vendor has also made numerous changes

to the code at the same time. Upgrading

to a new version of the software takes sig-

nificant time, resources and money. It is

true that the common code (e.g., locked

library functions) is easily converted to

the new version. However, the customized

code can be a significant effort. Many

times, there are so many changes in the

code that it is not practical to upgrade the

software. In these cases, the company

ends up being stuck on an obsolete ver-

sion of the software.

• Usually the code changes are left to a

handful of individuals. Any staff turnover

of the key individuals can be of significant

concern. As the application gets more

complex, the learning curve to be efficient

is much longer. Also, the understanding

that a change made in one place may

impact other calculations takes time and

expertise.

• Actuaries do not always make the best

programmers. I have seen some bad code

where an actuary is under pressure to

produce the results (and may not have

the expertise of a professional program-

mer). The code changes are made in a

rush. The programming is “quick and

dirty” to get the job done. In the longer

term, this will be an issue. The efficiency

of the code including the speed of execu-

tion may be impacted. Programming

should be left to professional program-

mers (some may be actuaries as well)

who are not responsible for producing the

results.

Nazir Valani, FSA,

FCIA, MAAA, is

president of Valani

Consulting Inc. in

Toronto, Ontario.

He can be reached

at nvalani@valani

consulting.com.

• Controls seem to be much more of an

issue with open code. This can be an issue

with Sarbanes Oxley compliance require-

ments. Is there a new version distributed

every time a user makes a change? Who

is responsible for peer reviewing the

change made? Who does the testing to

make sure that you are getting the

expected results and that the change is

not having any unintended consequences?

How are the changes coordinated between

different users making the changes?

Ideally, you want different individuals per-

forming the different tasks.

My experience has indicated that as an

application becomes larger, more general

and dynamic, closed code may be more

appropriate.

Admittedly, whichever way you go is danger-

ous. If you go the closed code route, you are

reliant on the vendor. You better make sure

this is a vendor you can trust. Ask around,

look at the track record. If you go the open

code route, you will have problems that only

increase through time. Initially, setting up and

maintaining a professional programming and

testing environment, and ultimately incurring

significant expenses of a full conversion

process to avoid being locked into an obsolete

architecture. �

CompAct • 17

Noteworthy!

Phil Gold is the pioneer featured, as part of the PIONEERS: Real Life Examples

series, in the August/September 2006 issue of The Actuary. In the article title,

“Something You can Use”, “...Phil Gold is fascinated with technology and he takes

every opportunity to make it work better for others!” Gold talks about his desire to

improve the quality of other people’s jobs, his innovations and the importance of

working with a good team.

For a hard copy of this article, pick up the The Actuary magazine. You can also find

this article online.

18 • CompAct

Annuity Calculations Using SQL
by Sheila Silva

T
he power of SQL to performbulk calcula-

tions has been firmly established within

the IT community for many years now.

However, actuaries are only now just beginning

tomove beyond simple spreadsheets and tradi-

tional programming languages to accomplish

our “everyday” tasks. In this article I will focus

on using SQL to value annuities. A simple annu-

ity is usedbelow solely for expositional reasons;

the user can build upon thismethodology to add

decrements, offsets, varying interest rate

curves, etc.

What Is SQL?
SQL, or Structured Query Language, has been

used to manipulate data within relational

database management systems, such as

Oracle®, DB2® and SQL Server®, for

decades. While there exists an ANSI standard

for SQL that is supported by most vendors,

each vendor has added its own bells and whis-

tles on top of the standard to create versions

for use within their own products. I will use

the ANSI-92 SQL, a widely-supported stan-

dard within the industry, so the user can test

out the queries without modifications.

SQL code is quite readable. The following

query retrieves the claim ID and reserve fields

from a table called Claims:

SELECT ClaimID, ReserveAmt FROM Claims

SQL also allows the joining of tables. This in

turn allows for data to be both stored and

retrieved efficiently. This is an improvement

over the common practice within our profes-

sion to create enormous spreadsheets that

contain all data within one, big table. The fol-

lowing query retrieves payment information

for each claim from the tables Claims and

Payments:

SELECT Claim.ClaimID, MAX(PaymentDate)

AS PaidThru, SUM(PaymentAmt) AS TotPmts

FROM Claims JOIN Payments ON

Claim.ClaimID=Payments.ClaimID GROUP BY

Claim.ClaimID

In the above query, I’ve used another feature

of SQL–aggregate functions. Here, I’ve specif-

ically used the MAX and SUM functions. They

operate as they do in Excel, but because a

database is designed for aggregation, they

perform more efficiently than they do in Excel.

(Without going into a comprehensive review

of SQL syntax, it suffices to say that queries

that use aggregate functions require a GROUP

BY clause.)

SQL allows for the creation and use of tempo-

rary tables, which are “virtual” tables derived

from “real” tables. They are identified by the

use of the pound sign (#) at the beginning of

the table name, and are created with a

SELECT…INTO statement:

SELECT ClaimID, YEAR(DisDate) INTO

#TempTable FROM Claims

As actuaries, we are all too familiar with the

multiple copies of spreadsheets that we cre-

ate, each slightly different to accommodate a

particular use (i.e., rating, reserving, scenario

testing, etc.), but all containing the same

source data. Months later, we often find it dif-

ficult to remember the differences between

MonthlyData1.xls, MonthlyData2.xls and

MonthlyData3.xls, let alone reconcile them.

Temporary tables allow for these “copies” of

data, which are available for use in queries

during the life of a database session, and are

automatically destroyed at the end of that

session. (As an aside, we note that SQL also

allows for views, a more permanent construc-

tion of a table-derived-from-other-tables.)

Sheila Silva, FSA,

MAAA, is the second

vice president of

Actuarial

Information

Technology with

Smith Group, a

disability reinsurance

risk manager and

consultant. She

can be reached at

SSilva@SmithGroup

RE.com.

• Annuity Calculations Using SQL •

Review of Annuity Calculation
Most actuaries are quite familiar with the

standard annuity formula. Here I present a

simplified version of one used for disability

insurance annuities:

GB*(1+i)
-1
(1-q1) + GB(1+i)

-2
(1-q1)

(1-q2) + … + GB*(1+i)
-t
(1-q1)

(1-q2)*…*(1-qt)

Where:

GB=monthly gross benefit

i=interest rate (for this simplified example,

we will assume it is based on disability year)

qs=claim termination rate for period s

Each of the terms in the above formula can be

broken down into three components: the ben-

efit amount, the interest discount and the sur-

vival rate. The first two components lend

themselves easily to SQL statements; for

example, the following query would compute

the value of an annuity of $1/year from a

table of annual interest rates (assuming the

table begins with the year 1990):

SELECT (IntYear-1989) AS DurationNum,

SUM(POWER(1+IntRate,(1989-IntYear)))

FROM AnnIntRates GROUP BY (IntYear-1989)

However, the survival rate components, since

they are a geometric progression, require

some refactoring before SQL may be applied.

A little exponential math helps solve the prob-

lem, with the following equation:

x*y=(e
ln x
) *(e

ln y
)=e

lnx+ln y

This equation allows us to convert a product

calculation into a sum calculation, one of

SQL’s strengths:

SELECT DurationNum, EXP(SUM(LOG(1-

TermRate))) FROM TerminationRates GROUP

BY DurationNum

SQL’s other strengths, temporary tables and

the ability to join tables, allows us to create all

the terms in the progression to achieve our

result (this query assumes that I have creat-

ed temporary table #AnnuityTable that simply

contains claim durations 1 through N for each

claim):

SELECT Claims.ClaimID,

#AnnuityTable.DurationNum,

GrossBen*POWER(1+IntRate,-

1*#AnnuityTable.DurationNum)*EXP(SUM

(LOG(1-TermRate))) FROM #AnnuityTable

JOIN TerminationRates ON #AnnuityTable.

DurationNum=TerminationRates.Duration

Num JOIN Claims ON

Claims.ClaimID=#AnnuityTable.ClaimID

JOIN AnnIntRates ON

YEAR(Claims.DisDate)=AnnIntRates.IntYear

JOIN #AnnuityTable A2 ON

#AnnuityTable.ClaimID=A2.ClaimID AND

#AnnuityTable.DurationNum>=

A2.DurationNum

Note in particular here the join clause in bold-

face. This join is called a self-join, since it con-

nects the table #AnnuityTable to itself.

However, this is not a one-to-one join. By

joining each duration in #AnnuityTable to all

the durations less than or equal to it, we are

able to create the series of annuity terms.

Subsequently applying the SUM function to

this progression gives us the result we were

looking for.

Performance
Of course, clever methodology doesn’t count

for much if performance is lacking. Here is

where the real power of SQL becomes appar-

ent. Set operations are inherently faster than

programmatic loops. To demonstrate this, I

created a sample SQL Server 2000 database,

with claim, interest rate and termination rate

tables. That database includes a stored proce-

dure (i.e., a set of compiled SQL statements)

CompAct • 19

(continued on page 20)

20 • CompAct

• Annuity Calculations Using SQL • continued from page 19 •

that performs the actions as described in the

previous section. (Note: the queries described

above were refactored a bit to optimize per-

formance.) I also created a VB.NET program

that performs the same annuity calculations,

but using traditional programmatic loops (i.e.,

do-while, etc.). My sample database includes

1 million claims, so that the time comparisons

would be meaningful.

As you can see, the stored procedure per-

formed better than the traditional code in all

cases, and was especially powerful when

there were more claims involved. This per-

formance difference can mean shortened

monthly reporting cycles, and the possibility

of more detailed analysis, because seriatim

reserving would become less time consuming.

Conclusion
Claim data is increasingly stored in databases,

where SQL is the language of choice. As actu-

aries, we have become accustomed to obtain-

ing flat-file extracts of these databases as

inputs to our reserving and pricing programs,

as well as our ad-hoc spreadsheets. This prac-

tice is equivalent to reinventing the wheel—

why not use the database itself as the actual

input to our calculations? Better still, we can

use SQL and the power of the database engine

to perform these calculations. While I have

presented a simplified model here, it can be

extended to a variety of applications involving

a host of other products.

A side benefit of making use of the existing

databases is increased involvement by our

industry in improving the quality of the data

gathered. We are all aware of the saying

“garbage in, garbage out.” One of the very

reasons we work off of extracts is that we

feel we have more “control” over input qual-

ity, by massaging the extracts before we use

them. But we are doing our industry a dis-

service by side-stepping the real issue this

way. By applying our thorough understand-

ing of the business value of the information

gathered in those databases, we further our

own goals of accurate business knowledge

and also improve the credibility of the entire

industry. �

Claim Count Time Elapsed–Code Time Elapsed–SQL

1,000 25 seconds 2 seconds

100,000 35 minutes 3 minutes

1,000,000 6+ hours 29 minutes

The results are telling

	Table of Contents
	Articles Needed for the CompAct Electronic Newsletter
	Goodbye to All That by Phil Gold
	Letter from the Chair by Paula Hodges
	An Analytics Manifesto by Neil Raden
	Open and Closed Code Myths by Kevin Pledge
	Open Versus Closed Software Code by Mark Evans
	Open or Closed Code: A Response to Mark's Article by Nazire Valani
	Noteworthy!
	Annuity Calculations Using SQL by Sheila Silva

