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Motivation

@ Variable annuity: investment product for retirement savings

» Financial guarantees during the accumulation and payout phase
» Also include life insurance benefits

@ Investment mix typically pre-determined, static.
@ Guaranteed minimum maturity benefit
» Payoff: max(account value, guaranteed amount)

» Put option on account value

e Financial guarantee financed by a fee from the investment account.
» Fee rate set such that the value of the VA is fair (from a risk-neutral perspective)
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Motivation

Given a fee structure, what dynamic investment mix will be the most attractive for a
policyholder?
» Variation of Merton's portfolio problem

» Non-concave utility:
o Financial guarantee: utility is non-concave in the terminal wealth (Carpenter, 2000;
Chen, Hieber, and Nguyen, 2019)
o S-shaped utility (Kahneman and Tversky, 1979, 1986)

» Guarantee fee:
o Affects returns
o Total rate depends on investment mix
o Investment strategy is no longer self-financing

» Fair pricing constraint
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Some literature

Related work on (constrained) non-concave utility maximization:
e Carpenter (2000):
» Manager compensation (unconstrained) problem.

@ Chen, Hieber, and Nguyen (2019):

» Hybrid investment-insurance contract
> No fees

@ He and Kou (2018), Dong and Zheng (2020), Nguyen and Stadje (2020):
» S-shaped utility
» Constraints.
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Impact of guarantee fee

@ Fee rate reduces return, affects the value of the guarantee
= Impacts policyholder behaviour (M. et al., 2017)

e If a dynamic investment mix is allowed. ..
» How should the guarantee fee be set up?

» How will the fee rate(s) affect the optimal investment strategy?

» Is there an optimal way to set up the fee structure?
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Setting

@ Policyholder can invest in a risky asset S and a risk-free asset P:

dSt . /lst dt + UStth
dP; = rP; dt
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Setting

@ Policyholder can invest in a risky asset S and a risk-free asset P:

dSt . /lst dt+ UStth
dPt - rPt dt

@ VA account value process built by investing the proportion 7; in the risky asset and
deducting the guarantee fee:
dS; dP;

dFt = WtFt? + (1 — Wt)Ft?—dCt
t t
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Setting

@ Policyholder can invest in a risky asset S and a risk-free asset P:

dSt . /lst dt+ UStth
dPt - rPt dt

@ VA account value process built by investing the proportion 7; in the risky asset and
deducting the guarantee fee:

d dP
dF, = WtFti + (1 — 7)) Fe—=——dC,
St Pt

@ GMMB rider guarantees amount G at maturity T:

Payoff: max(Fr, G), with G = Fyeé’.
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Dynamics of VA account F

@ Consider two levels of fee:

e cr paid on the total value of the account, and
o Additional fee cs < p — r paid on the risky investment.
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Dynamics of VA account F

@ Consider two levels of fee:

e cr paid on the total value of the account, and
o Additional fee cs < p — r paid on the risky investment.

@ Accumulated fees up to t follow:

t
C = / (cr + mscs)Fs ds, G = 0.
0
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Dynamics of VA account F

@ Consider two levels of fee:

e cr paid on the total value of the account, and
o Additional fee cs < p — r paid on the risky investment.

@ Accumulated fees up to t follow:
t

C = / (cr + mscs)Fs ds, G = 0.
0

@ VA account value has dynamics:

dF;

= [me(p — r — cs) + r — celdt + w0 dW,
t
- [Wt(ﬁ—F)+F]dt+WtUth,

with gt =pu—cs—crand r=r—cr.
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Admissible investment strategies

7 = (7¢)e>0 is in the set of admissible trading strategies A(x) for an initial investment x
if:

@ m; is Fi-measurable,

o FJ =x,

e Fl>0as,

@ there exists a unique solution to the SDE
dF[
Fi
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S-shaped utility function

@ Classical utility function: u(+) strictly increasing, strictly concave, and continuously
differentiable on R and u(0) = limy o u(x).

@ S-shape utility function:

—Us(0 — 0< 0,
U(X) _ 2( X)7 X <
Ui(x — 0), x>0,
with Uy, U, are classical utility functions with
o U1(0) = —U,(0) >0,
o limyoo Ui(x) = 00,
xU7{(x)

o limy_oo Ui(x) =0, limy_o Uj(x) = 00, limy_eo U( y < 1 (Inada and asymptotic
elasticity conditions).
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Constrained dynamic portfolio problem

We want to solve

E Fr.G
L max [U(max(FF, G))]

st. E[¢r max(FF, G)] = Fo,
where U is an S-shape utility function and &7 is the state-price density.

o E[¢r max(FF, G)] = Fo is the fair pricing constraint.
» Fair pricing depends on the investment strategy .
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Economic interpretation of the problem

@ What dynamic investment mix can the VA provider offer if they want to maximize
(some) policyholder’s utility while keeping the contract fairly priced?

@ What does the resulting payoff look like?

@ What is the “best” way to set the fees?
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Solving the unconstrained problem

Use martingale approach with static optimization problem:
arg max E[U(max(H, G))], s.t. E[¢rH] < Fo, (1)
€
with # = {H : H is Fr-measurable, H > 0 P — a.s.} and where Et is the state price
density corresponding to the “fee-adjusted” market

dP, =FP.dt,  dS, =S, (fidt+ o dW,).

» Optimal payoff can always be replicated because the fee-adjusted market is complete.

» Main tool for solving the static problem: concavification of the utility function
(Carpenter, 2000; Reichlin, 2013; Bichuch and Sturm, 2014)

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 12



|
Proposition 3.1 of M. and Ocejo (2022)

Let U(-) be an S-shaped utility function and M := max(¢, G). The solution to the
unconstrained static optimization problem (1) is given by

H* = [1(&r) + 011 g, gy ()
where
169 = (e,
@ \ > 0is such that E[¢+H*] = Fo, and
e y:= Uj(x —0), where X € (M, 00) is the unique root of the equation

Ui(x — ) — xUj(x — 0) — U(G) = 0.
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Solving the constrained problem

© Static problem:

maxE[U(max{H,G})], st E[é+H] < Fo,
E[ST maX{H, G}] = Fo.

@ Representation problem: find 7* € A(Fo) s.t. FF* = H*.

Admissible fees

For fixed maturity T, guaranteed roll-up rate g, define the set of admissible fees

Pre ={(cr,cs) :E[¢r max{H*, G}] > Fy, where H* solves
the unconstrained static problem.}
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Lagrangian of the static problem

The Lagrangian of the static problem is given by

L(x; y,z) == U(x) — xy — zmax{x, G}, X

WV
o

where U(X) = U(max{x, G}),
oy = /\157 (from E[gTH*] = F), and

o z:= M\t (from E[{r max{H*, G}] = Fo).
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Proposition 3.2 of M. and Ocejo (2022)

For each y > 0 and z > 0, the maximizer of the Lagrangian is:

X(y Z) — Xl(y’ Z) = [/(y + Z) + Q]H{A(y+z)+zG>0}7 if 0 < G,
) XZ(Y7 Z) = [/(y + Z) + 9]]l{O<y+z<U{()?—G)}]I{A(y+z)+z(;>o}, if 6 > G7

o A:[0,00) — R is defined by A(a) := U;(/(a)) — a[l(a) + 6] — U(0).
@ X € (0,00) is the unique root of

Ur(x — 0) — (x — G)Ui(x — 8) — U(0) = 0.

» In both cases, the maximizer is either larger than max(6, G) or equal to 0.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 16



|
|dea of the proof

@ Split the Lagrangian in two:

sup L(x; y,z) = max{ sup L(x;y,z), supL(x;y,z)}.

x=0 0<x<G x=G
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|dea of the proof

@ Split the Lagrangian in two:

sup L(x; y,z) = max{ sup L(x;y,z), supL(x;y,z)}.

x=0 0<x<G x=>G

@ For x € [0,G), L(0; y, z) = U(0) — zG is the supremum.
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|dea of the proof

@ Split the Lagrangian in two:

sup L(x; y,z) = max{ sup L(x;y,z), supL(x;y,z)}.

x=0 0<x<G x=>G
@ For x € [0,G), L(0; y, z) = U(0) — zG is the supremum.

@ For x € [G, ), write w := x — G and V(w) := U(w + G).
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|dea of the proof

@ Split the Lagrangian in two:

sup L(x; y,z) = max{ sup L(x;y,z), supL(x;y,z)}.

x>0 0<x<G x=>G
@ For x € [0,G), L(0; y, z) = U(0) — zG is the supremum.

@ For x € [G, ), write w := x — G and V(w) := U(w + G).

o If § < G, V(w) is concave = use first-order condition.
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|dea of the proof

@ Split the Lagrangian in two:

sup L(x; y,z) = max{ sup L(x;y,z), supL(x;y,z)}.

x>0 0<x<G x=>G
@ For x € [0,G), L(0; y, z) = U(0) — zG is the supremum.

@ For x € [G, ), write w := x — G and V(w) := U(w + G).

o If § < G, V(w) is concave = use first-order condition.

e If 6 > G, V(w) is not concave = use concavification techniques as in the
unconstrained problem.
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Theorem 3.1 of M. and Ocejo (2022)

For(ce, cs) € Pr g, the solution to the constrained static problem is given by
H" = x(M&r, A287),

where A\; > 0, Ay > 0 are such that

E[¢ér max(H*, G)] = Fo

and either Ay =0 or E[gTH*] = F.
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Existence of multipliers

@ Proof follows Chen, Hieber, and Nguyen (2019).
@ Can split the fee rate vectors in 3 categories:
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Existence of multipliers

@ Proof follows Chen, Hieber, and Nguyen (2019).
@ Can split the fee rate vectors in 3 categories:

© Fee rates are not in Pt g, utility is maximized by the solution to the unconstrained
problem;
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Existence of multipliers

@ Proof follows Chen, Hieber, and Nguyen (2019).
@ Can split the fee rate vectors in 3 categories:

© Fee rates are not in Pt g, utility is maximized by the solution to the unconstrained
problem;

© )] = 0: budget constraint is not binding, contract is fair, no solution to the
representation problem;
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Existence of multipliers

@ Proof follows Chen, Hieber, and Nguyen (2019).
@ Can split the fee rate vectors in 3 categories:

© Fee rates are not in Pt g, utility is maximized by the solution to the unconstrained
problem;

© )] = 0: budget constraint is not binding, contract is fair, no solution to the
representation problem;

© )i, A5 > 0: both constraints are binding and the constrained dynamic portfolio problem
has a solution.
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Numerical illustration

@ Variable annuity contract with 7 =10, fp = G = 1.
@ Market parameters: = 0.04, r =0.02, 0 = 0.2, S = 1.
(] U,'(X) = X;Y/’y,', Y1 = 02, Y2 = 0.4.

» Some remarks:

o Fair fee rate if m; = 1: cg + cs = 2.45%.
e Constrained dynamic portfolio problem has a solution for all fee rates considered.
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Impact of cs on optimal payoff, 8 < G
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Impact of cs on optimal payoff, 8 > G
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Optimal expected utility E[U(max(H*, G))]
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Impact of cs on distribution of payoff
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Impact of cs on the optimal investment strategy
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Unconstrained vs constrained optimal payout
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Concluding remarks

@ Constrained, non-concave utility maximization.
@ Use of auxiliary market to account for fee outflow.
e Utility of policyholder maximized with lower fees (linked to more conservative payouts).

@ VA products maximize policyholder’s expected utility by offering dynamic investment
strategies, especially if fees are low.
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Thank you for your attention!
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