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Motivation

Variable annuity: investment product for retirement savings

▶ Financial guarantees during the accumulation and payout phase
▶ Also include life insurance benefits

Investment mix typically pre-determined, static.

Guaranteed minimum maturity benefit

▶ Payoff: max(account value, guaranteed amount)
▶ Put option on account value

Financial guarantee financed by a fee from the investment account.

▶ Fee rate set such that the value of the VA is fair (from a risk-neutral perspective)
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Motivation

Given a fee structure, what dynamic investment mix will be the most attractive for a
policyholder?

▶ Variation of Merton’s portfolio problem

▶ Non-concave utility:

Financial guarantee: utility is non-concave in the terminal wealth (Carpenter, 2000;
Chen, Hieber, and Nguyen, 2019)
S-shaped utility (Kahneman and Tversky, 1979, 1986)

▶ Guarantee fee:

Affects returns
Total rate depends on investment mix
Investment strategy is no longer self-financing

▶ Fair pricing constraint
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Some literature

Related work on (constrained) non-concave utility maximization:

Carpenter (2000):

▶ Manager compensation (unconstrained) problem.

Chen, Hieber, and Nguyen (2019):

▶ Hybrid investment-insurance contract
▶ No fees

He and Kou (2018), Dong and Zheng (2020), Nguyen and Stadje (2020):

▶ S-shaped utility
▶ Constraints.
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Impact of guarantee fee

Fee rate reduces return, affects the value of the guarantee

⇒ Impacts policyholder behaviour (M. et al., 2017)

If a dynamic investment mix is allowed. . .

▶ How should the guarantee fee be set up?

▶ How will the fee rate(s) affect the optimal investment strategy?

▶ Is there an optimal way to set up the fee structure?
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Setting

Policyholder can invest in a risky asset S and a risk-free asset P :

dSt = µSt dt + σStdWt

dPt = rPt dt

VA account value process built by investing the proportion πt in the risky asset and
deducting the guarantee fee:

dFt = πtFt
dSt

St
+ (1− πt)Ft

dPt

Pt
−dCt

GMMB rider guarantees amount G at maturity T :

Payoff: max(FT ,G ), with G = F0e
gT .
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Dynamics of VA account F

Consider two levels of fee:

cF paid on the total value of the account, and
Additional fee cS < µ− r paid on the risky investment.

Accumulated fees up to t follow:

Ct =

∫ t

0

(cF + πscS)Fs ds, C0 = 0.

VA account value has dynamics:

dFt

Ft
= [πt(µ− r − cS) + r − cF ]dt + πt σ dWt

= [πt(µ̃− r̃) + r̃ ]dt + πt σ dWt ,

with µ̃ = µ− cS − cF and r̃ = r − cF .
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Admissible investment strategies

π = (πt)t⩾0 is in the set of admissible trading strategies A(x) for an initial investment x
if:

πt is Ft-measurable,

F π
0 = x ,

F π
t ⩾ 0 a.s.,

there exists a unique solution to the SDE

dF π
t

F π
t

= [πt(µ̃− r̃) + r̃ ]dt + πt σ dWt .

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 8



S-shaped utility function

Classical utility function: u(·) strictly increasing, strictly concave, and continuously
differentiable on R+ and u(0) = limx↓0 u(x).

S-shape utility function:

U(x) =

{
−U2(θ − x), 0 ⩽ x < θ,

U1(x − θ), x ⩾ θ,

with U1,U2 are classical utility functions with

U1(0) = −U2(0) ⩾ 0,
limx↑∞ U1(x) = ∞,

limx→∞ U ′
1(x) = 0, limx→0 U

′
1(x) = ∞, limx→∞

xU′
1(x)

U1(x)
< 1 (Inada and asymptotic

elasticity conditions).
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Constrained dynamic portfolio problem

We want to solve

max
π∈A(F0)

E[U(max(F π
T ,G ) )]

s.t. E[ξT max(F π
T ,G )] = F0,

where U is an S-shape utility function and ξT is the state-price density.

E [ξT max(F π
T ,G )] = F0 is the fair pricing constraint.

▶ Fair pricing depends on the investment strategy π.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 10



Economic interpretation of the problem

What dynamic investment mix can the VA provider offer if they want to maximize
(some) policyholder’s utility while keeping the contract fairly priced?

What does the resulting payoff look like?

What is the “best” way to set the fees?
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Solving the unconstrained problem

Use martingale approach with static optimization problem:

argmax
H∈H

E[U(max(H ,G ))], s.t. E[ξ̃T H] ⩽ F0, (1)

with H = {H : H is FT -measurable, H ⩾ 0 P− a.s.} and where ξ̃t is the state price
density corresponding to the “fee-adjusted” market

dP̃t = r̃ P̃t dt, dS̃t = S̃t (µ̃ dt + σ dWt).

▶ Optimal payoff can always be replicated because the fee-adjusted market is complete.

▶ Main tool for solving the static problem: concavification of the utility function
(Carpenter, 2000; Reichlin, 2013; Bichuch and Sturm, 2014)
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Proposition 3.1 of M. and Ocejo (2022)

Let U(·) be an S-shaped utility function and M := max(θ,G ). The solution to the
unconstrained static optimization problem (1) is given by

H∗ = [I (λξ̃T ) + θ]1{λξ̃T<ŷ}, (2)

where

I (x) = (U ′
1(x))

−1,

λ ⩾ 0 is such that E[ξ̃TH∗] = F0, and

ŷ := U ′
1(x̂ − θ), where x̂ ∈ (M ,∞) is the unique root of the equation

U1(x − θ)− xU ′
1(x − θ)− U(G ) = 0.
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Solving the constrained problem

1 Static problem:

max
H∈H

E[U(max{H ,G} )], s.t. E[ξ̃TH] ⩽ F0,

E[ξT max{H ,G}] = F0.

2 Representation problem: find π∗ ∈ A(F0) s.t. F
π∗
T = H∗.

Admissible fees

For fixed maturity T , guaranteed roll-up rate g , define the set of admissible fees

PT ,g = {(cF , cS) :E[ξT max{H⋆,G}] ⩾ F0, where H⋆ solves

the unconstrained static problem.}
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Lagrangian of the static problem

The Lagrangian of the static problem is given by

L(x ; y , z) := Ũ(x)− xy − z max{x ,G}, x ⩾ 0,

where Ũ(x) := U(max{x ,G} ),
y := λ1ξ̃T (from E[ξ̃TH∗] = F0), and

z := λ2ξT (from E[ξT max{H∗,G}] = F0).
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Proposition 3.2 of M. and Ocejo (2022)

For each y ⩾ 0 and z > 0, the maximizer of the Lagrangian is:

χ(y , z) =

{
χ1(y , z) = [I (y + z) + θ]1{∆(y+z)+zG>0}, if θ ⩽ G ,

χ2(y , z) = [I (y + z) + θ]1{0<y+z<U′
1(x̂−θ)}1{∆(y+z)+zG>0}, if θ > G ,

∆ : [0,∞) 7→ R is defined by ∆(a) := U1(I (a))− a[I (a) + θ]− Ũ(0).

x̂ ∈ (θ,∞) is the unique root of

U1(x − θ)− (x − G )U ′
1(x − θ)− Ũ(0) = 0.

▶ In both cases, the maximizer is either larger than max(θ,G ) or equal to 0.
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Idea of the proof

1 Split the Lagrangian in two:

sup
x⩾0

L(x ; y , z) = max{ sup
0⩽x<G

L(x ; y , z), sup
x⩾G

L(x ; y , z)}.

2 For x ∈ [0,G ), L(0; y , z) = Ũ(0)− zG is the supremum.

3 For x ∈ [G ,∞), write w := x − G and V (w) := Ũ(w + G ).

If θ ⩽ G , V (w) is concave ⇒ use first-order condition.

If θ > G , V (w) is not concave ⇒ use concavification techniques as in the
unconstrained problem.
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If θ ⩽ G , V (w) is concave ⇒ use first-order condition.

If θ > G , V (w) is not concave ⇒ use concavification techniques as in the
unconstrained problem.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 17



Idea of the proof

1 Split the Lagrangian in two:

sup
x⩾0

L(x ; y , z) = max{ sup
0⩽x<G

L(x ; y , z), sup
x⩾G

L(x ; y , z)}.

2 For x ∈ [0,G ), L(0; y , z) = Ũ(0)− zG is the supremum.
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Theorem 3.1 of M. and Ocejo (2022)

For(cF , cS) ∈ PT ,g , the solution to the constrained static problem is given by

H∗ = χ(λ1ξ̃T , λ2ξT ),

where λ1 ⩾ 0, λ2 > 0 are such that

E[ξT max(H∗,G )] = F0

and either λ1 = 0 or E[ξ̃TH∗] = F0.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 18



Existence of multipliers

Proof follows Chen, Hieber, and Nguyen (2019).

Can split the fee rate vectors in 3 categories:
1 Fee rates are not in PT ,g , utility is maximized by the solution to the unconstrained

problem;

2 λ⋆
1 = 0: budget constraint is not binding, contract is fair, no solution to the

representation problem;

3 λ⋆
1, λ

⋆
2 > 0: both constraints are binding and the constrained dynamic portfolio problem

has a solution.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 19



Existence of multipliers

Proof follows Chen, Hieber, and Nguyen (2019).

Can split the fee rate vectors in 3 categories:
1 Fee rates are not in PT ,g , utility is maximized by the solution to the unconstrained

problem;

2 λ⋆
1 = 0: budget constraint is not binding, contract is fair, no solution to the

representation problem;

3 λ⋆
1, λ

⋆
2 > 0: both constraints are binding and the constrained dynamic portfolio problem

has a solution.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 19



Existence of multipliers

Proof follows Chen, Hieber, and Nguyen (2019).

Can split the fee rate vectors in 3 categories:
1 Fee rates are not in PT ,g , utility is maximized by the solution to the unconstrained

problem;

2 λ⋆
1 = 0: budget constraint is not binding, contract is fair, no solution to the

representation problem;

3 λ⋆
1, λ

⋆
2 > 0: both constraints are binding and the constrained dynamic portfolio problem

has a solution.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 19



Existence of multipliers

Proof follows Chen, Hieber, and Nguyen (2019).

Can split the fee rate vectors in 3 categories:
1 Fee rates are not in PT ,g , utility is maximized by the solution to the unconstrained

problem;

2 λ⋆
1 = 0: budget constraint is not binding, contract is fair, no solution to the

representation problem;

3 λ⋆
1, λ

⋆
2 > 0: both constraints are binding and the constrained dynamic portfolio problem

has a solution.

Anne MacKay Portfolio optimization with a guaranteed minimum maturity benefit and risk-adjusted fees 19



Numerical illustration

Variable annuity contract with T = 10, F0 = G = 1.

Market parameters: µ = 0.04, r = 0.02, σ = 0.2, S0 = 1.

Ui(x) = xγi /γi , γ1 = 0.2, γ2 = 0.4.

▶ Some remarks:

Fair fee rate if πt ≡ 1: cF + cS = 2.45%.
Constrained dynamic portfolio problem has a solution for all fee rates considered.
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Impact of cS on optimal payoff, θ < G
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Impact of cS on optimal payoff, θ > G
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Optimal expected utility E [U(max(H∗,G ))]
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Impact of cS on distribution of payoff
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Impact of cS on the optimal investment strategy
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Unconstrained vs constrained optimal payout
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Concluding remarks

Constrained, non-concave utility maximization.

Use of auxiliary market to account for fee outflow.

Utility of policyholder maximized with lower fees (linked to more conservative payouts).

VA products maximize policyholder’s expected utility by offering dynamic investment
strategies, especially if fees are low.
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Thank you for your attention!
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