

Article from

CompAct

April 2017
Issue 55

16 | APRIL 2017 COMPACT

A good set of coding standards should address most issues that
will arise when writing code. While bracket placement and
indentation length might not seem overly important at first,
uniformity in the presentation of code allows users to focus
on the content of the code, rather than being distracted by
stylistic differences. The standards should also address naming
conventions. Today’s languages have typically removed size
constraints, so developers should strive to avoid abbreviations
when possible, but there should be rules on what abbreviations
to use if necessary (so that users will understand that ANN is
short for annual, not annuity). In setting up the standards, it is
important to set rules for most coding situations, even if they
are arbitrary (for example, a function should be no longer than
30 lines).

While exceptions to the standards can be approved by model
owners, they should be well thought out and documented. If a
code change will decrease run time by 10 percent, but increase
the complexity of that section of code, attention should be
paid to both the benefit and the downside. If the model is
run overnight, would the 10 percent speed increase have any
noticeable benefit? Or if weighed against the fact that the
more complex code would take more time to explain to end
users, could only be modified by a specific set of coders, and
increases the risk of future errors, is it worth it? This type of
decision-making should be brought up for each exception to
the coding standards.

Each model (or subset of the model, for more complex mod-
els) should have a model owner. While the model owner will
have the final say over content, they should not be the only
person that validates that the coding standards are maintained
through the model. Each user should have shared ownership
and responsibility for the entire model. Frequent code review
meetings are a fantastic way to foster this responsibility. Mem-
bers of the team present code that they have been working on,
and get feedback from other members of the team. This allows
all members of the team to scrutinize the code and ensure
that it conforms with the coding standards. It also allows less
experienced developers to learn from their more tenured coun-
terparts. Knowledge is shared across the team, both in coding
methods and content of the model. This will reduce key-man
risk, as each developer should understand any new pieces of
code in the model, as they will be reviewed in these meetings.

It is important to encourage all developers to provide feedback,
as there can be a tendency to have “experts” in various areas of
the model. These experts will receive less scrutiny with their
code reviews, and as a result, will typically have more mistakes
in their final product. Other developers will also tend to defer
to the expert when questions about their areas of code arise.
This can reintroduce key-man risk, and potentially bottleneck
future change requests.

Coding Standards and
the Efficient Model
By Brody Lipperman

For most actuarial programmers, a lot of thought and effort
is put into making their models run faster. Gains in speed
are easy to measure, look good on reports, and either save

money by requiring cheaper hardware to run, or gain value by
allowing the actuaries to run more models and get more data.
Run time, however, is not the only way to make your models
more efficient.

In the normal life cycle of an actuarial model, there are
thousands of hours put into developing, enhancing, testing,
explaining, documenting and validating. The total cost of the
human capital used for these models vastly outstrips the cost of
the hardware required to complete a model run in an accept-
able amount of time. Usually, very little attention is paid to any
gains in these areas because they are very hard to quantify. If I
spend 10 hours cleaning up code and documenting my model,
does that save 10 hours of time down the road as various other
people have an easier time of understanding the model? While
the benefits of this type of efficient model are often hard to
quantify, they are without a doubt just as valuable, if not more
so, than the benefits of run time improvements.

One of the best ways to
improve a model’s overall
efficiency is to develop a set of
detailed coding standards. ...

One of the best ways to improve a model’s overall efficiency is
to develop a set of detailed coding standards for your modeling
team. These standards should address stylistic considerations,
function use, documentation rules, and any other aspects of
model coding. If done properly, this should allow your model
to be easier to read and understand, decrease the amount of
time required to make changes, reduce key-man risk, and
reduce coding errors. It will require a change in the mind-set
of the team, and buy in for a shift in personal responsibilities.

 APRIL 2017 COMPACT | 17

Brody Lipperman, FSA, CERA, MAAA. He is a Lead Actuarial
Developer with FIS. He can be reached at brody.lipperman@
fisglobal.com

Coding standards should also cover reusability aspects of the
code. Any formula that is repeated in the model, should be
converted to a function. By centralizing the code, developers
can reduce the amount of time it takes to make any future
changes. They can also reduce future errors that would be
caused by changing a calculation in one section of the model
without modifying the same calculation in another section.
Having well-defined function names can also make reading
the code easier for end users. If a user wanted to understand
what all is included in an AV calculation, they can look at the
code and see the calculation includes COI charges. They don’t
necessarily care that the COI function calculates a NAR after
premium and loan interest is taken out. Functions allow users
to absorb as much detail about the code as they want, while
still being able to dive into each function if they need more
information.

The final aspect of the coding standards should be rules around
types and goals of documentation. Since all modern languages
resemble English, the model code should be self-document-
ing. Variable names should be descriptive enough to be easily
understood without any reference, and most users should be
able to follow the basic logic constructs (if then, for loops,
etc.). Code should be written in such a way as to reduce the
complexity of each section of code as well. If the developer
needs to document end points for If Then statements or for

Loops, then they should attempt to break the code into smaller,
more digestible blocks of code. The goal of documentation,
then, should be to explain why the code does what it is doing,
instead of what the code is doing. This will allow future devel-
opers and end users to understand the choices the developers
have made, and allow them to follow the whole model easier.
Any documentation included in the code should be short and
concise, anything longer than two sentences should be moved
into a more formal document.

A strong set of coding standards and the proper team mindset
can greatly reduce the amount of manpower required to main-
tain a model. By setting up rules and guidelines, developers are
forced to consider methods that are easier to understand for
future developers or end users and can create a better over-
all product. These standards can also help spread knowledge,
responsibility, and ownership throughout the team, leading to
a stronger, more flexible organization. The end result should
be a model that is easy to maintain, easy to understand, easy to
validate, and easy to manage. ■

	Coding Standards andthe Efficient Model

