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Quantification of Variability of Chain Ladder Reserve Estimates: Comparison of Mack’s Method vs Bayesian Simulation 
Method Regarding Implementation Difficulties. 

         By Wenyi (Roy) Lu and Bill Lu (co-author), UT Dallas      Mar 18, 2022. 

 

                                                            Brief Abstract 

This presentation can serve as a hands-on guideline for practicing P&C actuaries to build their own in-house models to quantify the 
range estimates of outstanding loss reserve in everyday work under the requirement of European Solvency II or for business plan 
purpose in North America. 
 
This presentation shows explicitly how to use basic Excel functions to carry out quantifying variability of property/casualty insurance 
loss reserve estimates according to Thomas Mack’s paper (1993) entitled “Measuring the Variability of Chain Ladder Reserve 
Estimates” formula by formula.  
 
This presentation also provides concrete description of how to set up a practical Bayesian simulation-based model in R according to 
Professor de Alba’s paper (NAAJ 2002) “Bayesian Estimation of Outstanding Claim Reserves” for the same task.  
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Motivation and Goals

▶ Motivation
To make practicing actuaries’ life easier if they want to set up
Mack’s formulas. I can reproduce every number in Mack’s
paper, so I decide to share this verifiable and easy Excel skills.

▶ Goals
1. To explain explicitly how in Excel to calculate the Range
Estimates of Loss Outstanding Reserves.
2. To explain explicitly the counter method with Bayesian
simulation in concrete language.

▶ The Format of this presentation (hands-on and down-to-earth)
It is like actuarial team internal training to disseminate
knowledge of established models and to assign tasks later.

▶ My Assumption on the Audience
The audience know the idea of Chain-Ladder point estimate.



Mack’s papers in chronological order

▶ [1] Mack, T. 1993. “Distribution-Free Calculation of the
Standard Error of Chain-Ladder Reserve Estimates.” ASTIN

▶ [2] Mack, T. 1993. “Measuring the Variability of Chain
Ladder Reserve Estimates” Casualty Actuarial Society (CAS)

▶ [3] MACK, T. 1994. “Which Stochastic Model is Underlying
the Chain-Ladder Method?” Insurance: Mathematics and
Economics

▶ [4] Mack, T. 1999. “The Standard Error of Chain-Ladder
Reserve Estimates: Recursive Calculation And Inclusion of A
Tail Factor” ASTIN

Note:
1. All papers are available in .pdf via google.
2. Paper [2] has two versions. The version from
Faculty and Insitute of Acturies Claims Reserving Manual v.2
(09/1997) is much more legible because it is re-edited.



Background (better for reading by self)

▶ General insurance claims data structure after full settlement:
Assume:
1. This line of business has been stable in the past k years.
2. The claims incurred in any origin/accident year will be fully
settled after s years.



Background

▶ Observed insurance claims data up to most recently reported:
1. Only the earliest origin/accident year has fully developed.
2. The most recent accident year is still in first 12 months of
development.
3. So the right lower triangle of the matrix is blank.
4. We need to project the entries in the right lower triangle.



Background

▶ Well-known examples:
1. In the required textbook for short-term actuarial
mathematics (STAM) exam for more than 30 years.
2. Claims from accident year 1988 is fully developed as of
1992.



Background

▶ Well-known examples (continued):
1. This table contains the numbers of closed claims up to
respective development age/year.
2. Estimated ultimate number of claims were provided
without justification/explanation. These are not consistent
with the results from the most widely used deterministic
method (Chain-Ladder method).



An Established Method

▶ Well-known examples: Chain-Ladder development method



An Established Method

▶ Well-known examples: Chain-Ladder (C-L) method
We can project cumulative and incremental closed claim
counts respectively by each development year.



An Established Method

▶ Well-known examples: C-L method: Outstanding liabilities



An Established Method

▶ Well-known examples: C-L method: Average Claim Sizes
Standard assumption (only good for some very friendly LOBs).
The difficulty is that incremental average claim payments are
from partial settlements of different claims.

▶ Well-known examples: C-L method: Average Claim Sizes
We don’t cover this here.
It is easy to read Professor Brown’s Textbook listed in
References [7] .



New Task: Range Estimates of C-L Reserves

▶ The Chain-Ladder is the most widely used method to calculate
outstanding general insurance liabilities (or called reserves).

▶ The results of Chain-Ladder method is point estimates of the
outstanding unfulfilled liabilities. They do not provide
information about uncertainty in these estimates by nature.

▶ Regulations on general insurance in the US so far do not ask
for reporting range estimates of outstanding reserves.

▶ Regulations on general insurance in Europe started to require
reporting range estimates of outstanding reserves in last
decade.

▶ Range estimates of outstanding reserves will help companies
to understand their financial position too in the US regarding
risk-based capital.

Therefore, it is beneficial to quantify range estimates of
outstanding reserves.



C-L Reserves’ Point Estimates: Mack’s Method in Excel

Mack 1993 [2] Reinsurance Association of America (RAA)
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C-L Reserves’ Point Estimates: Mack’s Method in Excel

Mack 1993 [2] Reinsurance Association of America (RAA)

1. We match Mack’s result (every number), say, Column M.
2. Row 86 the formula is wighted average mean (volume-wighted
mean).
3. CDFs (cumulative development factors) more stable than simple
average.
This is point estimate only so far. We will next look at range
estimates.

Mack 1993 [1] paper has a bit different notation, for instance,
some bold-face letter with a hat. Please read paper [1] and [2] side
by side. This helps a lot.



C-L Reserves’ Range Estimates: Mack’s formulas
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C-L Reserves’ Range Estimates: Mack’s formulas
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C-L Reserves’ Range Estimates: Mack’s results
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C-L Reserves’ Range Estimates: formula (8) in Excel

wxl153330
Pencil



C-L Reserves’ Range Estimates: formula (7) in Excel
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C-L Reserves’ Range Estimates: formula (11) in Excel
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C-L Reserves’ Range Estimates: Mack’s formulas in Excel

1. Formula (8): for k=8, for instance, cell ”I125” has input of
”I62:I63” as weights, ”I76:I77” as individual ratios, and ”I91” as
the observed center.

2. Formula (7): for i=3, for instance, cell ”D130” has input of
rows 64, 91,125,126 and columns I,J. The input is 4 horizotal
vectors of length of 2 elements.
The notation for (7) is not easy as C’s can be either observed or
estimated values in the table.

3. Formula (11): for i=3, for instance, the covariance part cell
”F130” has input of rows 91,125,126, and columns I,J, plus
”B130” with ”B131:B137” pairs.

Key: Row 125 is Mack’s contribution, and we learned from him to
set up row 126 similarly. Then formula (7) becomes sumproduct of
4 vectors.
Cell ”F137” needs to be 0, and Excel is not smart enough.



Counter Method: Bayesian simulation

▶ Assumptions implied in Chain-Ladder method

1. Claim counts independent of average claim amounts
(severity) in a period (a cell in the table).

2. Development yeat t (column index t) behaves the same for
each year of origin/accident.

3. The average claim amounts (severity) in a period (a cell in
the table) follows lognormal (reasonable start point.)



A New Bayesian Method: Data Claim Counts

N1 = n1, the total numbers of ultimately settled for year 1 (the
earliest) of origin. This is known (the only known) as we assume
the ultimate year of fully settled of every claim origin year is 5 (the
end of index 4). Without loss of generality, assume k is the
ultimate year of fully settled of all claims for every year of origin.
x1 = (x11, x12, . . . , x1,k−1, x1k),
x2 = (x21, x22, . . . , x2,k−1),
...

xk = (xk1).
Note that x1 is all known, x2 has x2k unknown, and xk has

only xk1 known. As a result, N2,N3, . . . ,Nk are unknown, with N2

having most certainty and Nk least certainty.
Let p = (p1, p2, . . . , pk) denote the vector of proportions of

claims settled in the vector of the development years. This vector
of parameters is stable (the same) for every year of origin.

We know that xi = (xi1, xi2, . . . , xi ,k−1, xik) = Multk(Ni ,p),
given Ni ,p.
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Bayesian: Priors/Posteriors about Claim Counts

Let D = {x1, x2, . . . , xk , n1 = sum(x1)} denote the
information available in the left upper triangle.

Let x∗i = sum(xi )
Let p∗s = p1 + p2 + · · ·+ ps = 1− ps+1 − · · · − pk

Result1: Using non-informative priors for
(N2 = n2,N3 = n3, . . . ,Nk = nk ,p), we have
f (N2 = n2,N3 = n3, . . . ,Nk = nk ,p|D) ∝

[
k∏

i=2

C (ni , ni − x∗i )(p
∗
k−i+1)

x∗i (1− p∗k−i+1)
ni−x∗i ]×

{(
k∏

t=1

px1tt )[
k−1∏
t=1

(
pt

p∗k−1

)x2t ] . . . [
2∏

t=1

(
pt
p∗2

)xk−1,t ]},

where C (m, n) means m choose n combination formula.
Result1 means the product of (k − 1) independent negative
binomials for the ni , i = 2, 3, . . . , k , and a Dirichlet for p.
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Bayesian: Priors/Posteriors about Claim Counts

Result2:

f (p|D) ∝ {(
k∏

t=1

px1tt )[
k−1∏
t=1

(
pt

p∗k−1

)x2t ] . . . [
2∏

t=1

(
pt
p∗2

)xk−1,t ]}

Proof (Result2): Directly taking summation on n2, n3, . . . , nk
respectively will yield result2.
Note that even with f (p|D) given, we can’t use it directly. Since
we do not have the same information on p for each origin/accident
year, we need to express this posterior pdf differently.

f (p|D) ∝ f (pk |D)f (pk−1|pk ,D)f (pk−2|pk−1, pk ,D) . . . f (p2|p3, p4, . . . , pk ,D)f (p1|p2, p3, . . . , pk ,D)

∝ f (pk |D)f (
pk−1

p∗k−1

|pk ,D)f (
pk−2

p∗k−2

|pk−1, pk ,D) . . . f (
p2
p∗2

|p3, p4, . . . , pk ,D)

With the writing in the last ’proportional to’, we can have Result3.
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Bayesian: Priors/Posteriors about Claim Counts

Result3:

f (pk |D) = Beta(x1,k + 1,
k−1∑
t=1

x1,t + 1)

f (
pk−1

p∗k−1

|pk ,D) = Beta(x1,k−1 + x2,k−1 + 1,
k−2∑
t=1

(x1,t + x2,t) + 1)

f (
pk−2

p∗k−2

|pk−1, pk ,D) = Beta(x1,k−2+x2,k−2+x3,k−2+1,
k−3∑
t=1

(x1,t+x2,t+x3,t)+1)

...

f (p1|p2, p3, . . . , pk ,D) = 1

With result3, I will simulate the unknown lower right triangle for
numbers of claims as follows:
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A New Method: A Bayesian model for the numbers of
claims.

▶ Assumptions implied in Chain-Ladder method
Let Xit = number of claims in t − th development year.
The available information is
{ Xit : i = 1, . . . , k; t =1, . . . , k; i+t ≤k+1 }
Let Ni = total number of claims for origin year i, i = 1, . . . , k.
The available information is
N1 =n1 is observed, while N2, . . . ,Nk not observed yet.

▶ Theoretical results for Ni and Xit

Assume Xit ∼ POI (λt) and Xit are independent.
Let Xi = (Xi1, . . . ,Xik)

′, then Robert G.D. Steel 1953:

Xi |Ni = ni ∼ Multk(ni ; p1, . . . , pk),with pt = λt/

k∑
t=1

λt



Simulating the unknown triangle claim counts.

▶ Simulation steps for the number of claims.

1. To generate p
(j)
k , the proportion of k-th column from a

Beta(x1,k + 1,
k−1∑
t=1

x1,t + 1)

.
2. To generate θ̃

(j)
k−1, the relative proportion the (k-1)-th

column out of the first (k-1) columns only, from a

Beta(x1,k−1 + x2,k−1 + 1,
k−2∑
t=1

(x1,t + x2,t) + 1)

.
3. Use the results of steps 1 and 2 to generate

p
(j)
k−1 = θ̃

(j)
k−1(1− p

(j)
k )

4. To generate θ̃
(j)
k−2 from

Beta(x1,k−2+ x2,k−2+ x3,k−2+1,
∑k−3

t=1 (x1,t + x2,t + x3,t)+1).



Simulating the unknown triangle claim counts.

5. Use the results of steps 1-4 above to generate

p
(j)
k−2 = θ̃

(j)
k−2(1− p

(j)
k−1 − p

(j)
k ), and so on to p

(j)
2 ; the remaining

proportion is p
(j)
1 = 1−

∑k
i=2 p

(j)
i . With this, we will have

generated a vector p(j) = (p
(j)
k , p

(j)
k−1, . . . , p

(j)
1 ).

6. Use this p(j) and

ni |p,D ∼ NB(x∗i , p
∗
k−i+1),

i = 2, . . . , k, to generate an observation for each ni . where
x∗i = xi ,1 + · · ·+ xi ,k−i+1, and p∗k−i+1 = p1 + · · ·+ pk−i+1.

Thus, (n2, n3, . . . , nk) = n(j).
7. Use n(j), p(j) to generate observations for the unknown portions

of x
(j)
i from each of (k − 1) multinomials (one for each year):

f (x
(j)
i1 , x

(j)
i1 , . . . , x

(j)
i1 |n(j)i ,p(j))) = Multk(n

(j)
i ;p(j)), i = 2, . . . , k.

For the known part, we discard the generated values.



Bayesian: data/model about average claim amounts.

M1 = (M11,M12, . . . ,M1,k−1,M1k),
M2 = (M21,M22, . . . ,M2,k−1),

...
Mk = (Mk1).
Note that TU=(k+1)k/2 is the number of cells of the left upper
triangle having observed Mit .
Denote D ′ for the observed information collection of Mit .
Assume:
log(Mit) = yit = µ+ αi + βj + ϵij ϵij ∼ N(0, σ2) (5.1)
This is an unbalanced ANOVA model.
Using matrix notation, (5.1) can be written as follows:
y = Wθ + ϵ ϵ ∼ N(0, σ2I ),
where y is a TU -dimension vector that contains all observed yit ,
θ=(µ, α2, α3, . . . , αk , β2, β3, . . . , βk)

′ is the ((2k-1)×1) vector of
parameters, ϵ is the ( TU×1) vector of errors, and W is the (
TU×(2k-1)) design matrix of the model.
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Bayesian: Priors/Posteriors about average claim amounts.
Here α1=0 and β1=0 is imposed to make sure W has full rank,
meaning the estimability of the parameters.
With non-informative priors for independent θ and σ,
f (θ, σ) ∝ (1/σ). As a result, the posterior joint distribution is

f (θ, σ|D ′) ∝ σ−(TU+1) × exp[− 1

σ2
(y −Wθ)′(y −Wθ)]

= σ−(TU+1) × exp[− 1

σ2
× SST ] →

Note:
SST = SSE+SSR = (y−Wθ̂)′(y−Wθ̂)+(Wθ̂−Wθ)′(Wθ̂−Wθ),
where θ̂ = (W′W)−1W′y.
Also note:
f (θ, σ|D ′) ∝ f (θ|σ,D ′)f (σ|D ′), where

f (θ|σ,D ′) ∝ σ−(2k−1) × exp[− 1

σ2
(Wθ̂ −Wθ)′(Wθ̂ −Wθ)]
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Bayesian: Priors/Posteriors about average claim amounts.

Therefore

f (σ|D ′) ∝ σ−(TU−2k+2) × exp[− 1

σ2
(y −Wθ̂)′(y −Wθ̂)]

If we let λ = 1/σ2, then dσ/dλ ∝ λ−3/2. As a result,

f (λ|D ′) ∝ λ(TU−2k+2)/2 × exp[−λ(y −Wθ̂)′(y −Wθ̂)]× λ−3/2

∝ λ[(TU−2k+1)/2]−1 × exp[−λ(y −Wθ̂)′(y −Wθ̂)].

Therefore σ is from a ”square-root inverted-gamma” distribution
with parameters shape α = (TU − 2k + 1)/2 and rate
β = (y−Wθ̂)′(y−Wθ̂)/2.
I will now simulate the unknown lower right triangle for severity of
claims and compute reserves as follows:



Simulating the unknown triangle average claim amounts.

▶ Simulation steps for claim amounts.
8. Generate an observation σ(j) from a ”square-root
inverted-gamma” distribution with parameters shape
α = (TU − 2k + 1)/2 and rate β = (y−Wθ̂)′(y−Wθ̂)/2.
This can be done by first getting an observation g (j) from a
gamma(α, rate = β) and then making σ(j) = 1/

√
g (j).

9. Generate an observation
θ(j) = (µ(j), α

(j)
2 , . . . , α

(j)
k , β

(j)
2 , . . . , β

(j)
k )′ from

N(θ̂, σ(j)2(W′W)−1).
This can be done in R by ”mvnfast” package.
10. Generate an observation from the predictive

distributionN(µ
(j)
it , σ(j)) → Y

(j)
it , with µ

(j)
it = µ(j) + α

(j)
i + β

(j)
t

for each (i , t) in the right lower triangle, and compute

M
(j)
it = exp{Y (j)

it }
11. Z

(j)
it = X

(j)
it M

(j)
it for each (i , t), i = 2, . . . , k , t > k − i + 1.

12. To obtain the total reserves R(j) =
∑

i ,t Z
(j)
it .
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Simulating the unknown triangle average claim amounts.

▶ Simulation steps for claim amounts when seveirty is not
known or when negative incrementals are present.

Intuitively just use aggregate cummulative claims amounts in

step 8-12, meaning we set M
(j)
it = 1 for every cell in the table.
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Bayesian models design matrix example.

▶ Make sure the design matrix is of full rank. Pay attention to
index of the observation vector too.
For k = 5, design matrix has shape of 15 x 9.



Bayesian models results for the unknown triangle.
▶ Simulation (5000 times) results for claim numbers.

The mean of the predictive distribution is 1, 872, very close to
C-L method’s estimate. The 95% credible interval contains
1, 861 well in the center.



Bayesian models results for the unknown triangle.
▶ Simulation (5000 times) results for claim amounts.

With severity information included, the mean of the predictive
distribution is $57, 158, very close to C-L method’s estimate.
The 95% credible interval contains $60, 184 well in the center.



Comparison of Difficulties of Implementation
▶ Mack’s method via Chain-Ladder:

1. Pros: Easy to implement; can handle negative incremental
payments; standard method for long time.

2. Cons: No landscape of the distribution, say, skewed or not?

▶ Bayesian method:

1. Pros: Can provide more information because simulation
provides full landscape of the required estimates.

2. Cons: Hard to implement because learning curve is very
high to practicing actuaries; still more like blackbox, e.g, first,
the easiest part of design matrix really is not that easy for
practicing actuaries already; second, in Professor de Alba’s
paper, he did not explain why in one of his example including
severity information produced much worse result than ignoring
severity informaion.
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Future Presentations

▶ Chain-Ladder Recursive way with tail tactor in Excel;
Bornhuetter-Ferguson way in Excel (one separate talk).

▶ Thank You!

▶ Qs and As
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