
 

 
 
 

 
 
 
 
 
 

Article from: 
 

The Financial Reporter 
 

May 1999 – Issue 39 



(Editor's Note: Issue 38 of The Financial
Reporter, January 1999 contains Part
One of this article, dealing with a defini-
tion of VAR, a simple model of it, key 
factors in VAR and discussion of linearity
and non-linearity aspects.)

Simulating VAR

F
aced with non-linear portfolios,
we must discard the linearity
and normality assumptions of
delta-normal VAR and consider

alternative approaches to estimating
VAR. The basic problem of estimating
VAR, however, remains the same. We
consider a set of key factors whose
behavior we can describe statistically. We
have a portfolio price function that relates
those key factors to the portfolio’s price.
Somehow, we must translate these two
pieces of information into an estimate of
the portfolio’s VAR. In this section, we
consider the problem as one of solving an
integral equation.

Suppose we wish to estimate 95%
VAR for a portfolio. The portfolio’s VAR
is the bound on a 95% confidence inter-
val for ∆P. As suggested by Exhibit 1,
this can be expressed as an integral:

[21]

where p is the probability density func-
tion for ∆P. 

In [21] we are not actually solving
for the value of the integral. Instead, we
are solving for the value VAR that makes
it 95%. If no closed form solution exists
for [21], we consider numerical methods
of integration. In doing so, we face a
problem called the “curse of dimensional-
ity.” This arises because, although [21] is
presented as a one-dimensional integral,
it is in fact an m-dimensional integral—
both p and ∆P are functions of the m key
factors.

Most techniques of numerical 
integration entail dividing the area of in-
tegration into subparts, performing some
simple calculations on each subpart, and
summing the results. 

A problem in multi-dimensions is
that, as the number of dimensions grows,
so does the number of (multi-dimension-
al) rectangles used. For example, in the
one-dimensional case, the area of integra-
tion [a,b] might be divided into 100 sub-
parts. In the two-dimensional case, the
area of integration has the form
[a,b]5[c,d]. If both the intervals [a,b] and
[c,d] are divided into 100 subparts, there
are going to be 1002 = 10,000 rectangles
to evaluate.

In the 50-dimensional case, that

number grows to 10050. Reducing the
number of subparts into which each inter-
val is divided does not help. In the 50-
dimensional case, if each interval were
divided into just two subparts, this would

translate into 250 =
1,125,899,906,842,620 rectangles. 

This is the “curse of dimensionality.”
It is a problem that causes most tech-
niques of numerical integration to fail
when applied to high-dimensional prob-
lems. It is an issue with VAR because
many portfolios are exposed to tens or
hundreds of key factors—each one
adding a dimension to the problem. 

Monte Carlo simulation is a form of
numerical integration that avoids the
curse of dimensionality. Using the numer-
ical approach outlined above, the integral
is approximated as:

[23]

where zn is the total number of rectangles,

and  Ai is the area (volume) of the ith rec-

tangle. Because of the sheer number of
rectangles involved, we do not directly
calculate this sum. Instead, we note that
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A Framework for Managing 
Surplus
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4. Differences in asset class specific 
expenses

5. Differences in RBC requirements
6. Cash flow differences between the 

two securities
7. Transaction costs
8. Capital gains tax implications
9. Impacts on interest crediting rates, if

applicable. There is also the issue of 
who (i.e., policyholders or share-
holders) should benefit from the 
transaction, and to what degree.

10. Impact on interest maintenance 
reserve (IMR) and any applicable 
statutory accounting considerations

11. Impact on GAAP accounting results 
Note that realized gains in liability 
portfolios go to GAAP surplus and 
do not remain within the liability 
portfolio. For example, realizing 
gains on assets supporting a fixed 
liability effectively advances the 
timing of GAAP operating income 
but changes its character into net 
income instead of operating income. 
The future GAAP operating income 
will be lower and the margins in the 
GAAP reserves will be lower. If the 
realized gains are too large, then the 
liability portfolio has negative 
GAAP margins that would result 
in loss recognition. This is the worst 
situation, because not only has the 
future operating income been con-
verted into net income, but the rea-
lization of gains beyond the point 
of a zero margin results in negative 
operating income via the loss
recognition.

12. Rating agency issues, if any.

David N. Becker, FSA, PhD, CFA, is
Vice President and Chief Actuarial
Officer, Lincoln National Life 
Insurance Company, Fort Wayne, Ind.
This article appeared in The North
American Actuarial Journal, and is
being repeated here because of its 
pertinence.
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[23] can be rewritten:

where Avg (Ai) is the average area of all

the rectangles. 
That average area can be estimated

by selecting a sub-sample of the rectan-
gles and computing their average area.
The solution of Monte Carlo simulation
is to make the selection randomly. 

A question that remains is: How
many scenarios will be necessary to rea-
sonably estimate an integral using Monte
Carlo simulation? In fact, Monte Carlo
simulation breaks the curse of dimension-
ality. It can be shown that, independent of
the number of dimensions to a problem,
the convergence error of Monte Carlo
simulation is inversely proportional to the
square root of the number of random sce-
narios used. For example, suppose that a
simulation uses 1,000 scenarios and has

precision of 8%.
1
The very same analysis

would be precise to within 4% if 4,000
scenarios were used. This would be true
no matter how many dimensions the
problem had.

A Probability Transformation
When we estimate VAR for a portfolio,
there are two broad inputs:
1. Historical data for key factors
2. The portfolio price function
These two inputs characterize the two
components of market risk that VAR must
incorporate—the two pieces of the VAR
“puzzle” that we identified in Section 3.
Historical data captures the uncertainty of
financial markets. The portfolio price
function describes the portfolio’s expo-
sures to that uncertainty.

Neither input appears in the VAR
integral [21]. The integral depends upon
the one-dimensional probability distribu-
tion p for ∆P. Somehow we must infer p
from the historical data and the portfolio
price function.

Historical data tells us nothing

directly about p. Rather, it provides infor-
mation about the m-dimensional proba-
bility distribution for the key factors,
which we denote q.

The portfolio price function also tells
us nothing directly about p. However, as
a transformation from the m-dimensional
space of the key factors to the one-
dimensional space of the portfolio’s
value, it relates p to q. If we somehow
apply the transformation to the entire m-
dimensional probability distribution q we
will obtain the one-dimensional probabil-
ity distribution p.

In attempting this transformation, we
face two challenges:

1. Applying the portfolio price func-
tion as a transformation to the 
probability distribution q is a 
complex mathematical problem. 

2. We don’t even know the proba-
bility distribution q. We have to 
decide what inferences to make 
about that distribution based upon 
available historical data.

As we shall see, Monte Carlo simulation
provides a solution to the first problem.
The second problem can be addressed in
different ways. Monte Carlo VAR and
historical VAR are two forms of Monte
Carlo simulation that differ only in how
they address this second problem.

Starting with the first problem, let’s
consider an example. Exhibit 13 describes
a portfolio consisting of a long-short
options position in a normally distributed
underlier V. The portfolio price function is
illustrated on the left, and the probability
distribution p is illustrated on the right. 

In the left graph, evenly spaced 
values for the underlier ∆V have been
mapped into values of ∆P. This illustrates

how the portfolio price function trans-
forms the (normal) distribution q of the
underlier into the more complex distribu-
tion p shown on the right. By observing
how values of ∆P cluster in the left graph,
we can infer the appearance of the proba-
bility distribution in the right graph.

Exhibit 13 illustrates in one dimen-
sion how complex the task of inferring
the probability distribution p may be.
After all, the portfolio price function 
may have multiple local maxima and
minima as well as multiple inflection
points. If the portfolio contains exotic
derivatives, it may even have jump dis-
continuities. The task of inferring p for a

portfolio with thousands of positions
exposed to hundreds of key factors is
potentially staggering.

Exhibit 13, however, also suggests a
solution. By mapping a range of values
for DV into corresponding values for ∆P,
we were able to infer the nature of the
distribution p. We can systematize such
an approach by selecting a broad sample
of scenarios for the and valuing the port-
folio under each scenario using the port-
folio price function. The histogram of
results for ∆P will be a discrete approxi-
mation to the probability distribution p
from which we can estimate VAR. 

If we actually use this approach to
estimate VAR for a portfolio, one chal-
lenge is deciding how to select the set of
scenarios. It is not sufficient to merely
select a large number of scenarios. We
must make the selection in a manner that
will not bias the results—we need a 
representative selection. One possible
solution is to select scenarios that are
evenly spaced as was done in Exhibit 13.
In higher dimensions, however, this
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(continued on page 10, column 1)

[24]

Example: An Options Spread Exhibit 13



approach succumbs to the curse of di-
mensionality. An alternative is to select
the scenarios randomly. Obviously, this 
is the solution of Monte Carlo simulation
which we developed in Section 8.

Accordingly, in this section and the
previous section, we have addressed two
fundamental challenges in estimating
VAR for non-linear portfolios. For both
challenges, a solution has been Monte
Carlo simulation. In summary, the two
distinct problems that Monte Carlo 
simulation has solved have been:
1. The curse of dimensionality which 

we face in numerically solving the 
integral [21]

2. The probability transformation of 
applying the portfolio price function 
to q to infer p

When we use Monte Carlo simulation for
estimating VAR, we can do so in one of
two ways:

1. We can draw our scenarios from an 
m-dimensional uniform distribution 
and then weight each scenario to 
reflect the probability distribution of 
the key factors, or

2. We can draw the scenarios from the 
probability distribution of the key 
factors and weight the scenarios 
uniformly.

Either approach represents a valid imple-
mentation of Monte Carlo simulation. In
Sections 12 and 13, we will introduce
two different implementations of Monte
Carlo simulation for estimating VAR.
These are the techniques of Monte Carlo
VAR and historical VAR. Both are imple-
mented according to the second of the
above two approaches.

Statistical Error
Because we don’t know the probability dis-
tribution q, we must make inferences about
it based upon historical data. In the case of
delta-normal VAR, these inferences take the
form of a set of standard deviations and

correlations. In the case of Monte Carlo
simulation, the inferences can take different
forms. The end result, however, must be a
set of scenarios. Monte Carlo VAR and his-
torical VAR are both forms of Monte Carlo
simulation. They differ only in how they
utilize historical data in selecting those sce-
narios to represent q. Both approaches
entail two general types of error:
1. Error arising from how scenarios 

are selected: We must select scenarios
in a manner that reflects the characteris-
tics of the distribution q.

2. Error arising from the number of 
scenarios selected: We must select 
sufficiently many scenarios to ade-
quately reflect the distribution q.

The difference between these is the dif-
ference between quality and quantity—
electing the right scenarios vs. selecting
enough scenarios. The first type of error
arises in different ways, some of which

are unique to either historical VAR or
Monte Carlo VAR. The second type of
error impacts both historical VAR and
Monte Carlo VAR in exactly the same
way. It is called convergence error.

We can reduce convergence error sim-
ply by using more scenarios. Error relating
to how we select scenarios, on the other
hand, cannot be reduced in this way. If the
manner in which we select scenarios has
some form of bias, simply selecting more
scenarios can not eliminate that bias.

Error relating to how we select 
scenarios is often a subjective notion.
This is because there is no “true” distri-
bution q. People can have legitimate dif-
ferences of opinion about the nature of
that distribution—and consequently about
any bias that may exist in how we select
scenarios. Convergence error is more
objective. Using statistical techniques, we
can usually quantify the convergence
error of a simulation.

Monte Carlo VAR
The approach of Monte Carlo VAR is to

randomly generate scenarios based upon
some assumed joint probability distribu-
tion for the ∆Vk. Historical market data is

used to infer statistical characteristics
such as standard deviations and correla-
tions for the assumed distribution. 

For example, for a given portfolio
we might assume that each key factor is
lognormally distributed with a mean
equal to today’s value for that factor.
Recent market data would then be ana-
lyzed to infer a standard deviation for
each key factor as well as a correlation
for each pair of key factors. 

Once an assumed joint distribution 
is specified, standard techniques for 
generating correlated random numbers
are used to select a set of scenarios. In
this way, the selected scenarios are liter-
ally drawn from the assumed distribu-
tion. They reflect the statistical charac-
teristics—standard deviations and corre-
lations—inferred from the historical data.

This approach to selecting scenarios
entails four sources of error:
1. Assumed distribution: The standard

distribution we assume for key 
factors may imperfectly reflect the 
“true” distribution q.

2. Sampling error: Because we esti-
mate standard deviations and cor-
relations from a limited set of histori-
cal data, those “sample” standard 
deviations and correlations will only 
approximately reflect the “true” stan-
dard deviations and correlations of q.

3. Non-stationary: Because market 
conditions are non-stationary, the 
historical data upon which we base 
standard deviation and correlation 
estimates may imperfectly reflect 
today’s market conditions.

4. Imperfect random number 
generation: Imperfections in the 
random number generator we use for
selecting scenarios may introduce 
a bias.
Because Monte Carlo VAR depends

upon the inference of standard devia-
tions and correlations from historical
data, it is similar to delta-normal VAR.
Its sampling error and error from market
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“Error relating to how we select scenarios 
is often a subjective notion.”



non-stationary are identical to those of
delta-normal VAR. One can be addressed
by using as much historical data as possi-
ble. The other can be addressed by using
only the most recent data. As with delta-
normal VAR, some compromise must be
achieved to balance the two.

In addition to error relating to how
scenarios are selected, Monte Carlo VAR
also entails convergence error. However,
there is no theoretical limit to the number
of scenarios that can be used with Monte
Carlo VAR. Accordingly, this error can
be made as small as available computing
technology will permit.

We can calibrate a portfolio to deter-
mine the number of scenarios required to
achieve a desired degree of convergence.
For example, suppose an organization
wants to simulate the VAR of its portfolio
with only 4% convergence error. To find
the required number of scenarios, the
organization calculates Monte Carlo 
VAR on the portfolio 50 times, using
1,000 random scenarios in each simula-
tion. The resulting 50 VAR estimates are
then gathered and their standard deviation
is calculated.

Suppose the standard deviation is
8%. This means that simulation can
measure the portfolio’s VAR with 8%
convergence error using 1,000 scenarios.
Because the convergence error of Monte
Carlo simulation is inversely proportional
to the square root of the number of sce-
narios used, the same portfolio will re-
quire 4,000 scenarios to achieve a 
convergence error of 4%.

Historical VAR
Like Monte Carlo VAR, historical VAR
must somehow select a set of scenarios to
reflect the unknown distribution q. The
approach of historical VAR is to draw
scenarios directly from historical data.
For each date represented in the historical
data, the one-day return for each of the
key factors is calculated. A scenario is
constructed by applying those returns to
today’s values for the key factors. 
This approach to selecting scenarios
entails two sources of error. Both arise
from market non-stationary:2

1. Non-stationary: Because market 
conditions are non-stationary, the 

historical data upon which we base 
standard deviation and correlation 
estimates may imperfectly reflect 
today’s market conditions.

2. Distortions from assuming market 
stationarity: Distortions occur 
because historical data is treated as 
arising from a stationary (fixed) 
probability distribution as opposed to
one that has varied over time.

The first source of error also arose with
delta-normal VAR and Monte Carlo
VAR. The second is new. Its most obvi-
ous effect is that heteroscedasticity (non-
constant volatility) is mistaken for lep-
tokurtosis (fat tails to a distribution). For
this reason, historical VAR tends to over-
state the effects of leptokurtosis. Monte
Carlo VAR, by comparison, uses standard
distributions such as the normal distribu-
tion or lognormal distributions to model
q. Accordingly, it tends to understate the
effects of leptokurtosis.

While Monte Carlo VAR and histori-
cal VAR introduce different errors in how
they select scenarios, their convergence
errors behave identically. This is because
the two methodologies differ only in how
they specify random scenarios—not in
how they use those scenarios. For a given
portfolio, the number of scenarios needed
to achieve a given degree of convergence
will be the same irrespective of whether
Monte Carlo VAR or historical VAR 

is used to generate those scenarios.
3

When you calibrate a portfolio for Monte
Carlo VAR, the same result applies to
historical VAR. 

For example, suppose that Monte
Carlo VAR is used to calibrate a portfolio
to determine that a 8% convergence error
can be achieved with 1,000 scenarios. If
2% convergence error were desired,
Monte Carlo VAR could achieve that
result using 16,000 scenarios. Historical
VAR could not match that convergence. If
a year (252 trading days) of historical sce-
narios were used, the convergence error of
historical VAR would be 16%. Achieving
2% convergence error with historical VAR
would require 63 years of data.

Historical VAR is fairly easy to im-
plement. However, the significant conver-
gence error associated with historical
VAR can limit the technique’s appeal in
many situations.

Conclusion
Value at risk is a powerful measure of
market risk. In theory, it is applicable to all
portfolios and all sources of market risk.

The challenge of estimating a portfo-
lio’s VAR lies in integrating the market
information contained in the standard
deviations and correlations of key factors
with the portfolio information contained
in the portfolio price function. For simple
portfolios that exhibit linear price behav-
ior, this can be accomplished using the
method of delta-normal VAR. 

If a portfolio contains options or
other positions that exhibit non-linear
price behavior, VAR may be estimated
using Monte Carlo simulation. Two par-
ticular implementations of Monte Carlo
simulation for VAR are the techniques of
Monte Carlo VAR and historical VAR.

All three VAR techniques presented
here entail error relating to statistical
inference. In addition, the simulation
techniques Monte Carlo VAR and histori-
cal VAR entail convergence error.

Glyn Holton is an independent 
consultant specializing in financial risk
management. His practice is called
Contingency Analysis and is based in
Boston, Mass. His web site is www.
contingencyanalysis.com.
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