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In modeling principle-based approaches for reserves 
and capital, it is necessary to conduct extensive sce-
nario testing on each business model. The resultant 
scenarios are then used in specific ways to determine 
the proper reserves and impact on overall company 
capital. This is especially critical for new types of 
insurance policies with complex options. However, 
it is also our desire to reduce the computer run-time 
required to obtain these reserve or capital values. 
In the past this has been typically done by the use 
of representative scenarios, where, based on how 
many scenarios map to each representative, we 
determine a probability weight associated with each. 
However, given the relatively simple historically used 
approaches to the mapping process, the weights 
obtained may not accurately reflect the character of 
the scenarios mapped.

If, however, we are able to use representative sce-
narios to train a separate smaller model to replicate 
the full business model, we could then use all the 
scenarios within this less time-expensive model and 
not use the probability weights at all. In other words, 
we wish to develop a new technique which combines 
the use of both representative scenarios with that of 
predictive modeling.

In the study below we consider two ways of deter-
mining representative scenarios, and then we use the 
results of each in combination with a very effective 
statistical tool to create predictive models. Although 
we still have to process our time-expensive business 
model on the representative scenarios, and separately 
calibrate the time-inexpensive predictive model, 
we have found that the results are very good. We 
conclude that either method of choosing scenarios 
is effective for reserve calculations, but that one 
method is superior in estimating capital.

 I will briefly discuss the two methods used to select 
representative scenarios. 

Representative Scenarios
There are several (actuarially) published as well as 
commonly known methods to determine repre-
sentative scenarios from a larger collection. In our 

research we will use one published method and 
one commonly used by statisticians. We will not 
introduce any weighting within our scenario selec-
tion process, and we will treat the selection process 
as directly formulated by the sources; however, later 
we will discuss the use of weighting in the control 
of bias. 

(1)  Chueh1 describes three separate algorithms to 
select representative scenarios. In particular, the sec-
ond algorithm uses the following metric to create a 
distance between two separate interest rate scenarios 
paths:
 

Here it is a one-year rate at time t. it
P  is the pivot 

interest rate at time t. 

Notice that this is ultimately a sum of squares metric 
with the interest rates represented as discount factors 
through time. In her paper, she observed that this 
metric gave a good overall representation of results 
both in the center and the tails. We will only use this 
metric in our analysis below because the required 
conditional tail expectation (CTE) calculations for 
reserves is set at 65 percent (CTE65) and capital 
is set at 90 percent (CTE90). To properly calculate 
CTE65, we need to have the stochastic results well 
represented in both the central portion as well as 
the tail, whereas CTE90’s calculation would need 
scenarios primarily within the tail.

(2) The other algorithm2 that is frequently used by 
statisticians is the CLARA Cluster Algorithm.  The 
CLARA algorithm can either use a sum of squares or 
a sum of absolute values metric to measure distance. 
In our work below we will use a sum of absolute  
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values to indicate distance between separate scenari-
os. Now let’s look briefly at predictive modeling.

Predictive Modeling
Predictive modeling is a means that one can take to 
design or create a model that can be used to predict 
an outcome with approximately the same probabil-
ity that is observed with the actual data. There are 
many different techniques, but while working inde-
pendently with the Academy Valuation Basis Table 
subcommittee, we found one outstanding process. 
This modeling technique is called Projection Pursuit 
Regression3 (PPR). See the accompanying PPR 
appendix, which summarizes the process.

Combination of Methods
In the past, most actuarial research concentrated only 
on the use of representative scenarios and weighting 
the results based on the probabilities associated 
with each representative. We have found that this 
approach alone does not adequately represent the 
overall behavior that one obtains when using all of 
the scenarios. However, the goal of model efficiency 
is to reduce the entire processing time of the various 
reserve or capital models. This has been mostly done in 
the past by either reducing the number of model points 
used with the liabilities or assets or by reducing the 
number of scenarios processed through the model. 

Independently, we have observed that PPR models 
are very effective, not overly sensitive to outliers 
within the calibration data, and replicate the overall 
behavior of high dimensional models well. Another 
nice feature of PPR is that it is very quick when 
asked to evaluate additional input besides that of its 
training data. 

In past experience, we have also observed that the 
CLARA algorithm is very effective in selecting rep-
resentative scenarios. This is due to the fact that the 
process discovers a majority of the extreme scenarios, 
which contribute to the tail of the reserve or the 
capital distribution. 

When one uses representative scenarios and then 
uses probability weighting of results, the final results 
are very dependent upon how those weights are 
obtained or used. However, if one does not use these 
weights at all, but only uses the representatives as 
training data for a predictive model, we can then 
process all scenarios through the resulting predictive 
model. For this to work well, we hope that the num-
ber of representative scenarios will be rich enough 
to adequately span the high dimensional business 

model. Also, we hope that the predictive model will 
also adequately model the business model as well. 

We will now test the hybrid approach of using repre-
sentative scenarios as training data and then process-
ing all the scenarios through the predictive model.

Next, we briefly discuss what data we use in our 
analysis.

Data Sources
Craighead4 describes and models from over 100 
insurance-related datasets. In our work below, we 
will concentrate on his 1993 dataset associated with 
business model 4 and the associated 10,000 inter-
est rate scenarios that were used in the generation 
of these values. Craighead discusses the generation 
process of these scenarios as well. We have restricted 
ourselves to this specific dataset because it was deter-
mined within that this specific data set has such 
complex behavior, that if one is able to adequately 
model the underlying data, the remaining datasets 
are very easily modeled.

Now let’s discuss how we will conduct our  
experiments.

Process Outline
Using the basic information of the 10,000 scenarios 
and the 10,000 associated capital values mentioned 
above, we conduct 100 separate experiments using 
random samples of 5,000 scenarios for each rep-
resentative set size. On each of these scenario sets, 
we apply either the Chueh Algorithm (with a spe-
cific modification discussed below) or the CLARA 
Algorithm and choose separate representative sub-
sets. Once a specific representative set is selected, the 
representative scenarios, in addition to their associ-
ated capital values, are used as the training data for 
a PPR model. Once the PPR model is trained (or 
calibrated), the entire sample of 5,000 scenarios is 
then projected using the resultant PPR model. Using 
the PPR model, we calculate both the CTE65 and 
CTE90 (we refer to these as Model). Also, based on 
the specific sample of 5,000 capital values, we also 
calculate the CTE65 and CTE90, (we refer to these 
as Actual). We then calculate the relative error associ-
ated between Actual and Model, by the formula:  RE 
= (Actual – Model)/Actual.

In our analysis with the Chueh Algorithm,  
we modify the distance formula to include not only 
the 90-day rates but also the 10-year rates, by the 
following formula:
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Where the CLARA algorithm uses the following 
distance formula:

Note: We use the 90:t or 10:k notation to indicate 
90-day rates or the 10-year rates in year t or k.

Results
Regarding the Chueh Algorithm experiments, we 
examine separate sets of representative scenarios. The 
various representative set sizes are 50, 75, 100, 125, 
150, 175, 200, 250, 300 and 400.

Regarding, the CLARA Algorithm, we use represen-
tative set sizes of 50, 75, 125, 175, 200, 250, 300, 
400 and 500.

As mentioned before, for each of these representative 
set sizes, we repeat the random sampling of 5,000 
scenarios 100 times. By conducting this repeated 
sampling we can observe the effectiveness of the 
overall process and approximate the sample error 
associated in our tests.

The next two box-whisker graphs as the results of 
the experiments associated with the Chueh distance. 
Following each graph are the associated statistics for 
each set of 100 tests. See the Wikipedia5 discussion 
on how to interpret box-whisker plots.

 Notice how the median (the dark heavy) line moves 
down as the number of representative scenarios 
increase. Notice also how the relative errors remain 
mostly positive. This indicates that the Actual 
CTE65 values are larger than the Model CTE65 
values. This indicates that this approach is liberally 
biased, by an average of 94bp for the 400 representa-
tives’ samples. Notice as the number of representa-
tives increases, how both the box and separately the 
whiskers narrows around the median.

Now observe the Chueh CTE90 results:

continued on page 20 >>
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	 Min.	 1st	Qu.	 Median	 Mean	 3rd	Qu.	 Max.
	 	 	 	 	 	
50	 -0.00351	 0.0497	 0.0709	 0.07809	 0.1041	 0.2453
75	 -0.00928	 0.01813	 0.03358	 0.03522	 0.04689	 0.1372
100	 -0.01093	 0.01309	 0.022	 0.02356	 0.03324	 0.06634
125	 -0.00691	 0.009314	 0.01696	 0.0184	 0.02673	 0.05787
150	 -0.00395	 0.01067	 0.01695	 0.01802	 0.02449	 0.05027
175	 -0.00752	 0.009906	 0.01561	 0.01607	 0.02322	 0.04944
200	 -0.00456	 0.008315	 0.01554	 0.01497	 0.02025	 0.05378
250	 -0.00115	 0.009923	 0.01409	 0.0148	 0.01956	 0.03615
300	 0.001184	 0.008013	 0.0117	 0.01257	 0.01735	 0.02898
400	 -0.00084	 0.005982	 0.009175	 0.009458	 0.01271	 0.02113

	 Min.	 1st	Qu.	 Median	 Mean	 3rd	Qu.	 Max.
	 	 	 	 	 	
50	 -0.00876	 0.09702	 0.1555	 0.1663	 0.213	 0.5213
75	 -0.00218	 0.04898	 0.08644	 0.09739	 0.1393	 0.3344
100	 -0.02871	 0.03181	 0.05445	 0.05984	 0.08232	 0.193
125	 -0.01989	 0.01837	 0.03506	 0.041	 0.06137	 0.1316
150	 -0.00775	 0.01512	 0.02786	 0.03508	 0.05139	 0.1021
175	 -0.01698	 0.01273	 0.02499	 0.02686	 0.04207	 0.09204
200	 -0.01434	 0.015	 0.02569	 0.02674	 0.03762	 0.1256
250	 -0.01233	 0.01032	 0.0212	 0.02454	 0.03543	 0.07377
300	 -0.01203	 0.01183	 0.01737	 0.01974	 0.02955	 0.05846
400	 -0.01069	 0.006189	 0.01342	 0.01289	 0.01795	 0.04684
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Notice how the collective CTE90 results are not as 
good as the collective CTE65 results, where using 
400 representatives the median 
relative error is 134 bp versus that 
of 92 bp. Also observe the abso-
lute distance from the maximum 
and the minimum. Again, note 
that these results are so liberally 
biased. Note also how the small 
circles above the top whiskers 
indicate that there are two outli-
ers in the plot of the 400 repre-
sentatives.

Now examine the corresponding 
CLARA Algorithm results. The next two graphs 
display the box-and-whisker plots based on the same 
process except that the CLARA Algorithm is used to 
select the representative scenarios.

Note how the CTE65 results have a tighter inter-
quartile range than the CTE65 Chueh results. Also, 
note that the process is liberally biased just like the 
Chueh technique. Comparing the median values for 
400, we see that the median value is 129 bp versus 
that of 92 bp from the Chueh CTE65. Note though 
even with a higher median value, the difference 
between the maximum and the minimum is tighter 

around the median that that of the Chueh. 
Now the CTE90 results:

For the CTE90 results, we again see that these 
results are liberally biased, but median results as well 
as the minimum and maximum relative errors are 
very tight and vastly superior to those of the Chueh 
Algorithm. We have noted from prior experience 
using the CLARA algorithm (set to use the sum of 
absolute value of the differences metric), that the 
algorithm chooses more tail scenarios than any other 
technique. 

Issues Regarding Bias
Though our process is positively biased and under-
states the reserves and capital, we see that the average 
error is reasonable given the speed enhancement. Of 
course one may increase the size of the representa-
tive set and this will reduce bias. Donald Krouse 
(AEGON) has given some insight into what a practi-
tioner may take to reduce this bias. Based on his sug-
gestions, one could introduce weights to the scenario 
selection process or by experimenting with other 
various metrics. This may help, because the bias may 
arise from the fact that the training scenarios may 
over- or under-emphasize certain attributes within 
the scenarios. Also, the PPR model itself can lead to 
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	 Min.	 1st	Qu.		 Median	 Mean	 3rd	Qu.	 Max.
	 		 	 	 	
50	 -0.03666	 0.01428	 0.03394	 0.03885	 0.05481	 0.1731
75	 -0.01942	 0.004485	 0.01637	 0.0158	 0.02794	 0.05635
125	 -0.00832	 0.009057	 0.01548	 0.01636	 0.02218	 0.0428
175	 0.000665	 0.009482	 0.01404	 0.01523	 0.01897	 0.03734
200	 -0.00041	 0.008229	 0.01337	 0.01446	 0.01932	 0.03488
250	 0.002103	 0.009004	 0.01372	 0.01372	 0.01747	 0.03151
300	 -0.00138	 0.009033	 0.01319	 0.01361	 0.01737	 0.0354
400	 0.004923	 0.00996	 0.01287	 0.0131	 0.01612	 0.02231
500	 0.004738	 0.01029	 0.01179	 0.01231	 0.01441	 0.02046

	 Min.	 1st	Qu.		 Median	 Mean	 3rd	Qu.	 Max.	 	 	

50	 -0.03344	 0.04874	 0.08013	 0.1027	 0.1484	 0.4273
75	 -0.03633	 0.002239	 0.02523	 0.02672	 0.0496	 0.09426
125	 -0.02789	 0.006763	 0.02003	 0.01907	 0.03103	 0.08259
175	 -0.01918	 0.003258	 0.01248	 0.01382	 0.02327	 0.06151
200	 -0.02165	 0.001014	 0.01065	 0.01294	 0.0219	 0.05468
250	 -0.01053	 0.003376	 0.009998	 0.01089	 0.01766	 0.03989
300	 -0.01077	 0.002906	 0.007679	 0.008806	 0.01451	 0.04095
400	 -0.00422	 0.001636	 0.005093	 0.005152	 0.008281	 0.01846
500	 -0.00379	 0.000105	 0.002869	 0.003092	 0.005355	 0.01331
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biased results just due to the fact of how it calibrates 
(as discussed within the appendices). The practitio-
ner may want to introduce weighting to the calibra-
tion process or manipulate other settings (as briefly 
outlined within the Techniques and Diagnostics 
for PPR appendix) to see if bias can be eliminated. 
Currently, we have used other predictive models 
such as neural networks and other types of machine 
learning, to eliminate the bias, but we have found 
that PPR is still superior because it does not suffer 
from the curse of dimensionality. Furthermore, it 
simulates the underlying structure of the complex 
capital model quite well, where these other tech-
niques poorly calibrate to the representative sets.

Conclusions
We see that the Chueh technique and the CLARA 
technique are relatively comparable when calculating 
the CTE65 results while examining the 400 repre-
sentative sets. Here we see that the median relative 
error for the Chueh algorithm is 92 bps with a range 
of results of 220 bps. Also, note that the CLARA 
CTE65 has a median of 129 bp with a tighter range 
of 156 bp. However, we observe that the CLARA 
technique is vastly superior to the Chueh technique 
when conducting the CTE90. This is because the 
median CTE90 relative error for the Chueh algo-
rithm is 134 bp with a range of 575 bp, which is 
unreasonable, whereas the CLARA algorithm has a 
median relative error of 51 bp and range of 237 bp. 

Our recommendation is to use either representative 
scenario selection process when calculating reserves, 
but to limit the approach strictly to the CLARA 
technique for making capital CTE estimations. 

APPENDICES
Projection Pursuit Regression (PPR)
In linear regression, one fits a response variable Y  
to a collection of n predictor variables Xi in the 
familiar form:

 

In additive models, the biXi are replaced with various 
functions ƒi(Xi), with this form:
 

Projection Pursuit Regression (PPR), introduced 
by Friedman and Stuetzle,6 is a modification of this 
structure in that there are:  

• M different ƒi . 
• Each ƒi acts on a different linear combination of 

all n of the Xk . 

• A specific coefficient of these linear combina-
tions is denoted by   aik .

• Each ƒi  is multiplied by a bi .

• The constant term is the average of the response 
variable. 

So PPR takes on the following form:

 

or in vector format:

 

where X=(X1, X2, ... , Xn) is the predictor vector, and  
ai=(ai1, ai2, ... , ain).

The term “Projection” in PPR comes from the 
projection of X on to the directional vector  ai for 
each i .

The “Pursuit” arises from the algorithm that is  
used to determine optimal direction vectors a1, a2,  
... , aM .

Each  ƒi is called a ridge function. This is because 
they only have values in the ai direction and are con-
sidered constant elsewhere. Effectively, what occurs 
is that the overall PPR model is a linear combina-
tion (bi  are the coefficients) of the ridge functions. 
These functions only take on values that arise from 
the projection of the predictors against the direction 
vectors, and the functions are assumed to take on a 
constant value in any other direction. So, each ridge 
function is like the profile of a mountain range, and 
we linearly combine these functions along all differ-
ent ridges (as pointed out by the ai).

On a formal basis, Y and X are assumed to satisfy the 
following conditional expectation:
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with my=E [Y] and the ƒi  have 
been standardized to have zero 
mean and a unit variance. 
That is: E [ƒi(ai . X)]=0 and   
E [ƒi

2 (ai . X)]=1, where i 
takes on values from 1 to M. 
We assume that the realized  
sample values for the random 

variables Y and X=(X1, X2, ... , Xn) are independent 
and identically distributed to the distributions of  Y 
and X, respectively.

The ppr algorithm in the R stats library7  estimates 
the best bi , ƒi  and the ai by minimizing the follow-
ing target function for the mean square error:

across all the data samples for Y and X. Note:  This 
expectation can be a weighted average.

A powerful trait of PPR models, since the predictor 
vector X is projected, is that interactions beween 
different Xj and Xk are included within the model, 
whereas other model algorithms cannot do this with-
out user intervention.

We justify this by using an algebraic demonstration 
based on the S-Plus Guide to Statistics8 recast into 
our notation as follows:

Suppose that the actual data model is E[Y / X1, X2 ] 
=X1 X2.

Let Y=Ø, M=2 , b1= b2=.25 and assume that ai 
=(1,1) and a2 =(1,-1). Furthermore assume that 
ƒ1(t)=t2 and ƒ2(t)=-t2. Let X=(X1, X2)  

Now  

and similarly 

and finally, 
 

So, we can see that if the bi , ƒi and ai are  
optimally selected and the underlying model has 

interactions between different predictors, PPR should  
capture this. 

Advantages and Disadvantages of PPR
The following is a list of advantages of using PPR 
as a model:

• The model is a continuous function. According 
to Venables and Ripley,9 they cite Diaconis and 
Shahshahani10 and say that given a large enough 
number of ridge functions, PPR can approxi-
mate arbitrary continuous functions.

• It is the best possible fit since every component 
is solved for the minimization of the weighted 
least squares.

• Each ridge function does not extrapolate  
outside of its specific domain. If the specific  
ai . X  is outside the domain, the relevant domain 
endpoint is used.

• The model handles the interactions between 
the different predictors as we saw in the  
last section. 

• PPR models categorical predictors as easily as 
continuous predictors.

• PPR models can take extremely large amounts 
of data and create a very good model of  
the underlying data. One can also adjust the 
model to distinguish between model fit and 
model smoothness.

 • PPR does not suffer from the curse of dimen-
sionality (COD). COD arises from the 
increased complexity of  a multi-dimensional 
surface. Since PPR optimally is solved one ridge  
function at a time, the difficulty of trying to 
locate global optimal values for model calibra-
tion is eliminated. 

The disadvantages are: 

• The range of a PPR model may be outside of 
the range of acceptable values. For instance, 
if one were using PPR to model mortality, 
model results could fall below zero or above 
one. However, PPR will not extrapolate outside 
the existing ridge functions, so if any predictor 
projects on a specific  a with a value outside the 
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PPR models can take extremely 
large amounts of data and  
create a very good model of  
the underlying data.
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domain of a specific ridge function, the ridge 
function takes on the value either at the fur-
thest point on the right hand side or left hand  
side. This no extrapolation rule can lead to 
biased results.

• All of the parameters are point estimates, and 
there is no distributional consideration given to 
the significance of a specific parameter. Because 
one is unable to create a confidence interval 
using the R ppr function around each of the  
aik or the bi , one is not able to determine if a 
specific parameter is significant to the model. In 
fact, one is unable to test if the actual model is 
significant, other than the use of the goodness 
of fit statistic. There are complex methods that 
have been developed using spherical statistics to 
overcome this, but these require an understand-
ing of advanced Banach Algebra in functional 
analysis and have not been included within the 
R ppr function.

• One can easily overfit or overexplain the  
data. See Venables and Ripley for a further 
discussion.

• The model can be too flexible, which can 
make interpretation of the PPR model difficult. 
Again, see Venables and Ripley.

Techniques and Diagnostics for PPR
The procedure when using the R ppr algorithm is 
as follows:

First, one specifies that M should range between   
MMIN=1 and some positive integer MMAX . The ppr 
algorithm then creates a PPR model for each  M 
from  MMAX to  MMIN  in a descending fashion, and 
at the same time produces a goodness of fit statistic 
for each value of M. Scanning this list of goodness 
of fit values should display a local minimum. If this 
local minimum is at  MMAX one should reprocess the 
experiment with a larger MMAX. Once one deter-
mines the local minimum, say s, reset MMIN = s and 
reprocess the ppr algorithm with the same MMAX as 
before. The resultant model arising from the back-
ward iteration from MMAX  to MMIN will then be the 
best PPR model.

Two other components that are implemented in ppr 
are the concept of “bass” and “optlevel.” “Bass” is 
Friedman’s super smoother bass tone control11 that 

is used with automatic span 
selection. It is used in ppr to 
smooth the results. The range 
of values allowed with this 
component is from 0 to 10. 
To increase smoothing within 
the data, increase this value. 
The default is 0, and this set-
ting gives the best fit to the 
underlying data. Bass is similar 
to the h smoothness param-
eter used within the Whitaker-
Henderson graduation formula.

“Optlevel” is an integer from zero to three, which 
determines the optimization thoroughness. The best 
models usually are obtained if this is set to three. At 
level zero, the ridge functions are not refitted. At 
level one, the projection directions are not refitted, 
but the ridge functions and the regression coef-
ficients are. Levels two and three refit everything, 
but level three takes pains to re-balance each regres-
sors’ contribution at each step and so reduces the 
chance of converging to a saddle point in the sum 
of squares.

One diagnostic aid in PPR model building is to plot 
the ridge functions. If these ridge functions are very 
noisy or discontinuous, you should expect that the 
resultant PPR model will behave oddly.

Another effective diagnostic aid is to both plot the 
fitted  Ŷ against the actual Y and do a simple linear 
regression of  Y against Ŷ, assuming no intercept.  
The scatterplot should display symmettry around 
the 45 degree line and the coefficient of the regres-
sion should be approximately one. These two diag-
nostics will indicate how well the PPR model will 
perform as a predictive model.

Note: A PPR model does not extrapolate outside of 
the sample data. So, frequently the resultant fitted 
values from PPR model will hit a maximum value 
and will not grow any larger no matter how one 
manipulates the predictors. This is not the case for 
linear regression models, where there are no natural 
limits placed on how one sets any respective Xi. 
However, one may revise the prediction object to 
conduct extrapolations. However, one must first feel 
comfortable with the continuity of the separate ridge 

Two other components that  
are implemented in ppr are the 
concept of “bass” and  
“optlevel.” “Bass” is Friedman’s 
super smoother bass tone  
control that is used with  
automatic span selection.
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functions. If these functions are very noisy or appear 
not to be differentiable, you might want to avoid all 
extrapolation.   $
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