

Article from:

Forecasting & Futurism

December 2013 – Issue 8

 DECEMBER 2013 FORECASTING & FUTURISM | 37

Genetic Algorithms Revisited—A
Simplification and a Free Tool for Excel
Users
By Dave Snell

In the language of our children: OMG. Can it be that sim-
ple? What about DNA, genes, chromosomes, alleles, phe-
notypes, mitosis and meiosis, single nucleotide polymor-
phisms, etc.? Didn’t this all start as an attempt to mimic the
amazing role that genetics plays in natural selection (unfor-
tunately dubbed evolution)? Yes, it did.

Humans fit this set of criteria quite well:

1. The blueprint for our cells is a long chain of pairs—
over 3 billion pairs in a chain.

2. Each pair can be one of four values: A-T, T-A, C-G or
G-C. In order to keep this simple, I am not even going
to say what the letters mean. It does not matter for this
discussion.

3. Every cell contains a chain made according to these
pairs. Each person has a slightly different set of links
(pairs) in their personal chain.

4. The unique combinations for two different chains result
in two different persons; and you can compare them to
see which one is taller, thinner, smarter or whatever, to
infer which chain best met your goals.

That’s the end of the biology lesson!

Let’s consider some applications that you might find more
relevant to actuarial work:

1. You have to choose which provider groups to include
in a health insurance network. There are over 3,000
provider groups in your region and each group may of-
fer from one to 100 specialty services. Each specialty
(acupuncture, cardiology, oncology, etc.) has a relative
cost, and each provider group has a relative cost (spe-
cialties, location, experience, etc.). Your challenge is to
pick the combination of provider groups that minimizes
cost while maintaining adequate coverage for each area

O ne of the cool aspects of teaching is that over
time I start to better understand the subject I am
teaching. In order to clarify a technical concept

for someone else, I often find myself background process-
ing for days or months and suddenly seeing the more obvi-
ous points—the ones often obscured by the technical details
when I am learning the topic.

Based on a few years of feedback now from giving presen-
tations to many groups, writing articles in various publica-
tions and coding programs for diverse projects, I have come
to the conclusion that a genetic algorithm is a very simple
concept shrouded in too many intimidating biology terms.
In this article I want to share my simplified view of what a
genetic algorithm is, where you might use it, how you can
build your own, and how you can use the one I built for you
to solve your own problems.

Basically, a genetic algorithm is a set of simple rules to
solve certain types of otherwise difficult problems. In order
to apply a genetic algorithm, you need a problem that lends
itself to this type of solution.

CONTINUED ON PAGE 38

Criteria that make a problem suitable for a genetic

algorithm:

1. The problem involves a lot of variables—to some

extent, the more variables there are, the better

this technique applies.

2. Each variable can take on potential values to

produce different solutions.

3. We can substitute a value for each of the variables,

and that particular combination of individual values

can be thought of as a solution set.

4. The problem can be quantified in some manner

so that any two solution sets can easily be

compared to see which is better.

38 | FORECASTING & FUTURISM DECEMBER 2013

First, I’ll show you the answer:

If you do wish to learn what happens behind the curtain,
please continue. Let’s break our solution logic into some
simple steps:

of specialty (at least five otorhinolaryngologists, at
least 50 pediatricians, etc.). Since each provider group
will be “in” or “out” of the network, each solution set
is 3,000 values (either 0 or 1) long and your potential
number of solution sets is 23000—a very large number.

2. You have seven sales regions and 15 sales representa-
tives. You wish to allocate them in a manner that ad-
equately covers each region while respecting, to the
extent practicable, the preference of each salesper-
son. Each solution set is 15 variables long, and each
variable can be any of seven values so the number of
solution sets possible is 715 (more than 4.7 trillion).

3. You have a set of 50 equations with 100 unknowns, and
the equations are not linear. Each unknown variable is a
real number from the range -15 to +500. The number of
potential solution sets is infinite. You want to minimize
the sum of the output from each equation.

4. Your CEO asks you to do an enterprise risk manage-
ment (ERM) analysis of a portfolio of business. She
knows that a standard CTE (conditional tail expecta-
tion) with 10,000 stochastic runs will not surface the
combination of enough tail events occurring together,
yet she also knows that in the real world a tail event on
one variable may trigger a domino effect where other
tails are hit. Your task is to do a true worst-case type
of scenario within the ranges of the several dozen key
parameters.

How do we approach these problems? They all seem differ-
ent; yet, they all seem to satisfy my stated criteria of appli-
cability for a genetic algorithm.

GENETIC ALGORITHMS REVISITED … | FROM PAGE 37

 DECEMBER 2013 FORECASTING & FUTURISM | 39

A way to guarantee that is to bring the top scoring sets
over intact to the next collection. If you had 100 sets in
your collection, you could bring over as few as one (the
top scoring one) or as many as 100. There is not much
point in bringing over 100 since that would really limit
the improvement potential for the new collection.

If we bring over 20 solution sets from the previous genera-
tion, that means we need to create 80 more solution sets to
get back up to 100 for this new generation. This is where
we mimic, to some extent, biology; but again, do not let the
terms of biology confuse you. We are going to build the new
collection (generation) of solution sets by choosing values
from the previous generation—notably the best scoring
members of that generation. We might choose to pick from
only the top five (those five sets with the best scores), the
top 20, or even the top 50 as potential “parents” of the new
generation. Let’s say that each solution set chain is going
to be 100 variables long. The source for variable #1 (the
front of the chain) could be the variable #1 value from any
solution set in our chosen group of parents from the previ-
ous generation. Often, it is most efficient to just randomly
choose one of them. Likewise, the source for variable #2 in
the new solution set could be variable #2 from any solution
set in the parent pool. Again, just pick one at random.

“Wait a minute! Are you suggesting that a single solution
set could be made from several different parent sources?
Among humans, that is not allowable.” You are correct!
Among humans, it is not. But we were using biology only as
a metaphor, so why limit ourselves to two parents per child
(or two source solution sets per new solution set)?

Let’s see how we could code that in Visual Basic (similar
idea in most other languages):

1. Populate a collection of possible solution sets. In pre-
vious talks and articles I have used the popular genetic
algorithm term for this kind of collection as a genera-
tion. Whatever you wish to call it, the first collection
of solution sets must be populated. This is one part of
the process that used to prompt questions from my stu-
dents. Unless you have special knowledge about the
answers, it is customary to assign values to the vari-
ables of this first generation on a random basis. Most
programming languages and spreadsheets offer a Ran-
dom function.1 Apply this appropriately to each vari-
able position in your solution sets. How many solution
sets should you use? Good question! If your solution
set chains are very long, you may be able to fit only
a smaller number of sets (perhaps 100) in memory at
one time. If your chains are much shorter, you might
wish to test 1,000 or more in one collection (genera-
tion). In the workbook code you can see how to do this
in PopulateInitialGeneration.

2. Test each set of the collection and save the scores ob-
tained. Whatever the nature of the problem, you need
to decide how to judge the worth of your answer for a
given solution set. That might be as simple as arranging
your equations to end up with a single answer. Decide
whether you want this answer to be minimized (for ex-
ample, a cost) or maximized (a benefit). The workbook
code for this is TestSets.

3. Rank the scores. Reorder the solution sets of the col-
lection (generation) from best to worst. You can see this
code in RankTheScores.

4. Build the successive collection (generation) of solu-
tion sets. This is the step that confuses the most people.
If you just populate the next generation with random
values, how is the method any different from a trial-
and-error approach? The answer is that it is not, so we
don’t do it strictly randomly. Instead, we take advantage
of the information from our previous collection of solu-
tion sets and results. You don’t want the new collection
of solution sets to ever be worse than the previous one. CONTINUED ON PAGE 40

GENETIC ALGORITHMS REVISITED … | FROM PAGE 39

40 | FORECASTING & FUTURISM DECEMBER 2013

fied with the answer, then change some of the parameters:
the number of solution sets in each generation, the number
of elites (immortal sets), the number of parents allowed as
sources, the number of generations requested, or the number
of mutations allowed per set. Then, rerun the tool, choosing
“from previous run” so you can continue to improve. The
code TestForCompletion checks for a suitable end
condition.

This gives you a new generation of solution sets. However,
we can still improve our results further by randomly chang-
ing some of the child solution set values. This is called mu-
tation. My subroutine AddMutations shows how to ac-
complish this.

Once you have a new collection (generation) of solution
sets, go back and repeat steps 2, 3 and 4. Eventually, either
your top-scoring solution set of step 3 is going to satisfy
your goal; or it will start repeating itself. If it repeats itself
for too many cycles, then it probably won’t get any better so
you might as well stop. If that happens before you are satis-

 DECEMBER 2013 FORECASTING & FUTURISM | 41

cannot modify. Now that you know how to fish evolve (or,
switching metaphors, now that you know what goes on be-
hind the curtain), you are not limited to what they or I have
built for you. Enjoy the free tool; and then enjoy the power
of your new skill set!

FREE TOOL
Sometimes, you don’t really care how the car engine works;
but you need to be able to drive it. Here is the quick way to
accomplish that.

Start by downloading my general purpose genetic algorithm
tool for Excel workbook from http://www.soa.org/news-
and-publications/newsletters/forecasting-futurism/default.
aspx. Save it to some folder on your PC, bring it up, and
enable macros.

I won’t go into a lot of detail here because the workbook
has instructions built into it. The workbook also contains a
couple of sample problems that you can solve to get a quick
feel for how to structure your own workbook. This work-
book and this article are a response to requests about how a
person might adapt my earlier code to their workbook prob-
lems, I wrote this generalized genetic algorithm routine for
you to be able to use it without having to learn to program.
Alternatively, you can easily modify the program to extend
the built-in features.

All you have to do is arrange your spreadsheets in any way
that works from a given solution set (arranged in a column)
and that assigns a score in some cell. On the parameters
screen of the tool (see figure below), you will fill these into
the “Input set range” and the “Final score cell address” (note
that if you move your mouse over any input item, the pro-
gram will show you context-sensitive help for that item).
Then, fill in your choices for how many generations to run,
how many sets per generation, how many mutations are al-
lowed per new set, etc., and you can run your own genetic
algorithm solutions.

Genetic algorithms provide you with a powerful tool for
many types of problems that are very difficult to solve by
other means. Recently, I discovered that Microsoft has add-
ed an “evolutionary” solution method to its excellent Excel
Solver add-in. I almost stopped coding my add-in when I
saw that; but then discovered that it is limited to at most 200
variables in the solution set, and it’s still a black box that you Dave Snell, ASA, MAAA, is technology evangelist at RGA Reinsurance

Company in Chesterfield, Mo. He can be reached at dsnell@rgare.com.

Dave Snell

ENDNOTES

1 I describe this example (from Brian Grossmiller) in detail in
my article “Genetic Algorithms—Useful, Fun and Easy” in the
December 2012 issue of Forecasting & Futurism Newsletter.

2 Brian Grossmiller and I discussed this problem in our workshop
at the 2013 SOA Annual Meeting.

3 I am purposely assuming here that the random functions are
good ones. In most applications, that is not the case; but a
discussion of how you generate randomness is beyond the
scope of this article. By applying it appropriately, I mean to
restrict your outcomes to the range of values (either real, or
integers) acceptable for that variable.

