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Genetic Algorithms Revisited—A  
Simplification and a Free Tool for Excel 
Users
By Dave Snell

In the language of our children: OMG. Can it be that sim-
ple? What about DNA, genes, chromosomes, alleles, phe-
notypes, mitosis and meiosis, single nucleotide polymor-
phisms, etc.? Didn’t this all start as an attempt to mimic the 
amazing role that genetics plays in natural selection (unfor-
tunately dubbed evolution)? Yes, it did.

Humans fit this set of criteria quite well:

1. The blueprint for our cells is a long chain of pairs—
over 3 billion pairs in a chain.

2. Each pair can be one of four values: A-T, T-A, C-G or 
G-C. In order to keep this simple, I am not even going 
to say what the letters mean. It does not matter for this 
discussion.

3. Every cell contains a chain made according to these 
pairs. Each person has a slightly different set of links 
(pairs) in their personal chain.

4. The unique combinations for two different chains result 
in two different persons; and you can compare them to 
see which one is taller, thinner, smarter or whatever, to 
infer which chain best met your goals.

That’s the end of the biology lesson!

Let’s consider some applications that you might find more 
relevant to actuarial work:

1. You have to choose which provider groups to include 
in a health insurance network. There are over 3,000 
provider groups in your region and each group may of-
fer from one to 100 specialty services. Each specialty 
(acupuncture, cardiology, oncology, etc.) has a relative 
cost, and each provider group has a relative cost (spe-
cialties, location, experience, etc.). Your challenge is to 
pick the combination of provider groups that minimizes 
cost while maintaining adequate coverage for each area 

O ne of the cool aspects of teaching is that over 
time I start to better understand the subject I am 
teaching. In order to clarify a technical concept 

for someone else, I often find myself background process-
ing for days or months and suddenly seeing the more obvi-
ous points—the ones often obscured by the technical details 
when I am learning the topic.

Based on a few years of feedback now from giving presen-
tations to many groups, writing articles in various publica-
tions and coding programs for diverse projects, I have come 
to the conclusion that a genetic algorithm is a very simple 
concept shrouded in too many intimidating biology terms. 
In this article I want to share my simplified view of what a 
genetic algorithm is, where you might use it, how you can 
build your own, and how you can use the one I built for you 
to solve your own problems.

Basically, a genetic algorithm is a set of simple rules to 
solve certain types of otherwise difficult problems. In order 
to apply a genetic algorithm, you need a problem that lends 
itself to this type of solution.

CONTINUED ON PAGE 38

Criteria that make a problem suitable for a genetic 

algorithm:

1.  The problem involves a lot of variables—to some 

extent, the more variables there are, the better 

this technique applies.

2.  Each variable can take on potential values to 

produce different solutions.

3.  We can substitute a value for each of the variables, 

and that particular combination of individual values 

can be thought of as a solution set.

4.  The problem can be quantified in some manner 

so that any two solution sets can easily be 

compared to see which is better.
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First, I’ll show you the answer:

 

If you do wish to learn what happens behind the curtain, 
please continue. Let’s break our solution logic into some 
simple steps:

of specialty (at least five otorhinolaryngologists, at 
least 50 pediatricians, etc.). Since each provider group 
will be “in” or “out” of the network, each solution set 
is 3,000 values (either 0 or 1) long and your potential 
number of solution sets is 23000—a very large number. 

2. You have seven sales regions and 15 sales representa-
tives. You wish to allocate them in a manner that ad-
equately covers each region while respecting, to the 
extent practicable, the preference of each salesper-
son. Each solution set is 15 variables long, and each 
variable can be any of seven values so the number of 
solution sets possible is 715 (more than 4.7 trillion). 

 

3. You have a set of 50 equations with 100 unknowns, and 
the equations are not linear. Each unknown variable is a 
real number from the range -15 to +500. The number of 
potential solution sets is infinite. You want to minimize 
the sum of the output from each equation.

4. Your CEO asks you to do an enterprise risk manage-
ment (ERM) analysis of a portfolio of business. She 
knows that a standard CTE (conditional tail expecta-
tion) with 10,000 stochastic runs will not surface the 
combination of enough tail events occurring together, 
yet she also knows that in the real world a tail event on 
one variable may trigger a domino effect where other 
tails are hit. Your task is to do a true worst-case type 
of scenario within the ranges of the several dozen key 
parameters.

How do we approach these problems? They all seem differ-
ent; yet, they all seem to satisfy my stated criteria of appli-
cability for a genetic algorithm.

GENETIC ALGORITHMS REVISITED …  | FROM PAGE 37
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A way to guarantee that is to bring the top scoring sets 
over intact to the next collection. If you had 100 sets in 
your collection, you could bring over as few as one (the 
top scoring one) or as many as 100. There is not much 
point in bringing over 100 since that would really limit 
the improvement potential for the new collection.

If we bring over 20 solution sets from the previous genera-
tion, that means we need to create 80 more solution sets to 
get back up to 100 for this new generation. This is where 
we mimic, to some extent, biology; but again, do not let the 
terms of biology confuse you. We are going to build the new 
collection (generation) of solution sets by choosing values 
from the previous generation—notably the best scoring 
members of that generation. We might choose to pick from 
only the top five (those five sets with the best scores), the 
top 20, or even the top 50 as potential “parents” of the new 
generation. Let’s say that each solution set chain is going 
to be 100 variables long. The source for variable #1 (the 
front of the chain) could be the variable #1 value from any 
solution set in our chosen group of parents from the previ-
ous generation. Often, it is most efficient to just randomly 
choose one of them. Likewise, the source for variable #2 in 
the new solution set could be variable #2 from any solution 
set in the parent pool. Again, just pick one at random.

“Wait a minute! Are you suggesting that a single solution 
set could be made from several different parent sources? 
Among humans, that is not allowable.” You are correct! 
Among humans, it is not. But we were using biology only as 
a metaphor, so why limit ourselves to two parents per child 
(or two source solution sets per new solution set)? 

Let’s see how we could code that in Visual Basic (similar 
idea in most other languages):

1. Populate a collection of possible solution sets. In pre-
vious talks and articles I have used the popular genetic 
algorithm term for this kind of collection as a genera-
tion. Whatever you wish to call it, the first collection 
of solution sets must be populated. This is one part of 
the process that used to prompt questions from my stu-
dents. Unless you have special knowledge about the 
answers, it is customary to assign values to the vari-
ables of this first generation on a random basis. Most 
programming languages and spreadsheets offer a Ran-
dom function.1 Apply this appropriately to each vari-
able position in your solution sets. How many solution 
sets should you use? Good question! If your solution 
set chains are very long, you may be able to fit only 
a smaller number of sets (perhaps 100) in memory at 
one time. If your chains are much shorter, you might 
wish to test 1,000 or more in one collection (genera-
tion). In the workbook code you can see how to do this 
in PopulateInitialGeneration.

2. Test each set of the collection and save the scores ob-
tained. Whatever the nature of the problem, you need 
to decide how to judge the worth of your answer for a 
given solution set. That might be as simple as arranging 
your equations to end up with a single answer. Decide 
whether you want this answer to be minimized (for ex-
ample, a cost) or maximized (a benefit). The workbook 
code for this is TestSets. 

3. Rank the scores. Reorder the solution sets of the col-
lection (generation) from best to worst. You can see this 
code in RankTheScores.

4. Build the successive collection (generation) of solu-
tion sets. This is the step that confuses the most people. 
If you just populate the next generation with random 
values, how is the method any different from a trial-
and-error approach? The answer is that it is not, so we 
don’t do it strictly randomly. Instead, we take advantage 
of the information from our previous collection of solu-
tion sets and results. You don’t want the new collection 
of solution sets to ever be worse than the previous one. CONTINUED ON PAGE 40
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fied with the answer, then change some of the parameters: 
the number of solution sets in each generation, the number 
of elites (immortal sets), the number of parents allowed as 
sources, the number of generations requested, or the number 
of mutations allowed per set. Then, rerun the tool, choosing 
“from previous run” so you can continue to improve. The 
code TestForCompletion checks for a suitable end 
condition.

This gives you a new generation of solution sets. However, 
we can still improve our results further by randomly chang-
ing some of the child solution set values. This is called mu-
tation. My subroutine AddMutations shows how to ac-
complish this. 

Once you have a new collection (generation) of solution 
sets, go back and repeat steps 2, 3 and 4. Eventually, either 
your top-scoring solution set of step 3 is going to satisfy 
your goal; or it will start repeating itself. If it repeats itself 
for too many cycles, then it probably won’t get any better so 
you might as well stop. If that happens before you are satis-
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cannot modify. Now that you know how to fish evolve (or, 
switching metaphors, now that you know what goes on be-
hind the curtain), you are not limited to what they or I have 
built for you. Enjoy the free tool; and then enjoy the power 
of your new skill set!  

FREE TOOL
Sometimes, you don’t really care how the car engine works; 
but you need to be able to drive it. Here is the quick way to 
accomplish that.

Start by downloading my general purpose genetic algorithm 
tool for Excel workbook from http://www.soa.org/news-
and-publications/newsletters/forecasting-futurism/default.
aspx. Save it to some folder on your PC, bring it up, and 
enable macros.

I won’t go into a lot of detail here because the workbook 
has instructions built into it. The workbook also contains a 
couple of sample problems that you can solve to get a quick 
feel for how to structure your own workbook. This work-
book and this article are a response to requests about how a 
person might adapt my earlier code to their workbook prob-
lems, I wrote this generalized genetic algorithm routine for 
you to be able to use it without having to learn to program. 
Alternatively, you can easily modify the program to extend 
the built-in features.

All you have to do is arrange your spreadsheets in any way 
that works from a given solution set (arranged in a column) 
and that assigns a score in some cell. On the parameters 
screen of the tool (see figure below), you will fill these into 
the “Input set range” and the “Final score cell address” (note 
that if you move your mouse over any input item, the pro-
gram will show you context-sensitive help for that item). 
Then, fill in your choices for how many generations to run, 
how many sets per generation, how many mutations are al-
lowed per new set, etc., and you can run your own genetic 
algorithm solutions.

Genetic algorithms provide you with a powerful tool for 
many types of problems that are very difficult to solve by 
other means. Recently, I discovered that Microsoft has add-
ed an “evolutionary” solution method to its excellent Excel 
Solver add-in. I almost stopped coding my add-in when I 
saw that; but then discovered that it is limited to at most 200 
variables in the solution set, and it’s still a black box that you Dave Snell, ASA, MAAA, is technology evangelist at RGA Reinsurance 

Company in Chesterfield, Mo. He can be reached at dsnell@rgare.com.

Dave Snell

ENDNOTES

1 I describe this example (from Brian Grossmiller) in detail in 
my article “Genetic Algorithms—Useful, Fun and Easy” in the 
December 2012 issue of Forecasting & Futurism Newsletter.

2 Brian Grossmiller and I discussed this problem in our workshop 
at the 2013 SOA Annual Meeting.

3 I am purposely assuming here that the random functions are 
good ones. In most applications, that is not the case; but a 
discussion of how you generate randomness is beyond the 
scope of this article. By applying it appropriately, I mean to 
restrict your outcomes to the range of values (either real, or 
integers) acceptable for that variable.


