
*Copyright © 2002, Society of Actuaries
†Mr. Robert J. Marone, not a member of the sponsoring organizations, is standards evangelist from the Association
for Cooperative Organization Research & Development (ACORD) in Pearl River, NY

RECORD, Volume 27, No. 3*
New Orleans Annual Meeting
October 21-24, 2001

Session 52SM/OF/L
Introduction to J/ACORD XML Standards

Track: Computer Science

Chairperson: MARK D. J. EVANS
Lecturers: CHRISTOPHER D. BURKE
 ROBERT J. MARONE†

Summary: This session provides an opportunity for Computer Science Section
members to learn about current section activities and to provide input to the
Section Council. A brief introduction to the J computer language is provided. The
session also provides an open forum to discuss other new technologies and their
impact on he actuarial profession.

MR. CHARLIE LINN: We have two speakers this morning. The first speaker this
morning will be Chris Burke from J Software, who is going to give us a presentation
on the J computer language and its evolution and uses. The second speaker is Rob
Marone, who is the standards evangelist from the Association for Cooperative
Organization Research & Development (ACORD). He will be telling us about what
ACORD does with a concentration on the XML standards specifically. As we
mentioned, we are hoping to work with ACORD to establish data standards that we
have been working on. Hopefully in the near future we will be setting up a joint
working group with ACORD and the Society of Actuaries to work toward that.

MR. CHRISTOPHER D. BURKE: I'm here to talk about the J programming
language. I should also explain that I currently wear two hats. I am partner in the
firm of J Software, which produces the J language, but also for the last year or so, I
have worked as a full-time consultant for a company called Luen Thai, based in
Hong Kong. You probably have not heard of them, but you almost certainly have
one or more of their products. Luen Thai is one of the largest garment

Introduction to J/ACORD XML Standards 2

manufacturers in the world, selling quality garments primarily to the USA.

The History of J
In talking about J, I want to try to answer two fundamental questions. First of all,
why would actuaries be interested in J? Well, it is really because of our focus for the
language. In developing J, we focused on doing numerical computations, expressing
complex algorithms, analyzing large amounts of data, and doing so in a very rapid
development framework.

Of course, people who produce other software can also make similar claims. But
this is our focus, and we don't really worry about anything else. We think that
we've done a good job solving these kinds of problems. These are typical actuarial
problems. When you do modeling or valuations, then you do numerical
computations, or you're analyzing a lot of data. So we do have actuaries using J,
and we are also encouraging more.

Second, why develop another programming language? There are lots of
programming languages. Well, there's actually an interesting story here.

Fun. The original reason was that it was a lot of fun. It was neat to work on a new
language that did what we thought was the right thing in programming languages.
We didn't much like C or VB or FORTRAN, and we felt we had a better idea.

Applicable. After a couple of years, better reasons for developing the language
came along. In particular, we found applications in which the language works well.
These applications were typically in the financial services business, but there are
applications in many other businesses as well. However, we found that banking,
investment, and insurance had the kind of problems that our language is really
good at.

The developers all have a lot of experience with interpreted array base languages.
We all have similar backgrounds, and I also should say that all of us have
programmed in many different languages, as well; so we have wide experience. But
in particular, we were very enthusiastic about this type of approach.

Clients. And then the third reason is clients.

Clients are always surprising. If you have ever worked as a consultant, your first
clients always come as a surprise. Why would anyone call me up and say, "We'd
like to bring you over and pay for your services?" But we started getting clients for
J, and they were very enthusiastic clients and were willing to spend a lot of money,
because they found that the particular language we developed was ideally suited for
the particular problems they were solving.

In many cases, the clients we had were people who had spent a lot of time and a
lot of money trying to develop applications in standard languages such as C and

Introduction to J/ACORD XML Standards 3

completely failed. They would spend a long time doing C. Then they came to us and
said, "Can you do this in J?" And very quickly, we would say, "Yes we can. Here's
the solution."

This point is actually fairly typical: People tend to use oddball languages or use
consultants when all else fails. They've tried everything, and it doesn't work, so
they come to use something unusual. But we have developed a good client base,
and that's really kept the language going and kept the language expanding.

Complementary
How does J compare with things like Excel, C++, and VB—all standard languages?
Well, we really don't compete with them. And we don't want to compete with them.
We think that we complement them, and we do things that these languages do not
do particularly well.

Almost all our serious clients do not use pure J. Instead they use one of these
languages—Excel or VB—and they call J to do their calculations.

For example, one of our investment clients uses Excel for almost all its work, and
the people using their applications load up an Excel worksheet, and they type in
Excel, click buttons in Excel, and so forth. But when clicking those buttons, a J
interpreter is sitting underneath Excel invisibly, doing all the calculations. So we're
able to add calculational functionality to Excel. The reason they want to use J is that
Excel does not work very well with large data sets. So they find that they if they
use Excel for processing, the task takes forever; or Excel just falls over. However,
they can use J and get essentially instantaneous results, but with the same
interface they would use normally.

So we feel we complement these languages; we don't compete against them.

Core Language
We have focused almost all our efforts on the core language interpreter. There is a
database and graphic user interface (GUI) in J, and they work quite well for simple
applications; but they're not our focus. We occasionally have people come to us and
ask, "Well can you add a little functionality to the GUI?" Typically our answer is,
"No, we are not interested. If you want to do that, then use VB for the GUI".

Just Another Component
J is not intended to be a complete programming system. We're not reinventing the
wheel—instead we are just another component in an application. This component
business (Table 1) is quite interesting. Consider, for example, maps of applications
that our clients develop. Most maps are much more complex than this, and have a
page full of little diagrams; this is just a simplified map. But the interesting thing
about this particular map is that although J is part of the system, you never would
notice it. You can see a calculation server, and that would be the J application. The
point is that it's just one component of the system.

Introduction to J/ACORD XML Standards 4

Table 1

6

Just another Component

Internet Explorer

Grid
Control

Report
Writer

Calculation
Server

IIS

Active Server Pages

Microsoft Transaction Server

SQL Server Calculation
Server

MS OLAP

VB Script + JavaScript

Client XML/HTML Server

We have spent a lot of time making J work well with other applications, so it just
slots in there. You can see in this example that J is running on both client and
server.

Implementation
J is written in pure C; not C++. It's very easily ported to various machines and
operating systems. One way of describing J, in fact, is simply to say it's a collection
of C classes that has been optimized for numerical computations. It's pure C and
easy to port. We also have a 64-bit version as well.

The J system runs equally well on the client and server, and it's small enough to be
downloaded to a client from a Web application. Now this is something we've done
quite a bit, and something that I do myself. The J engine is about 700K, and that's
actually quite easy to download; on the Web you get such downloads in a few
minutes. This is a one-time download, and the Web application can then do
computations locally. We use that in scheduling, but, as you know, a typical
application in an actuarial business would be a Web-based life insurance illustration
system. In such a system, you could download a copy of J and have J run locally on
the client. The user would never know it was J, but you would have the benefit and
do the computations locally.

J is an absolutely standard Windows object. It's also a standard Windows 32-bit
DLL. There is nothing special about J at all. And if you don't want to use COM or
DLLs, but you want to run under Linux or UNIX, we support sockets very efficiently.

Introduction to J/ACORD XML Standards 5

Interpreter
We make a very clear distinction between the language interpreter and the
development environment. What I mean is that these two things are completely
different programs, completely independent programs.

The development environment is disposable. If you don't want it, you can get rid of
it and the language will still work fine. The particular benefit here is that an external
program has complete control over a J application. For example, you can do
anything in J by calling it from VB.

Just to emphasize the point, suppose we weren't talking about J but about VB. You
could not imagine another program such as Excel driving the VB development
environment—it's just not possible. How could you create a form in VB from Excel
or from another language? You can't. VB, like almost all languages, is a monolithic
system, where the development environment is a part of the program. But in J, we
make it completely separate. The development environment can be discarded, and
you can use another program to drive it. So, VB client can drive J in a way that J
could not drive VB or anything else could drive VB. We found this an extremely
useful facility, and it's one of the reasons why J fits in so well with other
applications.

Key Ideas
Let's talk about some of the key ideas of J. We call it a mathematical calculation
engine that is good at, well, mathematical-type things. It's like a mini-version of
Mathematica where we have optimized pure numerical calculations.

It's an interpreter, so you get immediate response when you're using it, and it's a
very nice interactive development environment. The functions are optimized for
large data sets. We typically don't mind in J whether you're adding two numbers or
adding a million numbers. It doesn't matter. Of course, a million numbers will take
a little bit longer, but as far as the interpreter or writing the language is concerned,
it doesn't matter. J is very scalable.

Built-in Functions. There are also many built-in functions to manipulate data.
These are the kind of functions you would have to write yourself if you were using C
or VB. Interestingly, there are many functions to create and manipulate functions—
this is a feature you see fairly rarely in languages. Again, with VB or C, how can
you create new functions as part of the language? You can't. And of course, you
write your own programs. But you're not writing built-in functions. In J, you can
essentially write your own built-in functions. It's very easy to extend the language.

Syntax. The syntax is very simple and consistent. It's independent of data type
and how the data is stored. And it's independent of the underlying machine and the
operating system.

For example, you can write a program under Windows and take exactly the same

Introduction to J/ACORD XML Standards 6

program and run it under UNIX. It's exactly the same code, unless you happen to
have used something specific to Windows. If your code makes a call to Windows
API, it's not going to run under UNIX. If it doesn't make any such call, and it just
does calculations—which is very typical of actuarial work—then you can use exactly
the same code under any platform, and you can develop under Windows and run
under UNIX if you want better performance.

Special Features
There are actually a lot of neat things in J, and it has many things that are very
useful.

For example, we have a Unicode data type, which was requested by clients
overseas. If you do business in Japan, Korea, or China, you have to support their
character sets. Most programmers do it in a very crude way; for example, a C
programmer treats Unicode characters as a 2-byte character string. But in J, it is
built it into the language, because it is so useful.

Another data type is the symbol data type. What is a symbol? Let me try and
explain this with a problem. Suppose you're doing investment analysis and getting
a real-time data feed on stock prices. Let's say you're tracking 10,000 stocks.
You're going to have 10,000 names in memory, and you're going to get a real-time
data feed that has the IBM price or AOL price or whatever. Each time you get a
data feed, you're going to look up the ticker in your list of 10,000 names.

Now In J, such things are highly optimized. It's really a fast look up, but the fact of
the matter is if you have to look up a name in 10,000 names and do this several
times per second because you're getting a real-time feed, it can take time. So, the
idea of symbols is that we pre-hash the name list so as to allow look-ups that are
almost two orders of magnitude faster than a plain look-up. Essentially, you can
have real-time data feed with instantaneous look up.

Sparse Data Sets. One of the case studies I'll discuss is of a client who has a very
large amount of data that wouldn't, in fact, fit on the machine, but most of the data
is empty. This occurs quite often in practice. In J we can represent such data as a
sparse data set. It provides very efficient calculations and storage on such data
sets.

Memory Mapped Files. Let's say you're running your machine with 256
megabytes of memory. You have a file of data that is 500 megabytes. Clearly you
cannot read that file until your active memory is increased. So if you have to
process that file all at once, you'd have to do something clumsy, like reading a bit
of the file and doing the processing, and then reading a bit more of the file and
doing some more processing, and so on.

In J we can memory map the file. We can assign the entire file to a variable in J
and process it, so you could add up the contents of a file as a single statement,

Introduction to J/ACORD XML Standards 7

even though you've only got 256 megabytes of RAM. It's an extremely useful
feature for people who deal with very large data sets.

Object Orientation. J is a fully object-oriented system. I'm aware that people
mean different things by object orientation. But J is object-oriented in this sense; I,
and the people who use J, use classes and objects throughout our programs, and
we find it extremely useful. It is a different type of object orientation from JAVA or
C++. It's customized for J, but in fact, it works very well, and we find it extremely
useful in development.

Case Studies
I wanted to look at three case studies.

Budgeting. The first case study is a budgeting company. This particular company,
I think, is the largest company in the world that specializes in budgeting.

Budgeting is an interesting problem. Before my first look at budgeting a few years
ago, I thought it was very simple. It is, in fact, simple if you have a Mom and Pop
store—you can load Excel, key in the months and your expenses and do it that way.

But budgeting is a seriously difficult problem for big multinationals. A classic case
that this company handles has about 150 companies around the world. It's very
difficult for them to handle the different data feeds and different levels of
organization. It's a seriously difficult problem to acquire and process their data.

As well as that, they use very sophisticated algorithms to do the budgeting,
because budgeting is not simply a matter of doing accumulations. These guys want
to budget downwards. They want to be able to say things such as, "Well, the
expenses for this particular office add up to $5 million, but what I would really like
to see is, what would happen if I cut the expenses to $4.5 million and break back
the calculations?" They have very complex algorithms to do this.

They also need both client and server calculations. They spent a lot of effort trying
to write their code in C and failing. They came to us and asked if we could do it.
One of the problems they had encountered is a combinatorial explosion. In
budgeting, you typically want to budget by many different dimensions—by many
different types of things, such as the customer, the account, and so on. Now just
imagine: suppose you had 10 different factors you wanted to put into budgeting,
and each factor had 100 different possibilities. Then the possible budget items
would be 100 to the power of 10, which is a big number. And that certainly couldn't
fit on the computer.

But if you had that 100 to the power of 10 possibility, but only a relatively small
number of real data items—which is really the case—then what you have is a
sparse data set. In fact, this particular company came to us and said, "Can we do
sparse data?" And we said, "Yes." And that's the reason why they use J.

Introduction to J/ACORD XML Standards 8

Underneath all their budgeting calculations is a copy of J doing sparse data
calculations.

Financial Analysis. The second company I want to look at does financial data
mining.

Most of its clients are insurance companies, typically general insurance companies
that need to analyze their data. Rather than describe their products, I've just taken
a couple of quotes from their own promotional materials, so let me just read them
out loud.

"Today's data analysis market is a nightmare. In order to deliver timely tailored
information to users, companies must stitch together a complex, unmanageable
system of data marts, online analytical processing (OLAP) cubes, ad hoc query
tools, report engines, and data mining tools."

"The software tools in use today were not defined with these goals in mind. Few can
handle sufficient volumes of soft data, and few, if any, can process, model, and
aggregate fast enough to deliver information in real time."

This company uses J for their calculations. They use Java for the GUI, and J for the
calculations. And J, in fact, solves these problems for them.

Scheduling. The last company is my own. What I do is scheduling, and my
company has extremely complex scheduling requirements.

Simple scheduling is easy. If your schedule has only processes that follow each
other linearly, then you just add up the times in each process, and you've got the
total time of the combined operation.

But for the kind of work that my company does, scheduling is extremely difficult.
You have all sorts of complications. For example, throughput varies by product line
and by the particular product you're manufacturing. You have to look at the
operating hours, machine availability, time-shared work, and line-shared work.
Then people come along and ask, "Can this particular product start from this state
and work on this particular line? Let's look at your raw materials and shipping
resources."

I am with a small team at Leun Thai that started working on scheduling about 18
months ago. We now have the scheduling working fine, both Web-based and
server-based. But even though they work well, we still have work to do because
you always can refine it. It's an endless process.

J has worked really well for this. The thing about J that is really beneficial here is
that it is so quick to write programs. Users come along to say, "We need to modify
the schedule by taking into account this particular factor." We usually can modify

Introduction to J/ACORD XML Standards 9

the entire scheduling system within a day or so. We are continually refining the way
the scheduling works.

We also use J for several other things—capacity planning, quota management,
electronic data interchange (EDI), and reporting.

Quotes
Here are some quotes from some of our users.

"J makes for very quick writing, but more importantly, quick rewriting. So even
large programs can stay young forever."

"Well-written J programs run very fast. They picked the best algorithm for your
data and use tricks you wouldn't think of."

A lot of work has been done on optimizing the algorithms and also in doing some
neat tricks. So J runs very fast. It would be hard for a good C programmer to keep
up with J and do the things that we're doing.

APL
Now, while I'm talking about this, you're probably saying, "Well, this sounds like A
Programming Language (APL)." And it does. Let me explain that. Many of the
people on our team are long-time APL programmers. We liked the language, but we
didn't like a lot of the features. We didn't like the monolithic development
environment. We felt a lot of things that were fine 20 to 30 years ago, when APL
was first invented, just didn't work well.

J is essentially a complete reworking and complete re-implementation of APL. It
definitely isn't APL. One of the things that we found difficult when we first started
thinking about J was that someone would ask, "Well, how did they do it in APL?" To
which the invariable answer was, "That's not relevant. It's not important." We
basically squashed any APL component. And that was the right thing to do, because
we didn't really want to be held back with baggage from an old program.

J is much simpler than APL. It's much more consistent. It's a lot more powerful. It
has a lot more features. The performance is much better than APL. It depends on
what you look at, but overall, you're going to get several times better
performance—some things we can do in J that APL is far too slow for doing.

J is a plain scripting language. We use plain text files. There's nothing special about
a J program. You can use Notepad to create it or to edit it. You can use a standard
programming environment. You can use any version control system. If you want to
use a Microsoft SourceSafe, or any other version control system, you can use that
for J. We made it pretty easy to access some other software. It's just a plain,
ordinary, COM object. All these things are problems with APL.

Introduction to J/ACORD XML Standards 10

The way that I think about it, is that if you ever used APL and you like it, then you'll
like J, because we do "APL-ish" type things in a much better way. But if you know
about APL and you hate APL, which a lot of people do, then the things that you hate
APL for have vanished.

MR EVANS: Thank you very much, Chris. We appreciate the presentation. As I
mentioned before, Rob Marone is from ACORD, and he'll be talking about the
ACORD XML standards.

MR. ROBERT J. MARONE: I'm a standards evangelist for ACORD, which means my
full-time job is to go around and educate people about the ACORD standards,
encourage them to implement the ACORD standards, and assist in any way in that
implementation activity.

I'm going to give you an overview this morning about ACORD as an organization
and talk a little bit about our XML standards and why they may be of interest to
members of the Society of Actuaries.

ACORD actually is an acronym. It stands for Association for Cooperative
Organization Research & Development. We don't say that very often, though. It's
been around since 1970. It's a not-for-profit corporation, and it was formed
originally to standardize paper forms to the property and casualty insurance
industry. But since then, we've gotten involved in the EDI standards for property
and casualty, a variety of standards for life insurance, and for reinsurance as well.

Business Drivers for Standards
There's a lot of interest today in standards. What are the business drivers behind
the interesting standards in the insurance industry? Well, they are a lot of the
drivers that are changing the industry, such as globalization—entering the markets
in other parts of the world. With merger and acquisitions activity, when
organizations come together, the integration of those organizations—if they're
based on standards to begin with—can be much simpler.

The entire e-business revolution, the search for straight-through processing, and
the yearning for driving down costs through automating the business processes of
this industry all are drivers that have made people much more interested in
standards today.

History Lesson
I'll give you a quick overview of the history of ACORD standards. Like I said, in
1970, we started with the forms initiative. That's still a big part of what ACORD
does today. We do all of the filing with the states for the property and casualty
paper forms and that sort of thing. In the 1980s, ACORD got involved in EDI
standards for automating the transmission of information from the forms, mostly
between agencies and carriers. And we have a standard that's called AL3, which is
our EDI standard for property and casualty insurance. That is still supported very

Introduction to J/ACORD XML Standards 11

widely today. We have more than 60,000 implementations of this standard between
agencies and carriers.

Throughout the '90s, we were focusing mostly on implementation of those EDI
standards. How many people are familiar with the term EDI? It stands for electronic
data interchange. During the 1980s and '90s, that was the way that trading partner
communication was implemented, for the most part.

It wasn't until 1996 that ACORD got involved in life standards. What happened at
that time was, Microsoft had created a little working group of a couple of vendors to
develop a standard for integrating a life insurance agent's applications in a Windows
desktop environment using its object technology, which at that time was called
SLIEC (Solutions for Life Insurance Enterprise Computing). At first they thought
they would be able to just work with these three vendors, and release the standard
and that people would cheer and adopt and implement the standard. But they were
a little naïve politically, because what really happened was everyone else that
wasn't one of those three vendors got extremely upset that they were working on
this without being involved.

Microsoft didn't want to be a standards organization; they just wanted a standard
that was based on their "OLE" (object linking and embedding) technology, and they
didn't really care who managed it and who participated in developing it. So they
looked for an organization to turn that standard over to, and they found ACORD.
ACORD expanded the scope of its operations to start working on life standards. At
that time, it still was pretty much based on integrating applications in a desktop
environment. And that standard was called "OLifE".

It wasn't until 1998 that ACORD got involved in standardizing XML standards, and
the scope of our initiatives included applications throughout the entire enterprise,
as well as trading partners communications—any time one enterprise needs to
communicate with another—using XML.

Today we have a number of initiatives, and I'm going to talk about each one
individually.

Convergence
Our convergence initiative is called "emerge." We've started a number of global
initiatives, and we have reinsurance initiatives for the first time in both P&C and
life.

Supported Standards
ACORD supports three distinct standards. On the life insurance side, we support all
the major lines of business that are considered to be life insurance. We support an
underlying object model for the life insurance processing, we have XML, and we
have a brand-new forms initiative to standardize paper forms for life insurance.
That's a separate issue.

Introduction to J/ACORD XML Standards 12

On the P&C side, we have support for the major lines: personal lines, large and
small commercial lines, surety bonds, and we have the EDI standards for P&C,
which are called the AL3. We also have XML for P&C, which is a set of XML
messages defined for property and casualty insurance.

Third are the reinsurance standards on the P&C side, which we acquired this year
from an organization called WISE. I don't know if any of you are familiar with that.
It was a European standards organization, and they had a set of standards called
the JV standards, which stand for the joint venture. They're used in the reinsurance
market and large commercial market in Europe mostly, but also in the U.S.

Those are our three distinct lines; they all support XML, and we support EDI on the
P&C and the reinsurance side.

ACORD Members
Who are the members of ACORD? We have carriers—life insurance companies—
who are the full members of ACORD. They're the only ones that are eligible to be
on our board of directors and certain steering committees. The associate members
comprise other associations, solution providers, or software vendors, and this list of
other organizations that are involved in some way or another in the insurance
business. This is where ACORD's revenue comes from. Members pay us a fee to be
a part of the process of setting the standards, and that's really the only source of
income we have.

As of August of this year, we were up to 405 active members—that's counting only
carriers and solution providers. That represents a healthy growth over the past five
years.

We have a number of international efforts that have taken place. We are working
with other standards organizations. With local associations in areas such as South
Africa and Australia, what happens is that an organization in that particular region
will act as what we call a regional management association. They represent their
members at ACORD and essentially speak with one voice and make sure that
whatever standards we're developing address the needs of that particular region. In
addition, we have another couple of initiatives that we're working on in Southeast
Asia and Japan, as well as one in Latin America.

XML
Now for XML: Most of the growth in ACORD's membership, and interest in our
standards really have taken off since 1998 when we got involved in XML standards.

Why all the interest in XML? How many people here are familiar with XML itself as a
technology? Everybody knows what it is today. It's a technology that's promulgated
by the W3C, which is the same organization that develops the standards for the
World Wide Web, such as HTML. ACORD is a member of the W3C, and we actually
vote on things such as XSLT, which is the style sheet on language that was adopted

Introduction to J/ACORD XML Standards 13

last month. We got to cast a vote in favor of making that an official W3C standard
and that sort of thing.

XML is a big improvement over EDI. EDI was the way that companies would
communicate between one another in the 1980s and 1990s. This is an example
from our AL3 standard for a small snippet of EDI that is representing information
about a person (Table 2). It's based on a fixed-length, binary data stream. And
because of that, it's not easy to see where one field begins and the next one ends,
because the data set itself does not describe that. You need to go to external
documentation to know how to interpret this. For some of the information, you can
sort of guess.

Table 2

11 Copyright ACORD Corp.

Party_1Gallo, Joseph M.
30350892145 Ohio

1USA1Home108 Dawson St
Philadelphia PA 19130 USA
Joseph Michael

Gallo 2 Single 1Male 1965-
04-22

Hard to read

Rigid

Versioning
problems

EDI is rigid. For example, since each of these fields is a fixed length, if I decide,
"OK, I've allocated 20 characters per name, and tomorrow I want to do business in
Thailand, and the last names average 25 characters, I've got a problem." And I
can't easily just say that this message is now going to have 25 characters or 40
characters for the name, because doing that has an effect on the rest of the side of
the message. That will break existing programs that are relying on this too, being
exactly 112 characters from the start. So you get into versioning problems with the
EDI because, again, it's based on these fixed records.

Now, let's take a look at the same snippet of information. This is an XML format
(Table 3). This actually is from the ACORD standard called XML Life, which is our

Introduction to J/ACORD XML Standards 14

XML standard for life insurance. And this is a snippet of information from an
element of the file that we call the party, which represents either a person or an
organization.

Table 3

12 Copyright ACORD Corp.

<Party id="Party_1">
<FullName>Gallo, Joseph M.</FullName>
<GovtID>303508921</GovtID>
<ResidenceState tc="45">Ohio</ResidenceState>
<ResidenceCountry tc="1">USA</ResidenceCountry>
<Address>

<TypeCode tc="1">Home</TypeCode>
<Line1>108 Dawson St</Line1>
<City>Philadelphia</City>
<AddressState>PA</AddressState>
<Zip>19130</Zip>
<AddressCountry>USA</AddressCountry>

</Address>
<Person>

<FirstName>Joseph</FirstName>
<MiddleName>Michael</MiddleName>
<LastName>Gallo</LastName>
<MarStat tc="2">Single</MarStat>
<Gender tc="1">Male</Gender>
<BirthDate>1965-04-22</BirthDate>

</Person>
</Party>

Self
Describing

Structured

Extensible

First of all, the data is self-describing. Every piece of data has a tag that has both a
start and an end, the ending being indicated with a slash at the beginning of the
name. If the tags are selected wisely, you will be able to interpret that this data
gives the full name of the person. There is structure to it.

Encoding
One of the things that we've done at ACORD is decide how this information should
be encoded for each of the different data types that are commonly found in a
message like this—things such as strings and integers and currency amounts and
dates and times and coded sets of information such as the states.

This is a good example of that. You can see that there's a tag called resident state
and it has two parts to it. The description of the state itself is the English word for
the state, Ohio; but then there's an attribute in the tag—this part here, which is
called TC, which stands for type code, which means that there is an official code
and set of information.

ACORD publishes all of the codes that go along with this. The code for the state of
Ohio is 45. All of our coded sets work this way. You can see it down here again in

Introduction to J/ACORD XML Standards 15

the marital status. You can see a TC of two and a gender male, TC of one. It's
actually that integer value that programs will work against. So if you're writing a
program, and say you're in JAVA or J, you can go against this integer, and it's the
same no matter what. If I were writing a file that was for an application in a foreign
language—say this is a message going to a Spanish insurance company—I could
change the description to say "soltero" instead of "single"; but this code 2 would be
the same. That's so the application could continue to work, and yet we can support
multiple languages with the same XML message.

This gives you an idea of what XML looks like. It is an improvement over EDI
because it is self-describing, it gives structure to the data, and it is easy to extend.
None of the individual tags has an intrinsic length associated with it. So if I wanted
to have 40 characters for the name instead of 20, that's not a problem because,
again, the name doesn't end until it finds the end tag. There's no intrinsic size
associated with each element.

In addition, I can add tags that current programs will simply ignore because of the
way XML programs process this information. They parse the data, and they look for
the tags that they're aware of; but anything that's additional is just noise for them.
They don't see it. They don't care. And so that gives us a way to add to the
standard in a backward, compatible way as we go from version to version. So all of
those are big improvements.

The W3C provided the language called XML and the syntax for this data stream. But
it's ACORD that's providing the language for the insurance industry. Of course, it's
our members that are providing that. I'll talk a little bit more about the specific
standards that we support.

On the life insurance side, I mentioned that we have an underlying object model.
The object model defines the entities that we deal with—the parties, which are
people. It defines things such as policies and coverages and riders and that sort of
thing—very insurance-specific. It also has support from investments and other
financial instruments that are related to the insurance industry. We currently
support the physical implementations on three different technologies. One is the
original OLifE, which is based on Microsoft's COM technology. Another
implementation of that is called JLife, which is based on JAVA and, more
specifically, the EJB JAVA objects.

Then we have the XML version, which is "XMLife" and "TXLife"—just so you're aware
that the actual XML standard has two different parts to it. The one standard is
called XMLife, which is an XML encoding of ACORD's abstract object model. The
TXLife is the "Transactions for XMLife", in which the actual message performs
specific business functions.

All of this information is available in great detail on the ACORD Web site. A large
amount of it is available in the public domain; anyone, including nonmembers, can

Introduction to J/ACORD XML Standards 16

get the information about specifications.

The model itself supports our transactions. There is an extensive list of the
transactions that have been standardized so far. These are messages that
businesses can use to communicate within themselves one system to another,
using XML, or between enterprises to go from one company to another—for
example, between an agency and a carrier or a lab company doing underwriting or
testing.

Possible Transactions
We've broken these down into a number of different types of transactions. The new
business submission, for example, is one of the most popular ones; this is the way
we can send in a case for underwriting using XML. And it has supports for all the
major lines of business in life, annuities, disability, and investments. On the P&C
side, we have the equivalent transaction, as well, for all the lines of business and
P&C. Even on the reinsurance side, we have the same basic message for a new
business submission.

One of the other ones is the illustration calculation message, which was developed
by our Illustration Working Group. It's a full-featured interface for getting back the
results of calculation for a projection of life insurance, including all of the supporting
calculations that you'd need to do an NAIC-compliant sales illustration, and all of
that.

We have product profile information such as policy product inquiry and investment
product inquiry; that's the way that you can get information about a plan design
that can be used by an illustration client to customize the interface for requesting
an illustration. It could be used in an electronic app submission to tailor the
application for the product and that sort of thing.

Then there are administrative functions, such as address changes and name
changes and inquiry transactions for things such as a holding inquiry, which is the
way you find out about a policy that either is going through underwriting or that's in
force to support giving status to a producer or letting policy owners see what their
current policy values are. And then there are some financial transactions for things
such as fund transfers, changing fund allocations for variable products, and making
withdrawal requests. It's actually a fairly comprehensive list of functionality that we
support today.

We have another project that's new this year, which is to do what we did back in
the '70s for P&C on the life side, which is standardizing paper forms for life
insurance. It's a little bit easier now, because we have the XML transactions behind
the new business submission. So we have a much easier go of doing this, rather
than doing it the other way around, which we did on the P&C side. If anybody is
interested in that, I can hook you up with the project team that's working on that
project.

Introduction to J/ACORD XML Standards 17

Important Associations
ACORD maintains an extensive array of relationships with other associations and
standards organizations. There are many other standards organizations that are
doing work that touches the insurance industry in some way.
I hope that after our meeting in November that we will be able to add Society of
Actuaries to this list, because we're talking about working on the data for the
mortality table standard in XML in association with the Society. That's something
that we'll be talking about in our steering committee meeting in November.

eMerge
I already mentioned that we have three distinct lines of standards—one for
reinsurance, one for life, and one for P&C. eMerge is the effort to take those three
and converge them into a single unified standard for all lines of business of
insurance.

What is the driver behind that? Well, a lot of the same drivers that are behind
standards in general are in force here, but especially the consolidation of companies
and companies going into multiple line of business. They want to have a single set
of standards that they can use throughout their enterprise if they're working with
life, reinsurance, or P&C.

Our members are telling us that they want that, and so we're trying to deliver it.
We kicked off this project in June 2001. It has an 18-month schedule. So by our
November meeting in 2002, we expect to have the first release of the Emerge
standard available. In fact, we're having a meeting in London right now where
people are working on that.

The idea behind it is, first of all, to come up with a single standard for insurance.
That includes the unified data dictionary of all the common terms between life, P&C,
and reinsurance, an underlying object model that is technology neutral and models
the different entities of the insurance industry. Upon that, we're going to build the
messages, just as we have in the current XML standards that are distinct for P&C
and life and reinsurance.

As I mentioned also, we are merging these three existing standards of XML for P&C
and XML for life and the JV reinsurance XML standards into a single unified model.

One of the important parts of that is that it's going to be built upon a technology-
neutral object model. We actually use UML, which is unified modeling language.
How many people are familiar with that? OK, it's a technology for doing abstract
object modeling that's not tied to any particular implementation, and it's actually
developed by a group called the OMG (Object Management Group). That's how we
will publish this technology-neutral model; and from that, we will then be able to
drive specific implementation, such as an XML schema, to support XML messages,
IDL for Java, or IDL for COM objects or for common object request broker
architecture (CORBA) objects, or that sort of thing. So you can go from this UML,

Introduction to J/ACORD XML Standards 18

which is an abstract representation of the model, and then deliver different
platform-specific implementation.

Global Framework
And then finally, when we're talking about the XML implementation of this, we're
talking about building this model on a global framework. The global framework that
ACORD has been working with is called the ebXML. How many people have heard of
that? It's an XML framework that has been developed by the United Nations Centre
for Trade Facilitation and Electronic Business (UN/CEFACT), which is a standards
body that's supported by the United Nations, as well as the Organization for the
Advancement of Structured Information Standards (OASIS), which is an
organization for structured information exchange or.

They have been developing this framework called ebXML, which is Electronic
Business XML, which includes things such as the standard naming convention for
XML identifiers and the rules for transporting XML from one system to another using
various technologies. These are rules for putting an envelope around the XML so
that it can be routed as needed to go from one organization to another, or maybe
through a portal or through intermediaries. ACORD has been an active member of
that framework, and now what we expect to do is build the insurance layer on top
of what this ebXML framework already has developed as a generic way to do XML
messaging in any industry.

Open Participation
The process that we follow to develop standards has open participation. Anyone is
allowed to join ACORD and be a member; only the active members can vote, while
others are allowed to participate in the meetings. We have strict antitrust guidelines
like the Society of Actuaries has to follow whenever you convene meetings, where
competitors are getting in a room to develop something. We have to be very careful
about the way we conduct the meeting, and we should start off by reading our
antitrust statements and that sort of thing.

Collaboration
We have an elaborate committee structure that is used to set the direction of the
group, to provide a route for appeals, and that sort of thing. That's what it looks
like. Today representatives from our carrier members are on the board of
directors—only carriers are allowed to be on the board. We have a global standards
committee, which is dealing with things like eMerge, which is our effort to convert
the lines of business into one. And then each of the individual lines of business—
life, P&C, and reinsurance—each have their own steering committees that actually
set the practical objectives for each group within each six month period of time.
Again, only carriers are allowed to be on the steering committees.

And then we have the subcommittees where the actual voting takes place for each
line of business. For any standard to be passed, we need to have a super majority
of 75 percent for it to carry. So there's no such thing as a small group of people

Introduction to J/ACORD XML Standards 19

getting together and railroading something through without broad-based support.

Then there are the working groups. The working groups are where the real work
gets done, and that's open for participation by anybody, including our associate
members and nonmembers and that sort of thing. Working groups reach decision
by consensus—there's no actual voting—and they in turn send their proposals on to
the various subcommittees, where they're voted on. The actual process itself looks
something like this.

A proposal for a new standard or a proposal for a maintenance request on an
existing standard is made by somebody, usually a member. And then the ACORD
staff reviews it and makes sure that it gets directed to the appropriate committee.
The committees typically send it to a working group, where it'll be developed and
the details will be flushed out. The subcommittee votes on the standard, and
assuming a 75 percent super-majority is obtained, then it's a candidate standard.
At that point, it goes to the steering committee, which will make a decision on
whether there needs to be an implementation pilot.

If it's a complex proposal or a new standard, it oftentimes requires an
implementation pilot, with which the information will be released and companies
can begin to implement based on the candidate standard and give us feedback as
to whether it's workable or not. And that's where we flush out the fine details of
anything that may not have been thought over when we were debating the
standard originally.

Once the implementation pilot is successful, there may be modifications to the
standard during that time. Then the steering committee itself passes the final vote,
which makes it finally an official ACORD standard. There's an appeals process as
well, if somebody is not happy with the standard, even after it's been approved by
the steering committee. We go to the global strategy committee; I think there's a
provision for it going to the board of directors as well.

All of our standards are open. Our open standards are available in the public
domain—anybody can use the standards without paying any royalties to ACORD.
Anyone can get information about the standards without being a member of
ACORD. If you are a member, however, you get additional benefits, such as
consulting services that are available only to our members for doing things such as
mapping the ACORD standards to your own internal data structures.

We offer training courses to educate you about the ACORD standards and how to
implement them. We offer a certification process through which solution providers
typically submit their applications to ACORD for testing to see that they actually
have implemented the standard correctly. In the case of an XML, we look at the
actual XML, validate that it parses correctly against the document type definitions
(DTD) or the schema and actually check to make sure that all of the required
components of the message are there and that the interpretation of the standard

Introduction to J/ACORD XML Standards 20

has been consistent with our understanding of it. That gives our members some
assurance that if they're going to buy an application from a software vendor, they
have some assurance that it implements the standard, and they'll be able to
integrate it easily into their enterprise.

And of course, ACORD does process facilitation; basically, we run this whole
process of debating the standards, voting on them, and publishing the information.
If you are interested in the standards themselves, www.acord.org is the place to go
to find a lot of additional information.

MR. EVANS: Thank you very much. Thank you Rob, it looks like ACORD has been
doing lots of good work, and we look forward to working with you on hopefully
many projects.

I have a question for Rob. As far as implementation of the standard, has a
timeframe been set, or are companies that want to start using the standard pretty
much on their own to do that?

MR. MARONE: Well, they're on their own. Since not all of the implementations are
from members, there may be implementations that we're not aware of. But in order
to encourage implementation, we've had implementation awards that we give out
every year at our technology conference in May. So, this particular year, we've had
13 people on the life side and some 17 on the property and casualty side that
implemented the XML standards in the latest 12-month period. So we got a kind of
feeling for at least the ones that had submitted certification.

We're also doing a survey right now to try to get a better feeling for all the
implementations, including the non-certified ones. So we have better statistics to
track the implementation. That's all part of getting the critical mass that makes
standards successful—knowing how many implementations we have.

MR. EDWARD C. JARRETT: One of the challenges that we have in our systems is
that we have evaluation systems that deal with very large extracts and data feeds
from the advent systems and various other sources. In dealing with gigabyte files
and changing those from our fixed layout form into an XML form, it looks just like
the size of a file that's going to go from, let's say, 2 gig to 10 gig. Just processing
that file both from the input and the output standpoint, how do you deal with those
types of things in XML?

MR. MARONE: What we've done in the ACORD standard is we've adopted the use
of multipurpose internet mail extensions (MIME) in order to break the XML
messages up into discreet components, typically one transaction or one policy at a
time, depending on what your application is.

Let's say you were doing a 2-gigabyte extract. That would be, you know, 500,000
policies that you processed in a nightly run. It's not practical to put those into a

Introduction to J/ACORD XML Standards 21

single XML stream. In real computers, it's difficult to parse some deal with that
much information. So instead, we specify the use of MIME in order to break them
up into individual XML documents. Then you can use standard tools for taking the
MIME file and breaking, disassembling it on the other side, and then processing
each one individually.

Does that answer your question? That's what the ACORD standard calls for you to
do if you need to deal with a very large data set. I know it's difficult to deal with a
huge 10-gigabyte file in general. That's another problem someone would have to
talk about implementation strategies.

