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Hidden Markov Models and You
By Doug Norris & Brian Grossmiller

T his is the first of a series of articles exploring uses 
of Hidden Markov Models in actuarial applications. 
In this introduction, we will go over the basics of 

Hidden Markov Models along with some brief illustrative 
examples.

WHAT IS A HIDDEN MARKOV MODEL?
A Hidden Markov Model (HMM) is a method for evalu-
ating, and finding patterns within, time series. This can 
be a very useful way to model data under the right cir-
cumstances, such as when individual data points could 
be swayed by different influences. For instance, the data 
in Figure 1 shows some clear low and high periods, in-
dicating that some manner of mixture model could be a 
good fit.

Some interesting questions arise from patterns like these, 
particularly when we see them in claims or sales volume 
data. How do we know if we are in a high or low state? 
What are the odds of staying high or low? What do we 
think the next data point will look like?

HMMs are similar to the Markov Processes covered in 
the current actuarial syllabus. The critical difference is 
that the matrix of state transitions is hidden, and we have 
to infer it from our data. Fortunately, the transition matrix 
typically is quickly estimated using a computer; we’ll get 
into a basic example after we review some assumptions 
and definitions.

STARTING WITH THE BASICS
When our data contains categorical information, we can 
construct a sequence of states easily. In the absence of de-
fined categories, the real power of HMMs comes into play, 
because we have to use the data values themselves to de-
termine these states or categories. A set of observations as-
sociated with the sequence of hidden states can infer the 
(hidden) transition matrix. A basic illustration of the hidden 
states and resulting observations is shown in Figure 2.

In order to apply an HMM, we need to assume that each 
observation is drawn from a given distribution. Discrete dis-
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Figure 1: Example of data showing high and low patterns.

Figure 2: Hidden States and Associated Observations

tributions, such as the Poisson, Binomial, or Negative Bi-
nomial, are attractive due to their mathematical tractability. 
Using a computer, several distributions can be constructed 
rapidly, along with statistics measuring how well they fit. 
In practice it may prove convenient to model them all and 
select a distribution on the back end.

In addition to the matrix of transition probabilities between 
states, the data also can determine the parameters for the as-
sumed probability distributions in each state. We’ll illustrate 
this with an example later in the article, but for now we’ll go 



18 | FORECASTING & FUTURISM JULY 2013

transitions to depend upon the past three states would make 
intuitive sense.

What do we think the next data point will look like?

In addition to the transition matrix, constructing an HMM 
also requires estimating the probability distribution in each 
state. If we have assumed a convenient distribution, then 
calculating the expected values of each state is straightfor-
ward. Our estimate of the probabilities of future states can 
serve as weights to determine the value we expect to see at 
that point in time.

Now, let’s take a look at an actual example to get an idea of 
how HMMs work in action.

ESTIMATING HIDDEN MARKOV MODEL 
SOLUTIONS
Because Hidden Markov model solutions are not eas-
ily solved in a closed form, many numerical analysis algo-
rithms have been built to estimate HMM parameters. The 
most popular of these algorithms is known as the EM al-
gorithm (or the Baum-Welch algorithm, after its inventors).

The EM algorithm is an iterative method, which produces 
maximum likelihood estimates for missing parameters in a 
HMM model solution. This algorithm involves repeatedly 
invoking an “E step” (estimating the conditional expectation 
of the functions generated from the missing data) and an “M 
step” (maximizing the likelihood, where the functions are 
replaced by those conditional expectations), until the algo-
rithm converges upon a solution. The solution space is typi-
cally non-linear, and will depend upon our initial estimate of 
the HMM parameters.

These algorithms are programmatically straightforward; 
however, it is always nice to have a head start. The results 
in the following example were built using the “R” program-
ming language, with a publicly-available HMM package 
whose algorithms are based upon the text “Hidden Markov 
Models for Time Series,” by Walter Zucchini and Iain Mac-
Donald.

over some of the benefits of using an HMM in the context of 
our three earlier questions.

What state are we in? 

Decoding is the process of using our data to determine the 
most likely sequence of hidden states we have observed. 
When we are looking at claims or sales volume, we will be 
interested in the state we are observing at each point (known 
as local decoding).

Conversely, in applications where the hidden state is an in-
or-out type category (such as the presence or absence of a 
chronic disease), we are more interested in what state all of 
the observations collectively imply. This is known as global 
decoding and is the method used in many applications of 
speech and facial recognition technology.

What state will we be in?

Our decoded data can give us a useful estimate of what the 
current state might be, and combined with the transition ma-
trix we can estimate what state we are likely to be in over the 
near term. If we estimate a large probability of transitioning 
into a different state at the next time point then the most 
recent data may be a poor estimator.

In the forthcoming example, we will assume that the transi-
tion at any point in time only depends upon the state imme-
diately preceding it. In practice, you might see higher order 
dependencies. For instance, visual inspection may suggest 
that your data shows a “high” state lasting for about three 
time periods before transitioning. In this case, modeling the 

THE EM ALGORITHM IS AN ITERATIVE METHOD, 
WHICH PRODUCES MAXIMUM LIKLIHOOD ESTIMATES 
FOR MISSING PARAMETERS IN AN HMM MODEL 
SOLUTION.



 JULY 2013 FORECASTING & FUTURISM |  19

PUTTING HMM TO WORK
One of the great challenges in actuarial work is teasing out 
the effects of seasonality on claim patterns. In this example, 
health actuary Albert Franken is having a bit of trouble es-
timating the number of claims that will be seen in the next 
month for a small rural clinic. He knows that seasonality ef-
fects are significant, as influenza and other maladies spring 
up in bunches and spike utilization. Fortunately, he has sev-
en years’ worth of claim history and a graph of the history 
readily shows a seasonal pattern in Figure 3:

Upon inspection of the data, Franken theorizes that the clin-
ic’s claim activity can be estimated by a Hidden Markov 
Model with three states:

• A low level of claim activity, where claim volume can 
be modeled as a Poisson distribution with parameter λ1.

• A medium level of claim activity, where claim volume 
can be modeled as a Poisson distribution with param-
eter λ2.

• A high level of claim activity, where claim volume can 
be modeled as a Poisson distribution with parameter λ3.

Estimating the three levels of claim activity at 53 claims 
(in a low month), 75 claims (in a medium month), and 93 
claims (in a high month), Franken uses an EM algorithm 
to produce a maximum likelihood estimate Hidden Markov 
Model to describe his clinic’s data.  

The resulting HMM gives us a transition matrix of:

65.3% 34.7% 0.0%

20.3% 58.1% 21.5%

0.0% 30.2% 69.8%

And Poisson parameter values of:

Low  41.74 

Med  71.91 

High 102.89 

Therefore, the HMM suggests that there are three states of 
activity—a low level of claims (with about 42 claims per 
month), a medium level of claims (with about 72 claims per 
month), and a high level of claims (with about 103 claims 
per month). Moreover, if a given month is a month with low 
activity then the following month will either be low as well 
(with 65 percent probability) or will be medium (with 35 
percent probability).

In the last month of clinic data there were 67 medical claims. 
How can the HMM help our actuary to estimate what could 
happen next month? He first needs to estimate which activ-
ity state we are currently in, and with 67 claims we have a 
99.7 percent probability of being in the “medium” level of 
activity (along with a 0.2 percent probability of being in the 
“low” level of activity and a 0.1 percent probability of being 
in the “high” level of activity).

Figure 3: 7 years of claims data showing a seasonal pattern.

Claims by Month (General Clinic)
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OBSERVING THE UNOBSERVABLE
We hope that you enjoyed our introductory article to Hidden 
Markov Models. In the December newsletter, we plan on 
putting together some more in-depth examples in Excel to 
help inspire your own applications. Stay tuned for more on 
the most fun models you never saw!
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Feeding this information into the HMM (after remembering 
how to do matrix multiplication), Franken finds that next 
month will be in a “low” level of activity (with 20 percent 
probability), a “medium” level of activity (with 58 percent 
probability), or a “high” level of activity (with 22 percent 
probability). Overall he should expect about 73 claims from 
the clinic next month:

41.74 * 20% + 71.91 * 58% + 102.89 * 22% = 72.69




