

Article from:

Forecasting & Futurism

December 2014 – Issue 10

36 | FORECASTING & FUTURISM DECEMBER 2014

Modeling With Python And Scikit-Learn

By Jeff Heaton

INSTALLING SCIKIT-LEARN
There are many things to love about Python. However, mul-
tiple Python versions and installing new packages is not one
of those things. Despite Python 3 being released in 2008,
as of 2014 Python 2.x still has an active following. Back-
wards compatibility was severely broken when the switch
to Python 3 occurred. Whenever using a Python example, it
is very important to understand if you are using Python 3.x
or Python 2.x code. The code in this article will work with
either Python 3.x or Python 2.x.

Package management presents its own unique challenge in
Python. Pure python packages can be installed with one of
several package managers such as “pip” or “easy_install.”
Unfortunately, many of the Python packages contain com-
piled code based on C/C++ or even Fortran. This is the case
with scikit-learn and some of the numerical packages it
depends on. Fully describing how to install scikit-learn in
Python 3 is beyond the scope of this article. I wrote a setup
guide for Python that can be found at the following URL.

http://goo.gl/l94xQG

SCIKIT-LEARN BASIC LINEAR REGRESSION
Scikit-learn makes it very easy to switch between different
model types. To start, consider a model to convert between
Celsius and Fahrenheit temperatures.

R and Python are the two most popular computer languages
for data science, as reported by a 2013 KDNuggets survey.
(KDNuggets, 2013) Both R and Python have a variety of
data science frameworks available for them. These frame-
works standardize the implementations of the many differ-
ent models that data scientists use. This article will intro-
duce the Scikit-learn (http://scikit-learn.org/) package for
Python. (Pedregosa, et al., 2011) A similar package, called
CARET (http://topepo.github.io/caret/index.html) is avail-
able for the R programming language. (Kuhn, 2008)

Scikit-learn is an open source machine-learning library for
the Python programming language. It features various clas-
sification, regression and clustering algorithms including
support vector machines (SVM), logistic regression, naive
Bayes, random forests, gradient boosting machines (GBM)
and k-means. Scikit-learn is designed to interoperate with
the Python numerical and scientific libraries NumPy and
SciPy.

The scikit-learn project started as scikits.learn, a Google
Summer of Code project by David Cournapeau. The proj-
ect’s original codebase was later extensively rewritten by
other developers. Scikit-learn is under active development
and is sponsored by INRIA1 and occasionally Google.
Scikit-learn was used for a number of successful Kaggle
(http://www.kaggle.com) competitions.

Kaggle is a platform for competitive data science that allows
the top data scientists from around the world to compete on
predictive accuracy. Kaggle has hosted a number of compe-
titions of interest to the insurance industry. Allstate hosted
a purchase prediction challenge, Liberty Mutual hosted a
fire-loss challenge, and Practice Fusion hosted a challenge
to predict diabetes in patients. The next article in this se-
ries will demonstrate scikit-learn modeling with data from a
Kaggle competition.

x = [
 [-40],
 [10],
 [25],
 [30]
]
y = [-40,50,77,86]

CONTINUED ON PAGE 38

DECEMBER 2014 FORECASTING & FUTURISM | 37

The model should return with 59 degrees.

We can also display the coefficients, RSS and variance for
this linear regression using the following commands.

The x-values represent the Fahrenheit input to the model,
and the y-values represent the Celsius expected output. This
is univariate data; it is also possible to use multivariate input
data, as seen here.

The above input contains two observations, or features, per
sample.

For this example, we will use the first, univariate data set.
Once we’ve defined the input and expected output for each
observation it is easy to create and fit a model. The follow-
ing code will fit a linear regression model.

x = [
 [1,2],
 [3,4],
 [5,6],
 [7,8]]

from sklearn import datasets, linear_
model
model = linear_model.LinearRegres-
sion()
model.fit(x, y)

Now that the model is setup, we can query it with the “pre-
dict” command. To find out the Fahrenheit temperature for
Celsius 10, use the following command.

print(model.predict(10))

The model will respond with 50 degrees. We can also pre-
dict a value not in the data set.

print(model.predict(15))

import numpy as np
The coefficients
print(‘Coefficients: \n’, model.coef_)

The mean square error
print (“Residual sum of squares: %.2f”
%
 np.mean((model.predict(x) - y) **
2))

Explained variance score: 1 is per-
fect prediction
print (‘R^2 score: %.2f’ % model.
score(x, y))

(‘Coefficients: \n’, array([[1.8]]))
Residual sum of squares: 0.00
R^2: 1.00

This results in the following output.

Of course, the temperature conversion fit perfectly, so the
RSS is zero and the R squared is 1.0.

SCIKIT-LEARN WITH A DECISION TREE
What if we wanted to use exactly the same data, only use a
CART decision tree? Scikit-learn makes this very easy. The
following code fits the temperature data using a regression
decision tree.

MODELING WITH PYTHON … | FROM PAGE 38

38 | FORECASTING & FUTURISM DECEMBER 2014

Fitting this to a decision tree is easy enough, with the fol-
lowing commands.from sklearn import tree

model = tree.DecisionTreeRegressor()
model.fit(x, y)
print(model.predict(15))

Notice that the code is nearly the same? We always use the
“fit” command to fit the model. Likewise, we always use the
“predict” command to perform a prediction.

VISUALIZING A DECISION TREE
Scikit-learn allows visualizations of some of the model
types. Decision trees are a model type that is particularly
easy to visualize. To see how to visualize a decision tree,
consider the following highly contrived data.

These observations represent individuals that applied for a
particular type of auto insurance. The x vector contains their
ages in the first column, gender in the second, and so on. For
gender, one means male, and zero female. Martial has a val-
ue of one for married, or zero for single. The DUI and acci-
dent columns contain counts of each infraction. Finally, the
y-vector contains a one for insured and a zero for declined.

features = [‘age’,’gender’,”marital”,
“dui”, “accident”]
x = [
 [16,0,0,0,0],
 [21,1,0,0,1],
 [42,0,1,0,0],
 [16,1,0,2,2],
 [34,0,1,0,1],
 [55,1,1,1,0]
]

y = [1,0,1,0,1,1]

model = tree.DecisionTreeClassifier()
model.fit(x, y)

To visualize this as a tree, we use the following commands.

There are a number of “overhead” commands in the above
code sequence. The main part to understand is that your tree
will be written to “tree_pdf.”

from sklearn.externals.six import
StringIO
import pydot
dot_data = StringIO()
tree.export_graphviz(model, out_
file=dot_data,feature_names=features)
graph = pydot.graph_from_dot_data(dot_
data.getvalue())
graph.write_pdf(“tree.pdf”)

This will result in the following tree.

The scikit-learn tree can be difficult to read, until you un-
derstand its format. Each node contains a single binary deci-
sion. If the condition is false, the tree will proceed to the left,
similarly, the tree will proceed to the right if the condition
is true.

from sklearn.ensemble import Random-
ForestClassifier
model = tree.DecisionTreeRegressor()
model.fit(x, y)
print(model.predict(15))

The number of samples that support each tree node is dis-
played. As the tree descends, and specializes, the number
of samples will decrease. Likewise, the Gini value should
decrease as the tree specializes. Gini is specific to the CART
algorithm and acts as a loss function to minimize.

Perhaps the most confusing line to understand is the “val-
ue.” Only final decision nodes (leafs) will contain a value.
Because we were classifying into two sets, there will always
be two values in the “value” array.

The first number in the value array specifies the number of
class 0, or decline, samples. The second number in the value
array specifies the number of class 1, or accepts, samples.
Ideally, only one of these has a value, and the other is zero.
If this is the case, the Gini has the optimal value of zero.
The output of the tree is usually interpreted to be the deci-
sion node’s value with the most number of samples. For ex-
ample, the right-most node on the above tree would output
(be accept is this correct?), because there were three accept
samples, and no decline samples.

SCIKIT-LEARN WITH OTHER MODEL TYPES
Scikit-learn supports many different model types. The fol-
lowing code would make use of a random forest.

Similarly, the following code would make use of a Gradient
Boosting Machine (GBM).

from sklearn import ensemble
model = ensemble.GradientBoostingRe-
gressor()
model.fit(x, y)
print(model.predict(15))

These advanced machine-learning models are overkill for
this very simple linear data setup. For this completely linear,
noiseless data set, the linear regression model is actually the
most accurate.

OTHER FEATURES OF SCIKIT-LEARN
Scikit-learn includes many other features that assist in mod-
eling. Model selection can be automated by trying many dif-
ferent model parameters. This slow process can be sped up
using multiple processing cores on your computer. Scikit-
learn also contains functions for feature selection, normal-
ization, dimensionality reduction and many other common
modeling tasks.

The next article in this series, titled “Titanic Pythonic Mor-
tality Modeling” will look at the Kaggle dataset for the Ti-
tanic. This is a very simple mortality question, given sta-
tistics about the passengers, how accurately can we predict
who survives and who perishes. The next article will dem-
onstrate using Python and scikit-learn to accumulate, pre-
press and then model the Titanic data set.

DECEMBER 2014 FORECASTING & FUTURISM | 39

CONTINUED ON PAGE 40

40 | FORECASTING & FUTURISM DECEMBER 2014

REFERENCES

KDNuggets. (2013, 8 1). Languages used for analytics
/ data mining / data science . Retrieved 7 31, 2014, from
http://www.kdnuggets.com/polls/2013/languages-analytics-
data-mining-data-science.html

Kuhn, M. (2008). Building Predictive Models in R Using
the caret Package. Journal of Statistical Software , 28 (5).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., et al. (2011, 12). Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Re-
search , 2825--2830.

Jeff Heaton, is EHR data scientist at RGA Reinsurance
Company and author of several books on artificial intelli-
gence. He can be reached at jheaton@rgare.com

ENDNOTES

1 The French Institute for Research in Computer Science
and Automation (French: Institut national de recherche en
informatique et en automatique, INRIA) is a French national
research institution focusing on computer science and applied
mathematics.

Jeff Heaton, is data scientist at RGA Reinsurance Company and author of
several books on artificial intelligence. He can be reached at jheaton@rgare.
com.

Jeff Heaton

MODELING WITH PYTHON … | FROM PAGE 39

	Newsletter Cover Page
	Modeling.pdf

