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Modeling With Python And Scikit-Learn

By Jeff Heaton

INSTALLING SCIKIT-LEARN
There are many things to love about Python. However, mul-
tiple Python versions and installing new packages is not one 
of those things. Despite Python 3 being released in 2008, 
as of 2014 Python 2.x still has an active following. Back-
wards compatibility was severely broken when the switch 
to Python 3 occurred. Whenever using a Python example, it 
is very important to understand if you are using Python 3.x 
or Python 2.x code. The code in this article will work with 
either Python 3.x or Python 2.x.

Package management presents its own unique challenge in 
Python. Pure python packages can be installed with one of 
several package managers such as “pip” or “easy_install.” 
Unfortunately, many of the Python packages contain com-
piled code based on C/C++ or even Fortran. This is the case 
with scikit-learn and some of the numerical packages it 
depends on.  Fully describing how to install scikit-learn in 
Python 3 is beyond the scope of this article. I wrote a setup 
guide for Python that can be found at the following URL.

http://goo.gl/l94xQG

SCIKIT-LEARN BASIC LINEAR REGRESSION
Scikit-learn makes it very easy to switch between different 
model types. To start, consider a model to convert between 
Celsius and Fahrenheit temperatures.

R and Python are the two most popular computer languages 
for data science, as reported by a 2013 KDNuggets survey. 
(KDNuggets, 2013) Both R and Python have a variety of 
data science frameworks available for them. These frame-
works standardize the implementations of the many differ-
ent models that data scientists use. This article will intro-
duce the Scikit-learn (http://scikit-learn.org/) package for 
Python. (Pedregosa, et al., 2011) A similar package, called 
CARET (http://topepo.github.io/caret/index.html) is avail-
able for the R programming language. (Kuhn, 2008)

Scikit-learn is an open source machine-learning library for 
the Python programming language. It features various clas-
sification, regression and clustering algorithms including 
support vector machines (SVM), logistic regression, naive 
Bayes, random forests, gradient boosting machines (GBM) 
and k-means. Scikit-learn is designed to interoperate with 
the Python numerical and scientific libraries NumPy and 
SciPy.

The scikit-learn project started as scikits.learn, a Google 
Summer of Code project by David Cournapeau. The proj-
ect’s original codebase was later extensively rewritten by 
other developers. Scikit-learn is under active development 
and is sponsored by INRIA1 and occasionally Google. 
Scikit-learn was used for a number of successful Kaggle 
(http://www.kaggle.com) competitions.

Kaggle is a platform for competitive data science that allows 
the top data scientists from around the world to compete on 
predictive accuracy. Kaggle has hosted a number of compe-
titions of interest to the insurance industry. Allstate hosted 
a purchase prediction challenge, Liberty Mutual hosted a 
fire-loss challenge, and Practice Fusion hosted a challenge 
to predict diabetes in patients. The next article in this se-
ries will demonstrate scikit-learn modeling with data from a 
Kaggle competition.

x = [
 [-40],
 [10],
 [25],
 [30]
 ]
y = [-40,50,77,86]
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The model should return with 59 degrees.

We can also display the coefficients, RSS and variance for 
this linear regression using the following commands.

The x-values represent the Fahrenheit input to the model, 
and the y-values represent the Celsius expected output. This 
is univariate data; it is also possible to use multivariate input 
data, as seen here.

The above input contains two observations, or features, per 
sample.

For this example, we will use the first, univariate data set. 
Once we’ve defined the input and expected output for each 
observation it is easy to create and fit a model. The follow-
ing code will fit a linear regression model.

x = [
 [1,2],
 [3,4],
 [5,6],
 [7,8]]

from sklearn import datasets, linear_
model
model = linear_model.LinearRegres-
sion()
model.fit(x, y)

Now that the model is setup, we can query it with the “pre-
dict” command. To find out the Fahrenheit temperature for 
Celsius 10, use the following command.

print(model.predict(10))

The model will respond with 50 degrees. We can also pre-
dict a value not in the data set.

print(model.predict(15))

import numpy as np
# The coefficients
print(‘Coefficients: \n’, model.coef_)

# The mean square error
print (“Residual sum of squares: %.2f” 
%
    np.mean((model.predict(x) - y) ** 
2))

# Explained variance score: 1 is per-
fect prediction
print (‘R^2 score: %.2f’ % model.
score(x, y))

(‘Coefficients: \n’, array([[ 1.8]]))
Residual sum of squares: 0.00
R^2: 1.00

This results in the following output.

Of course, the temperature conversion fit perfectly, so the 
RSS is zero and the R squared is 1.0.

SCIKIT-LEARN WITH A DECISION TREE
What if we wanted to use exactly the same data, only use a 
CART decision tree? Scikit-learn makes this very easy. The 
following code fits the temperature data using a regression 
decision tree.
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Fitting this to a decision tree is easy enough, with the fol-
lowing commands.from sklearn import tree

model = tree.DecisionTreeRegressor()
model.fit(x, y)
print(model.predict(15))

Notice that the code is nearly the same? We always use the 
“fit” command to fit the model. Likewise, we always use the 
“predict” command to perform a prediction.

VISUALIZING A DECISION TREE
Scikit-learn allows visualizations of some of the model 
types. Decision trees are a model type that is particularly 
easy to visualize. To see how to visualize a decision tree, 
consider the following highly contrived data.

These observations represent individuals that applied for a 
particular type of auto insurance. The x vector contains their 
ages in the first column, gender in the second, and so on. For 
gender, one means male, and zero female. Martial has a val-
ue of one for married, or zero for single. The DUI and acci-
dent columns contain counts of each infraction. Finally, the 
y-vector contains a one for insured and a zero for declined.

features = [‘age’,’gender’,”marital”, 
“dui”, “accident”]
x = [
  [16,0,0,0,0],
  [21,1,0,0,1],
  [42,0,1,0,0],
  [16,1,0,2,2],
  [34,0,1,0,1],
  [55,1,1,1,0]
]

y = [1,0,1,0,1,1]

model = tree.DecisionTreeClassifier()
model.fit(x, y)

To visualize this as a tree, we use the following commands.

There are a number of “overhead” commands in the above 
code sequence. The main part to understand is that your tree 
will be written to “tree_pdf.”

from sklearn.externals.six import 
StringIO
import pydot
dot_data = StringIO()
tree.export_graphviz(model, out_
file=dot_data,feature_names=features)
graph = pydot.graph_from_dot_data(dot_
data.getvalue())
graph.write_pdf(“tree.pdf”)

This will result in the following tree.

The scikit-learn tree can be difficult to read, until you un-
derstand its format. Each node contains a single binary deci-
sion. If the condition is false, the tree will proceed to the left, 
similarly, the tree will proceed to the right if the condition 
is true.



from sklearn.ensemble import Random-
ForestClassifier
model = tree.DecisionTreeRegressor()
model.fit(x, y)
print(model.predict(15))

The number of samples that support each tree node is dis-
played. As the tree descends, and specializes, the number 
of samples will decrease. Likewise, the Gini value should 
decrease as the tree specializes. Gini is specific to the CART 
algorithm and acts as a loss function to minimize.

Perhaps the most confusing line to understand is the “val-
ue.” Only final decision nodes (leafs) will contain a value. 
Because we were classifying into two sets, there will always 
be two values in the “value” array.

The first number in the value array specifies the number of 
class 0, or decline, samples. The second number in the value 
array specifies the number of class 1, or accepts, samples. 
Ideally, only one of these has a value, and the other is zero. 
If this is the case, the Gini has the optimal value of zero. 
The output of the tree is usually interpreted to be the deci-
sion node’s value with the most number of samples. For ex-
ample, the right-most node on the above tree would output 
(be accept is this correct?), because there were three accept 
samples, and no decline samples.

SCIKIT-LEARN WITH OTHER MODEL TYPES
Scikit-learn supports many different model types. The fol-
lowing code would make use of a random forest.

Similarly, the following code would make use of a Gradient 
Boosting Machine (GBM).

from sklearn import ensemble
model = ensemble.GradientBoostingRe-
gressor()
model.fit(x, y)
print(model.predict(15))

These advanced machine-learning models are overkill for 
this very simple linear data setup. For this completely linear, 
noiseless data set, the linear regression model is actually the 
most accurate.

OTHER FEATURES OF SCIKIT-LEARN
Scikit-learn includes many other features that assist in mod-
eling. Model selection can be automated by trying many dif-
ferent model parameters. This slow process can be sped up 
using multiple processing cores on your computer. Scikit-
learn also contains functions for feature selection, normal-
ization, dimensionality reduction and many other common 
modeling tasks.

The next article in this series, titled “Titanic Pythonic Mor-
tality Modeling” will look at the Kaggle dataset for the Ti-
tanic. This is a very simple mortality question, given sta-
tistics about the passengers, how accurately can we predict 
who survives and who perishes. The next article will dem-
onstrate using Python and scikit-learn to accumulate, pre-
press and then model the Titanic data set.
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ENDNOTES

1 The  French Institute for Research in Computer Science 
and Automation  (French:  Institut national de recherche en 
informatique et en automatique,  INRIA) is a  French  national 
research institution focusing on computer science and applied 
mathematics.

Jeff Heaton, is data scientist at RGA Reinsurance Company and author of 
several books on artificial intelligence. He can be reached at jheaton@rgare.
com.
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