

Article from:

Forecasting & Futurism

December 2014 – Issue 10

DECEMBER 2014 FORECASTING & FUTURISM | 31

Agent Based Modeling With RePast Py
By Jeff Heaton

INTRODUCING REPAST
This article will introduce you to the Recursive Porous
Agent Simulation Toolkit for Python (Repast Py), a free
open-source ABM platform that is part of a suite of prod-
ucts that includes Repast Simphony, Repast for High Perfor-
mance Computing and several language-specific instances
of Repast. Repast Py allows the agent actions to be defined
using a specialized scripting language based on Python 2.7.
Repast was originally developed by David Sallach, Nick
Collier, Tom Howe, Michael North and others at the Uni-
versity of Chicago. Repast is widely used. Google Scholar
lists more than 50,000 citations and references. Addition-
ally, Repast was used by Alan Mills for the “Simulating
health behavior” SOA research project, sponsored by the
SOA Health section.

Repast’s architecture is composed of an Environment,
Model, Agent Types and Visualizations. The Environment
allows your agents to access supplemental information, such
as files or a database. The model holds global model values
and actions. This structure is shown in Figure 1.

Figure 1: Repast Py Architecture

A gent Based Modeling (ABM) can be used to simu-
late highly complex systems. ABM’s are designed
to model how participants in a complex system

interact with each other. This puts ABM into the category
of unsupervised learning. Unlike linear regression and gen-
eralized linear models (GLM) you do not fit past data and
receive a prediction on future data. Rather, you set a model
into motion and observe how different parts of the model
interact over time. Additionally, ABM is always time series,
as ABM always occurs over a defined time range.

ABM models attempt to deal with the chaos theory concept
of the “butterfly effect” by modeling how a small change in
one part of the model might have a huge change in another.
In 1972, Philip Merilees stated the theory as, “Does the flap
of a butterfly’s wings in Brazil set off a tornado in Texas?”
Consider if we simply wanted to model the profitability of
an active and passive real estate investment strategy. The
difference between the two approaches could be compared
using historic data. Similarly, forecasts of the two models
might use analyst predictions about market value and vola-
tility. However, such predictions assume there is no interac-
tion between the buyers and sellers. If many investors fol-
low the more active investment strategy, does the increase
in transactions affect real estate prices paid by practitioners
of both investment strategies?

Agent based modeling attempts to consider these interac-
tions. To construct an agent based model you create several
different types of agent. To model real estate investment you
would create agent types of investors following active and
passive investment strategies. However, you would likely
also create agent types for properties, builders, lending in-
stitutions, real estate agents/brokers, and many others. State
variables are defined for each of these agent types. These
variables would include cash on hand, property value, prop-
erties owned, and others. Additionally, the agents would
form relationships, or links. An investor agent would form a
link to every property that they owned. Finally, you would
define actions. Actions are usually implemented in a pro-
gramming language, such as Python, Java, C++, C# or R.
Actions define how the agents affect each other. The action
allows you to specify the effect that an agent purchasing a
property has on all of the other agent types. CONTINUED ON PAGE 32

AGENT BASED MODELING … | FROM PAGE 31

32 | FORECASTING & FUTURISM DECEMBER 2014

Agent based modeling is a simulation that runs in time.
ABM time is expressed in a series of uniform intervals
called ticks. Schedules are created that define the intervals
that agent and model actions occur. Additionally, actions can
be scheduled to only occur at the beginning or end of the
simulation run. Visualizers are tied to intervals to define the
granularity of their display. Figure 4 shows how actions are
scheduled with the passage of time.

Figure 4: Passage of Time

CREATING A SIMPLE REPAST MODEL
For this article I created a simple ABM with Repast Py. You
can download the source code to this article from GitHub, at
the following URL:

https://github.com/jeffheaton/soa

The example is stored under the folder annual-2014 because
this is an example that I presented at the SOA 2014 annual
meeting. This example simulation can be used as a starting
point for other simulations of your own.

This example seeks to model the following very simple sce-
nario.

• Simple model of insurer response times to meet vary-
ing consumer demand for five insurance products.

• Two agent types: consumer and insurer.

• Consumers demand one of five products. Once demand
is satisfied, consumer will cycle to the next product.
(e.g., 1->2,…,4->5, 5->1)

The model can hold actions and properties that are global to
the agents. For example, you might store the prime interest
rate at the model level. Agent types can also hold properties
and these properties will be unique to each agent instance
that is created. This structure is shown in Figure 2.

Figure 2: Models & Environments

Agents are the real workhorse of an ABM model. One or
more agent types are defined for a model. The model can
have many instances of an agent type. Larger numbers of
agents allow closer approximations to reality. The example
provided for this article makes use of 10,000 agents. Agents
contain actions that define how the agents interact. Agents
can be competitive, cooperative or oblivious to other agents,
depending on how their action code is constructed. Agents
also form links to each other and maintain private and public
properties. Figure 3 shows an agent type.

Figure 3: Agents

DECEMBER 2014 FORECASTING & FUTURISM | 33

Step actions occur at time intervals specified by the sched-
ules. The step actions for the agents specify their interac-
tion with the other agent. The step action for the consumer
agent selects a random insurer and demands a product. If
the insurer is unable to process this demand, then the failure
is recorded, and the consumer demands no further products
this tick. This is accomplished by the step action shown in
Listing 2.

Listing 2: Consumer Step Action

• Insurers supply one product, and may retool when half
of requests are unfilled.

• Initial set of insurers offer random products chosen uni-
formly.

• Initial set of consumers demand random products cho-
sen uniformly.

• Model will track the rise and fall of the demand of each
product on a linear plot.

• Initial setup will be 10,000 consumer agents and 10 in-
surer agents.

• Experiment with different insurer counts.

To implement this we create a consumer and insurer agent.
The consumer agent has a property that defines what prod-
uct the consumer is currently demanding. The insurer has
properties that define both the product currently supplied,
as well as the current cash on hand. Cash is not really used
by the current model, however, it could be used as a per-
formance visualization. The model is setup with each con-
sumer agent demanding a different product. Likewise, each
insurer agent is set to providing a random product.

Listing 1: Model Setup

CONTINUED ON PAGE 34

Cause the customers to demand random
products.
for consumer as ConsumerAgent in self.
consumers:
 product_num = Random.uniform.nextInt-
FromTo(0, 4)
 consumer.setProductDesired(product_num)
Cause the insurers to offer random
products.
for insurer as InsurerAgent in self.
insurers:
 product_num = Random.uniform.nextInt-
FromTo(0, 4)
 insurer.setCurrentProduct(product_num)

Choose a random insurer to obtain the
product from.
insurer_num = Random.uniform.nextIntFrom-
To(0, self.model.insurers.size()-1)
insurer = (InsurerAgent)self.model.insur-
ers.get(insurer_num)
If the insurer has the product, then
obtain it.
if insurer.getCurrentProduct() == self.
productDesired:
 insurer.setCash(insurer.getCash()+1)
 self.requestFilled=self.productDesired
 self.productDesired = self.productDesired
+ 1
 insurer.setFilledRequests(insurer.get-
FilledRequests()+1)
 # Change our product desired, simply
cycle between 0 and 4.
 if self.productDesired>=5:
 self.productDesired=0
else:
If the insurer does not have the prod-
uct, then record that.
 insurer.setFailedRequests(insurer.get-
FailedRequests()+1)
 self.requestFilled=-1

34 | FORECASTING & FUTURISM DECEMBER 2014

The above code works by looping over all consumers and
counting the number of consumers demanding product #0.

INTERPRETING THE RESULTS OF THE
MODEL
To see some of the insights that the simulation will provide,
I created two visualizations. Each of these visualizations
has 10,000 consumer agents. Figure 5 shows the simulation
with 10 insureds.

Figure 5: Visualizer with 10 Insurers

The insurer step action evaluates failed requests from cus-
tomers. If the insurer failed to fulfil 50 percent of the re-
quests, then the insurer might retool and offer a different
product. There is a cost associated with retooling. This pro-
cess is shown in Listing 3.

Listing 3: Insurer Step Action

Did we fail to fulfill any orders (pre-
vent div/0)?
if self.failedRequests>0:
 ratio = self.filledRequests / self.faile-
dRequests
 # Did we fail to fulfill 50% of the re-
quests?
 if ratio < 0.5:
 refit = Random.uniform.nextDouble()
 # Do we want to retool?
 if refit<self.model.probNewProduct:
 self.currentProduct =
 Random.uniform.nextIntFromTo(0, 4)
 self.cash = self.cash - 5

Python code is used to perform visualizations. Most visual-
izers in Repast are time-series line charts. The visualizer for
this example shows the demand of all five of the products.
Each line on the chart requires its own step action. Listing 4
shows the step action for Listing?? 1’s (index 0) line.

Listing 4: Visualizer Step Action

sum = 0
for consumer as ConsumerAgent
 in self.consumers:
 if consumer.getProductDesired()
 ==0:
 sum = sum + 1
return sum

As you can see from the above, the demand for each prod-
uct rises and falls somewhat smoothly. Because there are
enough insurers, each product can be offered by one or two
insurers at a time. If we force the model down to only two
insurers we get much different results, as seen in Figure 6.

Figure 6: Visualizer with 2 Insurers

With fewer products being offered, the consumers are forced
into narrow bands of demand. The transitions between prod-
ucts being offered are very sharp. Though the duration of
demand for each product is somewhat random, the order in
which the products are demanded in Figure 6 is mostly con-
sistent.

AGENT BASED MODELING … | FROM PAGE 33

ABM’s are a great tool for forecasting the future through
simulation. There are many considerations for building your
own models. Often you will start the ABM somewhere in
the past and tweak the parameters so that prediction match-
es reality up to the current date. The model then runs into
the future providing predictions. Increasing the number of
agents can provide more accurate results; however, it is im-
portant to ensure that the ratio of agent types makes sense.
ABM’s are a technology where you can start simple and in-
crease the complexity of your model to handle increasingly
complex situations. ABM can be an important part of your
toolbox.

Jeff Heaton, is data scientist at RGA Reinsurance Company and author of
several books on artificial intelligence. He can be reached at jheaton@rgare.
com.

Jeff Heaton

DECEMBER 2014 FORECASTING & FUTURISM | 35

	Newsletter Cover Page
	Agent Based.pdf

