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Unsupervised Methods:  
An Overview for Actuaries
By Brian Holland

• Recommender systems, collaborative filtering

 - Customers who liked certain things might have 
found products that you also might like. Those cus-
tomers form a cluster.

 - Clustering of types of objects based on similar char-
acteristics.

Underwriting categories – we’re clustering by appropriate 
premium level.

 - If categories are already set: I’d say this is a clas-
sification problem: supervised.

 - If categories are being developed, I’d say this is a 
clustering problem: unsupervised.

Facial recognition: which faces are similar?

In clustering the number of dimensions or attributes matters, 
whether you know what the attributes represent or not. For 
example, with only one attribute here, we see a couple of 
groups.

With two attributes the picture is much richer, and some 
groups in the 1-D example would get split into more, just 
from looking at it. The following image represents tilting 
the 2-D view forward in 3-D, to give a sense that there is a 
bit more going on here. In the bottom island in 2-D there is 
maybe a ridge of points which are closer together.

A ctuaries might have some familiarity with unsuper-
vised methods. In this article I’d like to focus on 
these methods, their differences from supervised 

methods, and some examples from actuarial practice that 
we might not generally know.

First of all: what are supervised methods? Who is supervis-
ing? You are supervising. Supervised methods involve you, 
the modeler, saying which observation depends on the other 
observations. Examples we all know are regression and 
classification. In regression, you say which number is y and 
which is x. That decision is the supervision. In classification 
you do the same thing: you know target categories, and are 
fitting items into categories based on characteristics. Linear 
regression, generalized linear models, and generalized addi-
tive models all fit into this category.

So what could unsupervised methods be? How could you do 
anything without saying what you’re trying to model? That 
was my first question at least. Unsupervised methods have 
no labels with known meaning. Their goal is to find struc-
ture in the data. Think of the task as describing the space.

An example is clustering. Whatever is an x or a y or a z, 
you might first want to know if there are clusters. Are there 
clumps of items here or there? That question might be good 
to ask. There are some canned routines to compute clusters 
already in the Python language library scikit-learn for ma-
chine learning. Scikit-learn is the subject of Jeff Heaton’s 
article in this newsletter. The scikit-learn documentation at 
http://scikit-learn.org/stable/modules/clustering.html 
includes a helpful comparison of types of clusters, types of 
algorithms to detect clusters, and the results of those algo-
rithms. 

Applications of clustering are right at hand:

• Actuarial models: how detailed should they be? Model 
points could be clustered.

 - Freedman and Reynolds (2008): “Cluster analysis: 
a spatial approach to actuarial modeling.”

 - How much granularity do you need for premiums, 
assumptions, and models?

Brian D. Holland, FSA, MAAA, is director and actuary, Experience Studies at 
AIG. He can be reached at brian.holland@aig.com.
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So how would you group these points into clusters? I recommend using well-studied and documented routines if in doubt. 
That way, the procedure is at least written up and known.

K-means: given number of groups (here: 3), pick 
k starting points to represent groups, assign 
each point to the nearest representative position 
(centroid), recompute the average after assignment, 
and do again.  This is an iterative process. Here, the 
border between the three regions separates nearby 
points.

DBSCAN: emphasizes proximity of nearby points. The 
results here are generally the same classes, but there 
are some differences from K-Means. The lower cluster 
is all in one group.

UNSUPERVISED METHODS …  | FROM PAGE 16
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The number of clusters we pick clearly depends on the number of dimensions we’re considering. But what does “dimensions” 
mean anyway? An intuitive answer is that it means how many numbers are needed to describe the situation. For example, a 
line is 1-D even in 3-D space. As long as you can rotate and move your axes the right way, you can represent the whole line 
with one dimension. A financial example profit = income – expense. You might have three columns for the three numbers. If 
you know two, you know the third, so are there really three dimensions? There are not, not if you turn it the right way. The 
upshot is that you might not have to deal with as many numbers, columns, etc. as it appears at first, as long as each revised 
axis describes the right combination of original features.

DIMENSION REDUCTION
Why would we want to reduce the number of dimensions instead of using all the available information? I have two solid 
reasons for you:

1. Visualization: to see the main features. We can order the dimensions by variability along the new axes to see the main 
features.

2. Clustering: it is cheaper to calculate dimensions with fewer coordinates.

A technique called singular value decomposition (SVD) can be used to find and to order new dimensions. It determines the 
main dimensions or axes, which is those that pick up the most variance of the data, orders them, and quantifies the spread of 
the data around those dimensions. It differs from regression in that all coordinates (x and y for example) are treated the same. 
It minimizes squared distance to a line—a 1-dimensional subspace—not from a value y to a predicted value up or down the y 
axis. Then dropping that dimension from the new coordinates, there is one dimension left, and the procedure can be repeated 
until none are left. The sum of squared coordinates along a new axis indicates the variance along that axis, and orders the 
axes naturally.

Linear regression: minimize sum of squared distances 
from point up or down to the regression line.

SVD: minimize distance from point to the line. Here, the 
line goes through the average point, shown as a larger 
point.

CONTINUED ON PAGE 18
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When the decomposition is finished, the original data matrix 
X is represented as a product of three matrices:

 X = U S V’

U and V are both orthonormal matrices. Their columns rep-
resent the new axes we could say. S is a diagonal matrix, 
with values decreasing down the diagonal. Multiplying 
these matrices amounts to taking the first column of U to 
scale each row of the result; the first column of V (trans-
posed) to scale across the columns, times the first diagonal 
element of S for an overall scale level. Doing the same with 
the  second columns of U and V and the  second diagonal 
element of S.

Can SVD help us find the main features in a larger data-
set? To illustrate, I’ve tried out SVD on unemployment 
by county by month. I used unemployment because we 
all have some domain knowledge just from following the 
news. An animation of this detailed unemployment can be 
seen at http://bdholland.blogspot.com/2013/05/visualizing-
unemployment-by-county.html. Some patterns are visible 
from watching the animation. SVD of the matrix of unem-

ployment rates does show recognizable patterns. If we have 
X = U S V’, a matrix with rows of months and columns 
of counties, then columns of U can be represented by time 
series; and columns of V can be represented as maps. We 
would make X by adding up layers: taking pairs of month 
and county vectors, blowing them out to make a matrix, and 
scaling them. The first three pairs are shown below. The 
first pair of columns of U, V is the familiar macroeconomic 
story: across most of the United States, there is worsening 
unemployment to 1992, improvement to the dot-com bust, 
then improvement to the mortgage crisis at which time there 
was a big spike in unemployment. The second layer is a re-
gional correction. The third layer is my favorite: a mostly 
seasonal layer by date, with a map that clearly matches 
seasons. Note that the maps originally had red and green 
values: green for positive and red for negative. Values near 
white are near zero in any case.

UNSUPERVISED METHODS …  | FROM PAGE 17
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values bounce in and out through the seasons. The blue clus-
ter (upper-left-most) is the period after the mortgage crisis. 
The macro axis, going down to the right, picks up the better 
and worse periods generally. From this exercise it is also 
clear what a weakness of this method is. We have to name 
the axis: if we’re lucky, they make some sense, but they can 
be hard to explain. This issue can come up with matrix de-
compositions.

An actuarial application is the Lee-Carter mortality im-
provement model. Lee and Carter published their model 
in 1992. There have been changes since and that was some 
years ago, but that is the point: SVD has been used some 
time ago in actuarial applications. The model was not ini-
tially stated in terms of SVD, but Lee and Carter noted that 
the solution could be found with SVD. Note the language in 
the original paper: “… there are no given regressors.” That 
is not supervised regression, but an unsupervised model. 
The authors effectively decomposed a matrix of mortality 
rates by age and calendar year, taking the first singular vec-
tors for each of age and calendar year. For the projection 
of mortality rates, autoregressive integrated moving average 
(ARIMA) was used on the calendar year singular vector.

Higher-order singular value decomposition (HOSVD) is a 
logical next step beyond SVD. HOSVD means “higher-or-
der” SVD. It goes by several names and has arisen in several 
contexts. It amounts to a way to decompose a tensor—effec-
tively an array for actuaries—with more indices than the two 
indices of an array. The example above shows seasonality in 
each of the first three month-singular vectors. I decomposed 
a tensor of unemployment rates which was just a rearrange-
ment of the same numbers into an array by calendar year, 
calendar month, and county. The unemployment rates by 
month (to the upper right), year (to the left) and county are 
shown on the left below for the top portion of the tensor. 
The decomposed tensor on the right shows the same county 
maps, but the calendar months show different patterns, and 
the calendar years are only the annual effects. The original 
tensor or array is replicated by scaling each combination of 
month, year and county singular vector triplet by the volume 
of the corresponding cube, and adding all such layers.

The scaling factors, the diagonal of S, are called singular 
values. They drop off by design, as later pairs are smaller 
or less important for describing the landscape. The singu-
lar values show the relative magnitude of the different lay-
ers, here for the first 20 of the nearly 280 layers. It is clear 
that much of the variability in unemployment by time and 
county is captured in the first three pairs of singular vectors 
shown above:

Singular values 1-20 of centered unemployment by 
county
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We can look at clustering of months as well by examin-
ing calendar months by the first three singular vectors. 
The clustering for different dimensions shown earlier was 
actually the calendar months. Below the months are con-
nected as a time series, showing the three axes’ meanings: 
the main singular vectors by county, represented as maps. 
It is now clear that the seasonal axis is the reason that the 
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There are several closely related topics that are worth men-
tioning briefly:

SVD 

X = U S V’ possible for any matrix.

X: the (centered) data

U, V: their columns are called left and right singular vectors, 
respectively.

U, V are orthonormal, which also means we can see them 
as a rotation. 

S: diagonal matrix, with values decreasing on the diagonal.

PCA: principal components analysis

V: columns are the principal components

U S: contains principal component scores 

Covariance matrix of mean-centered matrix X is X’ X / n 
= V S2 V’ /n since U-1 = U’

To my mind, the main point to remember about unsuper-
vised learning methods is that they are used to find structure 
in data, without any domain knowledge of the source data or 
explicit modeling. They can be used to show the main fea-
tures, which might be clusters of data, or high-level features. 
Clustering methods give mathematical support and conve-
nience to functions that actuaries regularly perform. 
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