RECORD, Volume 30, No. 2*

Spring Meeting, San Antonio, TX
June 14-15, 2004

Session #3PD
Actuaries versus IT—The Perpetual Dilemma

Track: Computer Science, Futurism
Moderator: Michael N. Hartfield
Panelists: Emil Burns Kraft

Susan M. Lee
Frank G. Reynolds

Summary: Actuaries and IT people rarely see eye-to-eye. Neither understands the
other's perspective, with frustrating results for both sides. Yet, with some tolerance
and understanding, both can profit from the other's approach.

MR. MICHAEL N. HARTFIELD: Today's first speaker, Emil Kraft, from Milliman,
was a consulting actuary, but he's made the transition over to software and
managing software development. He holds an A.S.A., Member of the American
Academy of Actuaries (M.A.A.A.), and M.C.S.D. certifications and had some success
back in 1995 as the highest-ranking score in the International Course | competition.
So he knows what actuaries go through.

MR. EMIL KRAFT: I joined Milliman USA, now Milliman, in about 1996, starting as
an actuary. In late 1998 | transitioned to a technology group, and for the balance of
the last six years I've been managing software analysis development and
integration practice. Just recently, | started with an actuarial team working on a
couple of new product initiatives, but the balance of my work over the last eight
years has been working with both actuarial and IT folks. I've been wearing both
hats to solve actuarial problems from a systems perspective.

I love the title of this session. My message is that there's hope, that we've had a lot
of good experiences. So my presentation theme is simply going to be that many of
the conflicts between actuaries and IT staff are simply due to the nature of the
structure of systems, and that if you change the structure to be consistent with the
nature of a lot of the business problems, much of the adversarial quality of the
relationship between IT and actuaries can be reduced or even eliminated in a lot of
cases. | think other presenters are going to raise a whole litany of fantastic
examples that I'm sure everybody cancommiserate with, but in this presentation I'd

“Copyright © 2004, Society of Actuaries

Actuaries versus IT—The Perpetual Dilemma 2

like to celebrate some of the successes over the last few years.

My background is pretty heavily in rating and underwriting systems. I'm more on
the health side, and rating and underwriting systems are a pretty serious systems
issue. Systems are becoming a lot more automated, and there's a lot of benefit to
that. So that's where a lot of my work has been, and that's where I've seen a lot of
successes in actuaries and IT folks working together. Specifically, the theme of my
presentation: I'm going to put it within the context of rating and underwriting
systems for a number of reasons. Rating and underwriting systems are historically
very painful due to their analytic nature. It's pretty easy for a businessperson to
spec-out sort of a call center support application, and it's pretty easy for
programmers to bang it out. But there's a very highly analytic nature to rating and
underwriting systems, especially for large groups.

So you get into a situation where the actuarial people have a 90 percent
understanding of what they want but have a very difficult time communicating it,
and the IT folks have a 0 percent understanding of what they want and a limited
ability to understand the business side. And that gives rise to a lot of problems.
Also, specific to rating and underwriting systems, usually sales is involved. It
becomes a three-way confrontation where actuarial and underwriting are pitted
against sales, pitted against IT, etc., and commonly the two that are closest will
band together against the third. It's a terribly political situation a lot of times. So
it's a very contentious topic even outside of the actuarial and the IT realms.

These are serious, serious systems. Billions of dollars of revenue can be driven by
rating processes, even for a midsized health plan. So we're talking about the drive
train of their gathering of revenue. And, last, it's illustrative, because a number of
technologies have been introduced in recent years to help address the nature of
these systems and help align them more closely with the business problems at
hand. So | think it's timely for an example of what's successful in relations between
actuaries and IT folks.

I want to start out by getting a little bit of perspective on some common rating
system alternatives that are pretty much the types you're going to see in the
marketplace today. One is Excel- or Word-based processes, where people are going
and getting a data extract and pasting it into Excel, and calculating and changing
some numbers, and then taking numbers and putting them in Word, whether it's in
an automated fashion or more manual fashion, and then that Word document goes
off to sales and whatnot. That's more of an Excel-Word—based process. And then
the second is production systems, which is either client server or Web-based. It's
going to be compiled code, and it's going to automate a lot of those processes.

These enjoy various advantages. Automation: that's essentially, am | doing
something, or is the computer doing something? For sure, production systems are
usually fully automated, but there are a lot of manual processes involved outside of
the realm of production systems. So at best they're only partially automated.

Actuaries versus IT—The Perpetual Dilemma 3

Another advantage is transparency. Transparency essentially means as a business
user, as an actuary, can | quickly see the structure of the calculations or the
structure of the business logic in general? And for a specific group or case or
application of that logic, can | see the numbers and how the numbers flow through
to come to my final conclusion?

This is an area where Excel dominates. Excel is completely transparent. That's why
it's one of our favorite mediums as actuaries. Production systems are typically
anything but transparent. They're usually totally opaque, and unless you
understand the C code or whatever's underlying it, you don't have a lot of
transparency in your production system, which gives rise to a lot of frustration. It's
very easy to develop an Excel: it's a very flexible medium for modeling financial
calculations, but it's not easy to develop for a production system.

Confidence in the accuracy: it's pretty easy for an actuary to have a lot of
confidence in the accuracy of an Excel workbook because it's transparent. They can
get in with the auditing function, they can look at it, they can drill down, and they
can have a comfort level that the calculations are correct. It's a lot more of a time-
consuming process to gain a level of confidence with a production system. Testing
cycles can be months long.

I've gone in and found unbelievable errors in some systems. We did a rating
system, and | found for a small life insurance company that their production system
was issuing rates to underground miners and crop dusters at the same rate as
schoolteachers because their systems weren't programmed to exclude underground
miners and crop dusters. They'd been using it for years, and I'm sure they weren't
losing their shirts because they were selling insurance to crop dusters. But there
are problems in production systems that are hard to find.

The next advantage is flexibility. It's very easy to add a product or change a
calculation in an Excel workbook, while a typical lead time to get IT to change
something in a production system is a couple months, sometimes longer. Another
one, language independence: that's a little technical, but Excel workbooks survive
as technology platforms change. The same Excel workbooks or Lotus 1-2-3
workbooks that were developed in 1990, from which time you might have a
production system that's more in COBOL, can be upgraded to work in the Visual
Basic era, and now can be upgraded easily to work with a dot-NET and a J2EE. So
one of the benefits of Excel is a degree of language independence that production
systems don't have.

And then, last, you get to the benefits of production systems: scalability, reporting,
having centralized security, versioned updating, where you're able to make mass
releases or updates at a single point to various folks, and, if it's Web-based, having
a single installation. So those are some benefits of production systems.

What you find is that a lot of times people will split right down the middle. It

Actuaries versus IT—The Perpetual Dilemma 4

probably makes intuitive sense that actuaries really like transparency, to be able to
easily control it and be able to add things and have a lot of flexibility and
confidence. IT folks really want to have a lot of production system infrastructure,
because that's what they're most comfortable with from their perspective.

This is somewhat of the split that gives rise to a lot of the confrontation. It's very
difficult to have all the benefits of these. And so the gist of the remaining
presentation is in a number of areas where actuaries really want to have a lot of
control over their technologies now and approaches that allow you to develop
systems that bring a lot of these benefits together and can please both sides.

Now, in talking about what actuaries want to have, there are really only a handful
of areas of business controls specific to rating and underwriting systems where
actuaries and underwriters really want to have a lot of control. The first of those
four areas is rating formula calculation engines. They want to be able to control the
calculations that are rating the groups. Another area is the analytic environment. If
you've got, for example, a large group where there's going to be a lot of actuaries,
say, a health care group, who are going to want to look at running all the groups in
a book of business through the system, looking at the macroscopic picture, making
some high-level adjustments, maybe potentially smoothing for rate variations over
time—that's an analytic environment to support that activity.

Similarly, on the underwriting side, if you have an underwriter going in and
adjusting the threshold, after which there’s pulling, or we're excluding certain
people either because they're dead or from the financial mix or for some other
reason, that's an analytic environment. That is really actuaries' and underwriters’
domain. So it should ideally be something they control.

Another one is dynamically generated documents. That can be anything: sales
illustrations, communicating information to the client, documentation, etc. It's very
handy. Underwriters, salespeople and actuaries have a lot more of an
understanding of what that should look like than IT folks do. And, last, parameter
tables: updating rate tables and the like.

The classic problem with rating engines is this: you have a business user who
writes down the rating logic, say, in a Word document, and they're human, so they
make mistakes. Then that Word document goes to a programmer, and the
programmer writes a program that's supposed to do the logic, and they make
mistakes. Then the business user looks at what the outcome is of the computer
code, and they say, "Well, this isn't right.” And then that begins a seemingly
endless cycle of the business user trying to figure out what's going on in the
programmer's head and the programmer figuring out what the business user
meant, and it forces both potentially very talented professionals to have the
discomfort of working in environments that they're just not trained for and they're
not familiar with. And so this is an area that gives rise to a lot of conflict between
actuaries and IT folks.

Actuaries versus IT—The Perpetual Dilemma 5

One solution is that different technologies now allow you to actually compile Excel
workbooks. Once you have an Excel workbook, you can automatically migrate that
logic into production system code without manual intervention. In this scenario, a
business user will develop an Excel workbook with the logic. They'll pass it around
for peer review. People will make any adjustments or tweaks needed. When all the
actuaries have signed off that this is the logic they want to implement, you can
employ an automated process using different software tools to dynamically
generate production system code that can be used in production systems that is
100 percent accurate. One of them is KDCalc. It's a commonly available software
tool from Knowledge Dynamics, and it serves J2EE and dot-NET. Before we were
aware of KDCalc, my team actually developed an Excel compiler called X Logic that
worked for both Visual Basic and dot-NET. There are some subtle differences
between the two, but with an Excel compiler there are a lot of benefits.

For example, we had a client, Central Benefits, for whom we did a rating system.
They had rating logic that started in 1990 and a Lotus 1-2-3 workbook. Twelve
years and many owners later, it had evolved into a mess. A six-megabyte Excel
workbook was a complete disaster. It did all the right calculations, but it wasn't
pretty. It had been through about 10 people's hands. The client wanted to migrate
its mainframe system to the Internet. —The Excel workbook was built to test the
mainframe system because it needed a degree of transparency not provided by the
mainframe system—. The client changed and tested the Excel workbook so it was
up-to-date. We used an Excel compiler to dynamically generate 60,000 lines of
error-free code from the workbook in an hour and a half while we were at lunch.
Typically that would take months for a human being to code manually, and they'd
make all kinds of mistakes. So it was unbelievable. We integrated the engine into a
Web-based rating and quoting portal.

The maintenance continues today in Excel. Whenever they want to make a change
to the rating engine, they make that change in Excel, and then we can
automatically migrate the changes through to their production system. Excel
became, and is now, the design, development, testing and maintenance
environment for the production system calculation algorithms. And that was really
amazing. We did a few rating systems where we coded the rating engine manually,
and that gave rise to us trying to find a better way, which is why we wrote our
Excel compiler. Now there are other Excel compilers on the market that serve other
technology platforms, and it's unbelievable. If you've ever coded a rating engine to
see something go from Excel right into production in hours or minutes or seconds,
it's a beautiful thing. That's one thing that really helps eliminate a lot of the
contention between actuaries and IT folks, which is completely unnecessary.

FROM THE FLOOR: I'm just trying to visualize compiling an Excel workbook into
some other language—what that process looks like, what format it needs to be in.
Do you just throw the old Excel workbook at it, and it pops out, and it's clean and
done? I'm just trying to get an idea.

Actuaries versus IT—The Perpetual Dilemma 6

MR. KRAFT: Well, here's the answer. Pretty much all the Excel compilers are
driven solely off worksheet functions. I'll speak about ours just because that's the
one I'm most familiar with, but all of them are generally alike. You have an Excel
workbook, and in ours you say, "Here are the output ranges that we want to
harvest. Or here are the output ranges we want to put in a downstream system or
put in a dynamically generated document or create a report off of." And then the
compiler will iteratively work up through the precedents to find all the inputs. Once
you have all the inputs and outputs, you have your interface. And then with the
inputs and the outputs and all the calculations in the middle, the compiler will
dynamically generate dot-NET or Visual Basic; if you're doing a legacy system or
JAVA, it will create in dot-NET a JAVA Web service or the engine that can be
snapped onto a Web service.

So the idea is that you would send a Web service or a programmatic interface, say,
an XML document with all of my input cells that were identified during the
compilation process, do the calculations, then it will return to you an output XML
document that has all your outputs. So it literally takes your Excel worksheets,
identifies inputs and outputs, and gives you the ability to call those without having
to call an Excel workbook.

FROM THE FLOOR: My guestion is about a situation where you've got persistent
data existing on databases, files, whatever. Is it as easy to plug in, for example,
the calculation engine as in the environment where you've got a nice, neat XML
format to easily map to the calculation engine that you compiled and translated
over to some other code?

MR. KRAFT: Great question. This compiling of Excel spreadsheets closes one scope
of system development very, very well, but it's a limited scope. You're going to
have a database that's going to have quote information if we continue the analogy
of rating systems. It's not going to be a replacement for that. The difference is that
potentially, instead of a human being having a macro in Excel that will pull the right
quote information into the Excel workbook for them to do a bunch of manual work
and then dump up some exhibits, just as that's an integration with a database or a
data repository, you would integrate the database with the Web service.

One case where it's ideal is when you've got sales people, and they're in the field,
and maybe you get a thousand hits a day on small group business quotes. That's
not something where you want an Excel workbook as your calc engine. So that's an
example where there are a lot of benefits to taking that calc engine, compiling it
into Web service and then having a more stable production calculation engine doing
those calculations. And that's all that it's a replacement for: you'd still have the
database. You still have to design a Web site. There's a lot of surrounding
infrastructure. But what can be tens of thousands of lines of code you get for free,
and that's been a tremendous benefit.

The problem with analytic environments in production systems is they're typically

Actuaries versus IT—The Perpetual Dilemma 7

very limiting, very opaque and inflexible. The classic example is for analytic
interfaces: people are used to using Excel, since it's very flexible, very transparent.
The worst thing you can give an underwriter who's used to working in Excel, who
loves Excel, is a Web-based analytic interface. They will hate it, because you don't
have the freedom you have in Excel. Every time you change anything, the page has
to refresh, and it slows down people’s productivity sometimes; it just drives them
totally crazy.

What we found in terms of a good solution for this is to have production systems
dynamically generate Excel-based interfaces. Just as you can have a system
dynamically generate a Web-based interface, you can have a system dynamically
generate an Excel-based interface. This isn't a cure-all. If it's a pretty simple
analytic environment, then a Web page is probably fine. But if it's an analytic
environment with any degree of sophistication, our clients—we've heard that other
folks are doing this as well internally—love having these Excel-based interfaces. So
this is where the Excel-based interfaces are dynamically generated by the
production system. They're downloaded by business users—potentially a right click
like on a Web page and downloading it to your local machine. You can then
complete all your analysis in the Excel workbook, then upload that back into the
system. The system then harvests all your changes and your comments, and the
content is extracted and stored in databases and flushed onto downstream systems
and the like.

This has worked very well in production. For example, at Blue Cross/Blue Shield of
Rhode Island, we achieved a consensus on a highly generalized data feed to
support the analysis. This is where you make the IT folks and the actuaries happy.
If the actuaries can say, "All we want for the IT folks is for you to give us a highly
generalized data dump, in Excel," then we can build the macros and the code that
will build our production system environment with macros in Excel. That's a very
nice split. So, in Rhode Island, we developed a consensus on a highly generalized
data feed to support their analyses, and we brought in interface standards so the IT
folks had buckets to fill, and the actuaries and underwriters knew what buckets
they'd get. Then the actuaries built macro libraries to help the actuaries and
underwriters retrieve and manipulate the data along the lines of expected use.

IT programmed the production system to generate Excel workbooks with a specified
data feed and then kick off a macro that was written by underwriting and actuarial
that programmed virtually all the analysis worksheets against the specified data
feed using macros. The upshot is that the actuary fills a portion of the workbook
with data every time, not having to know much about the business use for it, and
the actuaries and the underwriters go ahead and write a macro that fills their
analysis environment with all the data exhibits they'd like to see. So now actuaries
and underwriters perform their analyses in Excel.

FROM THE FLOOR: Does the applicability of this downloading of an Excel
spreadsheet apply additionally to Visual Basic macros within an Excel file? Lots of

Actuaries versus IT—The Perpetual Dilemma 8

times a person will write an Excel file and use a macro and write it in Visual Basic.
Does this process where you actually can upload into a production mechanism, an
Excel spreadsheet also apply to that kind of macro?

MR. KRAFT: Well, if you're going to upload a production workbook, you can get at
anything. Could you give me an example of how you might want to use this?

FROM THE FLOOR: Let's say you're generating a routine—take a simple example—
to calculate reserve credits for YRT reinsurance on GAAP. An Excel macro can get
very complicated because you've got an awful lot of multiples to a base table and
so forth. So you've done most of that outside of the basic spreadsheet; you've done
it by means of a Visual Basic macro instead. Can you upload all of that into the
production system you're talking about?

MR. KRAFT: There are a couple different questions there. Maybe you've only asked
one of the two, but one question would be I'm doing my analysis, I've got a
production system that is expecting these reinsurance rates. So you have an Excel
workbook, and you're doing all your analysis, and then you want to commit these
Excel rates after you finish running them. You've run your macros, you have your
rates, you're looking at them. Now you want to load them in a production system—
the rates, not the logic. You can upload the Excel workbook, and any production
system that's configured properly can harvest those rates, harvest any of your
comments from the cells, and harvest any other changes you made to be used
downstream. Is that what you're interested in uploading, the rates or the logic?

FROM THE FLOOR: Well, if the tables are actually in the Visual Basic logic as
opposed to being in the Excel spreadsheet, can it pick that up? That's really my
question.

MR. KRAFT: It sounds like what you're talking about is you're wanting to migrate
the logic in the macro into a production system. That's a more intractable problem.
What we have typically recommended and what we've seen is that the vast
majority of the complexity when you talk about Excel compilers—and this is a
classical question—is, Does it also compile macros? That sounds like what you're
getting at: can you also migrate the macros into production? What we found is that
migrating macros into production is much more difficult than migrating the formulas
into production, and that itself is very difficult to do with all the dependencies and
whatnot. It's a very challenging technical problem to overcome.

So also compiling the macros is another whole order of magnitude of complexity
that, to my knowledge, has simply not been done. What we found as a work-around
is that the majority of the complexity in the workbooks I've seen can be put in
formulas. And the macro language typically—and | say "typically" because | don't
know your situation—can be boiled down to doing things like looping, but you can't
do looping in an Excel workbook. So it will come down to maybe people using
macros because they have a complex engine in the workbook, and they want to run

Actuaries versus IT—The Perpetual Dilemma 9

it 10,000 times for a bunch of different scenarios and then maybe some
postoperative analysis. It's very easy to do the looping manually in a production
system and just compile the heart of the calculation logic.

Typically when people want to compile macros, we've boiled it down to first
compiling the workbook, which is 80 to 90 percent of it. Then the handful of looping
statements or other types of purely programmatic control statements can be done
with manual coding or copying and pasting the Visual Basic macro. This means that
a lot of your Visual Basic stuff, which is now legacy technology, strictly Visual Basic,
can be copied right out of the macro areas. So you can't compile macro code in my
experience, but you can come pretty close, and there are some helpful
workarounds. You get a lot of power with the workbooks. You get "If" statements in
the workbooks. A lot of macro stuff can be put in the worksheet.

The upshot of the analytic environment is having a handoff between IT and
actuarial that lets IT do what they do best, harvesting data from unwieldy
databases and having it available in a production system, and letting the actuaries
and underwriters do what they do best, which is manipulating those data in an
environment that they're comfortable with. I'm going to skip over dynamically
generated documents, because that's probably the least flashy and the least
interesting from an actuarial perspective. Basically what we've done in terms of
dynamically generated documents is just as you give people an Excel environment
in which to do their calculations, the natural environment for editing a dynamically
generated document is Microsoft Word.

So we've developed a document generation engine that allows people to configure
dynamically generated documents in Word, just like Excel is the ideal development
environment for calculations. Once you give salespeople and underwriting the
ability to change and alter their dynamically generated document formats, that
opens up a lot of potential in increasing the communication between sales and
underwriting and stuff that just gets bogged down by IT, which is not capable of
understanding the business need of communications of rates and stuff to the client
or to sales.

In conclusion, by going with technologies and approaches that elegantly fit the
business situation, it's possible to take a lot of the burden and a lot of the
confrontation out of the relationship between IT and actuarial. Specifically in rating,
if you give actuaries the ability to develop and test their production rating engines
in Excel, if you give actuaries the ability to develop and test their analytic
environments in Excel for a production system, and if you give actuaries,
underwriters and sales the ability to develop, test, implement or change the
production system, dynamically generated proposals, quote, sales illustration
documents in Word and Excel, and you give them the ability to change their
parameters in Excel, actuaries and IT people can work very happily together on
rating systems. It eliminates not only potentially months from the development and
implementation cycle, but it also helps both teams do what they do best and work

Actuaries versus IT—The Perpetual Dilemma 10

very productively together.

MR. HARTFIELD: Our next speaker is Susie Lee, an F.S.A. from Allstate Financial.
For the last 12 years, she's been responsible for making enhancements to
proprietary and vended software programs and tools. Her presentation will be from
a slightly different perspective than Emil's and at a slightly different level of
abstraction.

MS. SUSAN M. LEE: Emil's presentation focused more on the actuarial side.
Although I am an actuary, I'm actually speaking more representing IT.

I'm going to borrow one of the points in Emil's presentation: he started off with his
theme being that many conflicts between actuaries and IT exist due to the nature
of the structure of systems. I'd prefer to change that to due to the lack of
understanding of the structure of systems. | also believe that if you align your
system structure to be consistent with the nature of the business—I don't like to
call it a problem—you will minimize much of the adversarial quality of the
relationships. | say "minimize" because | actually enjoy a little bit of conflict; I like
the difference of opinions. It sometimes drives me in a different direction than |
might have considered originally. 1 don't always think of these differences as
problems. | view them as challenges or issues, and I'm actually more excited about
challenges. Problems are not in the business world, so to speak.

So there are two key phases to the software development process. The first one is
design, and the second one is construction. I'm going to review a couple of these
with you so that you will have a better understanding of the nature and the
structure of systems development. The design phase is often the most difficult part
to predict and requires extremely creative people. The construction phase is easier
to predict. You can employ less skilled individuals, so you should think automation
there. Emil has given you a very good example of how they were able to automate
certain construction elements in his Excel examples. We're going to explore these
design and construction elements that we can then modify to help bridge our gap
between IT's and actuaries' expectations of each other and what the results are.

For actuaries, our expectations of IT are that we should be able to adjust priorities
to quickly implement changes, and that's an element of design. We want the
programmers to fix bugs and technical difficulties. That's an element of
construction. We think they should design programs that easily incorporate
modifications. Again, that's also design. And then we want them to deliver error-
free systems, which is a component of construction.

For the IT person, if I'm the programmer trying to cut some code for you, here are
my expectations of the actuaries. | want you to write specs that include all
reasonable, foreseeable modifications. That's an element of design. | want you to
write me specs that | can program from. That's also design. And | want you to test
all the system calculations. If there are 20 "if" statements, I'd better see 40

Actuaries versus IT—The Perpetual Dilemma 11

function points on your test case. So that's construction.

So what are some design fundamentals? First, in the design phase of your software
construction process, you need to accept that the design will change. Your business
doesn't stand still. You don't stand still. Why should the program that is built stand
still? If you accept that the design will change, then you should be able to write
specs that will include all reasonable, foreseeable modifications. You need to focus
during the design phase on what is predictable and then adopt processes to control
the unpredictable aspects. You should shift the emphasis of the deliverable. Instead
of looking at whether you got more value from the end result than you put in, look
at whether they delivered something on time and on budget. Coming from the IT
department, | see this is something that happens frequently. | tell them, "I gave
them exactly what they wanted, but it doesn't do what they want because they
asked for the wrong thing." Or did | give them something better than what they
asked for? Did my involvement in the project give them something of greater
value?

To me that is a better measure than asking, "Did | get it to you by a specific date
and for a specific dollar amount?” If it took me an extra day, but you got a lot of
man-hours out of that one particular day, and you can do a lot more when you
have the product in your hands, | think that's a better measure of success than
sticking with those hard-and-fast rules. | would also encourage you to do this when
you're negotiating for consultants for a variety of software expertise that they bring
to the table.

The remaining two elements of the design fundamentals are, first, that you should
emphasize relationship management. You should stress that this is a partnership.
It's not IT versus actuaries, actuaries versus IT. This isn't the Super Bowl; we all
have a common goal. And, lastly, you should modify your management
measurement. You should delegate rather than dictate, and you should facilitate
communication. Often as actuaries we're not involved in the hands-on doing. We
might have students who work for us who are involved in working with IT or, vice
versa, the IT area has delegated a lot of the preliminary programming to students
straight out of college.

So as an actuary, it's your responsibility to delegate rather than dictate. | am not
an expert on software systems. | just define requirements for what a system
should have. Therefore | am delegating. I am not telling them how they have to do
something, that they have to write it in C or they have to do it in dot-NET. | want to
encourage them to choose what best meets my needs. That gets back to facilitating
communication. We should go back and forth. We should develop cycles to help
improve communication.

For the construction fundamentals, and this again is more from the IT side of
things, focus should be on reducing complexity and providing automation. As a
programmer, you should anticipate diversity. You should construct your programs

Actuaries versus IT—The Perpetual Dilemma 12

so that they're structured for validation, so that you can easily test that the system
does what it is supposed to do. You should follow established standards. There are
standards for programming languages,. which are very important to follow.

Now I'm going to go through a couple of software development methodologies.
These methodologies are mechanisms that | would encourage you to consider using
when you're looking at a large overhaul of a system or you're anticipating using a
software system as a means of solving a particular problem that you might have. A
lot of the software development methodologies originated in civil and mechanical
engineering. They were designed to minimize the use of, in time, very expensive
computing resources. Many of the key issues are amenable to mathematical
analysis versus reliance on peer review.

These older methodologies, the predictive methodologies, are better suited for
projects that have a very small design element relative to the construction part. If
you think about it in terms of the history of civil and mechanical engineering, a lot
of these methodologies evolved because very high-priced engineers were
constructing things in their minds of what a bridge should look like, and then you
had many laborers actually building the bridge. So these old methodologies were
very good for building bridges, but they're not very good for building software.

Some examples of predictive software development methodology are the sequential
V, the waterfall and the Boehm spiral model. | don't really want to go into these in
a lot of detail, but I want to give you an idea of the methodologies out there that
you could implement in your various projects that might improve the result at the
back end. The traditional waterfall method starts at the top, and then it gets
handed off, and it kind of trickles down, trickles down, trickles down.

So you're going to document the concept, you're going to identify requirements and
analyze them, you're going to go through some architectural design. Then you're
going to go into more detailed design, and you're actually going to hit the part
where you do the coding. Then you're going to integrate everything, pull it back
together and deploy it to the end user. So this is a traditional method. It starts in
the center: it starts spiraling out, and it's more of a cyclical approach. You start off
small, and then you grow and grow.

Some of the more current software development methodologies are called adaptive
or agile. They evolved due to the need to develop in Internet time, meaning | have
to get something to the Internet today. | can't take months and months designing
something, or months and months testing something. So those old process flows
really don't address the desire to get something to market faster.

You will have working code much faster than you would, say, under some of the
older predictive methods. It can be better suited for projects that have a larger
design element in them rather than a construction element. These methods don't
work very well for really large development teams. Many of the examples I'm going

Actuaries versus IT—The Perpetual Dilemma 13

to give are geared toward highly motivated, highly efficient teams of eight to 10
people, not these large 200-staff projects.

Some of the examples are XP, Cockburn's Crystal Family, Open Source, Highsmith's
Adaptive Software Development. There are a lot on the Web today where you can
go out and find more information. The idea behind extreme programming is that
you will have the business client who will define requirements, and they will
participate in release planning. Then we will have iteration planning. Note that this
is something sequential. Unlike the waterfall where you start at one end and you go
all the way through to the other end, this one is constantly cycling back. You have
lots of teeny, tiny releases in between so that you have progress shown throughout
the development cycle.

I find that this works very well when we're bringing consultants in to get the
properties of a particular product onto our variety of systems, whether it's the
valuation system, the modeling system, the illustration actuary system or a system
that the agents in the field use, where it's new, so we're not quite sure the design
that we're going to want in the end. Instead, we'll just take baby steps, and we'll
kind of go around and around without a big target deadline, but we'll set smaller
intermediate deadlines. So you've got small releases. The agile folks refer to that
cycling back as refractoring, where you make a small change to your code to
support the new requirements.

Another strong item of the XP and the other adaptive methods is that you have
adopted a very simple design. It should be very easy to understand so that at the
same time it's very easy to make changes to the code down the road. Collective
code ownership means that no single person owns the code; you all share in it. Any
particular programmer should be able to work in any part of the code at any part of
time. Some of the legacy systems out there have people who say, "l write Part A,
and that's all 1 work on," and, if you ask them a question about Part C, they say,
"That's not my job." Well, that isn't true in the adaptive methodologies of software
development. Everybody owns the code; everyone is responsible.

For the onsite customer, another important point of this methodology if that you
have continuous access to the other people. That's why | use this with the
consultants a lot. They're in our shop, or we're in their shop. We're working
together as a team going back and forth. It doesn't work really well when your
vendor is overseas, for example, and you have access to them only while you're
sleeping. So you really need that integrated approach for success in a development
environment.

Coding standards: one of my soapboxes is following established standards. It
makes it much easier for other people to pick up after you. Let's say you leave the
company, or the programmer leaves the company. If you followed established
standards, then it's going to be easier to transition maintenance of that code over
to someone else.

Actuaries versus IT—The Perpetual Dilemma 14

Scrum is another method that | like to use. This is getting back to that team
approach.Scrum is where you've got a group of people, and they kind of cluster
around. Think of it like a soccer team of four-year-olds, where they just all run to
the ball. They don't know their positions. And gradually it moves downfield, so that
they start one place, and they ultimately reach the goal, but they may have drifted
a little bit right for a while, and they may have drifted a little bit left for a while.

Those were some of the elements of design. Now I'm going to go over some of the
construction process elements. Remember, my perspective is from IT, so I'm trying
to educate you on some of the processes that IT uses. Those last methods focused
on how they design software systems. Now we're going to talk about how they
construct software systems. The specifications document is a comprehensive
statement of the problem that you're trying to address with a software tool.

In the analysis phase, the problem is laid out in a form that will lend itself to an
arithmetic or logical analysis. Then the programmer or the person involved in the
construction process creates a flow diagram that shows all the operations and the
sequence in which items are supposed to occur. The encoding is the actual coding
part, which converts the operations into computer language. This is where Emil
referred to his compiler for Excel, where someone has given him the specifications,
they've done some analysis, they've determined how things are supposed to occur,
and then they just push a button, and it automatically creates the computer
language. Debugging is the process of locating errors, and then documentation.
Emil gave an example, although briefly, of how you can actually even automate
elements of your documentation phase.

There are three different types of construction styles. There are linguistic methods,
formal methods and visual methods. | am not a computer engineer, so | am not
going into these in any detail. But you can talk to a computer engineer, and I'm
sure they can give you loads of information on these three methods. Some of my
observations from having worked with IT for the past 11 to 12 years is that if you're
dissatisfied with your results, then maybe your company or your business unit is
using an inappropriate development methodology, or maybe you're using an
inappropriate construction style. Maybe you're using a visual method, and you
should be using a linguistic model, or, similarly, you've adopted an old predictive
method for something you want, but you want rapid turnaround. So maybe you
should employ some of the adaptive methodologies.

Do all of the parties know their roles? As an actuary, do you know what your role is
in that methodology process? Does IT know their role? Do you have the correct skill
set? If you are a programmer from a legacy system, you are not going to work
particularly well in an adaptive or agile-type environment, whereas a student right
out of college is going to be up on all of the new technology and will fit well in that
type of environment. But they aren't going to be as well suited for a legacy-type
environment or for working in a predictive-type methodology system. | can't stress

Actuaries versus IT—The Perpetual Dilemma 15

the importance of communication. Those feedback loops that the adaptive or agile
methods incorporate into the software development process, | think, are a big plus.

So here are some reminders. Are you guilty of any of the following? When you are
designing your specifications or when you're testing the systems that the actuaries
have given you, have you introduced noise? Noise is where you are providing
information to me that has no relevance to the task at hand. Or silence: I get this
frequently when there is a feature of a particular product and the person designing
the specifications hasn't told me about it. Overspecification: have you actually
included in your specification a way to solve the problem? I'm the programmer;
that's my choice. If | choose C or dot-NET, or | choose Excel with a Visual Basic
macro in it, that's not your call. Your call is to design for me something | can
program from. It is my choice as to what language | want to put it in.

Contradiction: contradiction is where in your specification you actually give two
different interpretations of the same thing. You say a plus b equals c, but later on
you say a minus b equals c. Don't provide me with contradictions. Ambiguity: there
is a lot of ambiguity in the specifications that | receive from actuaries. Maybe they
haven't been particularly specific about how some feature should work or there are
two different ways that the statement could be interpreted, kind of a to-may-to/to-
mah-to type of thing, two different ways of saying the same thing. Forward
reference: in your specification document have you started talking about a feature
that you haven't even defined yet? And the last one is wishful thinking: that also
gets into your trying to tell me how to code something and how to implement a
resolution. That is my choice as the programmer.

Just for the flip side, because I'm an actuary, even though I'm taking the IT side, |
also wanted to point some fingers at IT and say, Hey, guys, when you're doing
these things, make sure you design a program that's portable, flexible, complete
and comprehensive, dynamic and responsive, consistent, clear and concise, simple,
and that provides suitable controls. So if IT meets all of these requirements that |
have, and | meet all of their requirements, then hopefully we'll come together, and
we'll have less discord between the two parties.

MR. HARTFIELD: You may not recognize the face of our next speaker, but I'm
sure you recognize his work: Frank Reynolds. He's celebrating his 40th anniversary
in the Society, and he's published over 130 Actex manuals in his career. So,
without further ado, here's Frank.

MR. FRANK G. REYNOLDS: I'm afraid | go back some years in the computer
business. Those of you who have come here to better learn how to soap a program,
I'm sorry, I'm not going to get into these technical details. How many of you know
how to soap a program? Compile? It's a more modern word for the same thing. | go
back quite a long way. I've worked on the IT section side running a computer
installation, I've worked on the other side in the line areas. My job today is to
provide the comic relief, namely, examples of what can go wrong.

Actuaries versus IT—The Perpetual Dilemma 16

The first case: a systems analyst was called down to the controller's office. A new
system had been introduced. In the conversion process they discovered one life
who is 102 years old. The system provided for a two-digit age field. The controller
demanded that all the programs in the system—and they were looking at about 600
different programs at that time—be changed to accommodate the three-digit age of
this particular person. The systems analyst went back to his office for a while and
decided that the cost was going to run somewhere in the neighborhood of about
$300,000. The next question he had for the controller was "How big is this policy?"
"It's a $1,000 policy. Have you got it all fixed up yet?" The systems analyst said,
"Well, I've got an idea. Why don't you have the agent, the branch manager, maybe
the director of agencies give a great big bash at the retirement home where this
man is living, call in the local press, and present him with a check for the amount of
the policy, which we're holding over a $1,000 reserve for, | understand, and say
that this man has outlived the mortality table." Well, after some argument the
controller decided that maybe there was some merit in this idea. They did it. They
took $1,000 off the books as a liability and saved themselves $300,000 in
programming costs. The point I'm trying to make is this: they got more than
$1,000 worth of publicity out of this. It was a much cheaper way to do the same
thing. That's one of the things to consider when you're doing systems work; think
about it.

In another example, the actuarial and agency departments turned around and
announced a whole string of new products on December 1. This was the first the
computer systems department had heard of it. The systems analysts were a little
alarmed at one thing: there was a new, different policy fee for the individual health
policies. The head of systems had to go to the chief actuary and say, "Um, er, uh,
we've got a small problem. It's going to take us six to eight weeks to program this
new innovation, and, um, er, uh, for your end you're going to have to value all of
these policies manually.” The roof was raised about four stories, and there was an
explosion.

The next step was that the head of the systems division walked in one day, and
here was his desk covered about so deep in books. The actuarial department had
presented him with every project that they had ever thought of. He had to go
return the books to the actuarial division and explain that maybe the solution was
that when they started planning a new rate book revision, about three months
before they implemented it, they involve the systems department. Then maybe
both parties could work together. The systems would be ready on time, and the
actuarial people would get what they wanted. The point I'm trying to make is, you
need communication, and you need it at the right time.

The third case involved a reinsurance product. One of the people in the reinsurance
division got transferred to the computer area. Five or six years later, the company
needed a new reinsurance system, and they assigned this man to do it. Well, he'd
worked for 15 years in reinsurance, and he knew all about reinsurance. So he sat at
his desk without saying anything to the actuarial division that was involved and

Actuaries versus IT—The Perpetual Dilemma 17

designed a new system, then he wandered into the head of reinsurance's office one
day, and said, "Here's the system. It's Monday morning; | need it approved by
Friday afternoon so we can start programming next week, which I've got all
arranged."

The reinsurance people said, "Um, er, uh, there have been a few changes since
you were here some years ago. What's going on?" They started checking. A whole
bunch of new management reports that were needed were not provided by the
system. It was weeks before they managed to get everything straightened out.
There was a grand fight between the two division heads, and | mean a grand fight.
The systems chief was incensed and then absolutely humiliated when he found out
the system wasn't going to produce. Moral: Sometimes the systems people try to
design something, and they think they know best. Sometimes they don't, and they
should involve other areas.

The next case is a cute one. | was involved in this particular case. We were asked
to do a group annuity valuation system. So | asked, "Well, what's normal
retirement age?" "Sixty-five." "Well, what's the oldest that we have people
retiring?" "Well, some people go into their 70s." | ran around the bush on this one
with the line area for several hours and decided, "Okay, there's probably nobody
over age 80." So | actually programmed the computer assuming that there would
be nobody still with an active working life contributing to their group annuity at age
92. The system was tested; it went through. December 30, 2:14 a.m., | got a
telephone call: "Frank, your system’'s blowing up.” At that time | was working in
Winnipeg, Manitoba. As some of you know, Christmastime out there can be very
cold, like 25 to 30 below, and this was a windy night. 1 had to get out of a nice,
warm bed, from under a nice, comfortable eiderdown, and go downtown. |
discovered there was somebody in the system who was 94 years of age. | figured,
well, somebody’'s transposed the digits, it's 49, we've got to pass that record. |
stayed in my office for the next hour and a half till it went through. The next
morning | went downstairs and said, "There's a coding error here." " Oh, no! This is
Mr. Fredericksen. He is 94, and he's actively saving for his retirement. He hopes to
retire before he's 100." I'd made the mistake of not making them go through the
file and getting the extreme case. | paid for it.

In another case that | saw, the systems analyst went to the head of the systems
area and said, "We've got a problem. We're trying to bring in a new valuation
system, and the guy who runs the valuation department wants us to incorporate an
approximation for calculating the reserves and accidental death benefit, and it
involves a huge spreadsheet.” Well, the head of systems thought the guy was
exaggerating. They went over to the valuation head, and out comes a sheet. The
guy started over in that corner, and it came roughly over to about here. They
wanted it programmed this way. The suggestion was made that doing it accurately
would be a little bit cheaper. "No, this is the way the chief actuary's done it, and
this is the way we're going to do it. We've done it this way for 40 years, and we're
going to do it for another 40. Program it."

Actuaries versus IT—The Perpetual Dilemma 18

The systems analysts and the systems head sat down and figured out that it was
going to cost about $300,000 to do it that way, versus $50,000 to do it accurately.
They took it down to the chief actuary, the chief actuary listened very patiently,
asked a lot of questions, and finally agreed to do it accurately. Moral? Sometimes
approximations are useful, but sometimes it's a lot easier and a lot cheaper to do it
completely accurately.

Another case goes back to before most of you were born, the time when they
implemented the Canada Pension Plan in 1965. At that time, the Canada Pension
Plan was announced early in the year for implementation on January 1, 1965. So,
early in 1964, | was asked to put together a quotation system that would generate
quotations on integration. Until that point, pensions had been the same regardless
of your income. Starting at that point there was going to be integration with the
Canada Pension Plan both on contributions and on benefits. So we needed a
system. | had six weeks to get this system out so that the people could show the
quotations in September and get everything back in before Christmastime.

My first question was "How do you calculate your premia on the group annuity
business?" "Well, we want to change our rate basis. We're going to change it as
part of this process.” "Fine. But if I'm going to get this programmed, | need to know
the general outline of how you're going to do it. Are you going to have a policy fee
plus rates? Are you going to use discounts varying by size as you now are? How are
you going to do it?" "We don't know. You just program, and we'll tell you after we
develop the system 10 weeks from now for rates what we're going to do.” "But you
want this system in six weeks." "Yes." "But you're not going to give me the rate
basis till 10 weeks from now. How can | do one before the other?" "We don't know.
That's your job." They were trying a lot, too much at once. And this is something
that you'll often find, that people don't realize if | had known it was a policy plus p
plus rate basis, | could program that, but unless | knew the general form of it, |
didn't have a hope. And it caused a lot of comment.

Another case that | was involved with was on the intercompany disability study in
Canada. | was sitting in Waterloo, Ontario, and the compiling company was 1,250
miles away. | agreed and signed off on the basic specifications. They were
programmed, tested, and the first of May two boxes of paper arrived on my desk:
"Please check out and get it back to us by the 15th of May." Well, | was in the
business of giving seminars at that time for the university as well as privately. My
busy time starts about the first of May when the Society publishes its education
catalog and ends sometime late in October when | finish giving my university
seminars. Now, that particular year there was a change in the exams, and the
university seminars | was preparing were rather extensive, shall we say?

I phoned them back and wrote them and said, "Look, | can't get to this till the new
year." "What? You're sitting doing nothing.”" I got through it in early January and
gave them a list of some 30 different errors that | found. One of them was the
cause of disablement: it was a blank sheet of paper, except for the cause down the

Actuaries versus IT—The Perpetual Dilemma 19

side and the rows of headings across the top. The rest of the sheet was blank. Well,
I sent that out in January. This had to go into the computer system's scheduling
process. So it got scheduled for a year and a half to two years later. First of May
again, yes, you guessed it. | got the stuff again. | got it out the following January,
and this sheet that had been blank before now had 100 percent in every field. |
knew that couldn't be, that everyone was just exactly 100 percent of what was
expected. So | said there was something wrong with this. And the errors had gone
down; they had, by and large, corrected things. | think there were only two that
were still mistakes, but they had uncovered maybe eight or 10 new things.

This cycle went on several times till finally the system was abandoned. Why?
Simply because the systems department didn't realize that the operating area, me,
had a cycle. There were certain times that were busy, and we couldn't turn around
and produce. Similarly, instead of scheduling, knowing that there was going to be a
time when this material was going to come in and putting in a schedule, they
waited till they got the results back and then put it into their scheduling hopper,
which was about an 18—24 month cycle. You can't have this sort of thing, or a
system never gets up and run.

The next case involved a system | was developing for group annuities and a billing
system that involved consolidated functions. One of the people working for me at
the time was a young woman with a Grade 11 education who had worked in the
group department at one point. We developed all the forms in English, sent them to
French translators because in Canada we need the forms in both English and
French, and the French translators translated them all into French. I'm not trying to
deprecate them in any way, but most of them barely read English, let alone spoke
it, and they certainly didn't speak group annuity.

The forms came back, and Jeannette looked at this stuff, the woman with a Grade
11 education, and she said, "Frank, do you mind if | try translating it?" I thought
for a moment and said, "Hmmm, she's absolutely fluent in French, she speaks
group annuity, and she speaks English."” I let her do it without saying anything to
anybody. The system went out. The forms got all printed, went out to the field
force, and there was one great, grand gafuffle. This was first time that the company
had ever produced forms in French that were intelligible.

The woman involved was Jeannette Davignon. She eventually turned around and
went back to university and ended up as a Fellow of the Society of Actuaries. My
moral here is that she appeared to be a lot less qualified than the French translation
department, but because she spoke both languages fluently, plus group annuity,
she was far more qualified than our translation people. Use your best source
possible.

Another system | saw involved group annuities, a big consolidated function system,
one that we referred to as a legacy system, a great, big system that took man-
years to do the systems work and man-years and man-years to program.

Actuaries versus IT—The Perpetual Dilemma 20

Unfortunately it contained a flaw. The reserves were calculated correctly, the
administration was correct, the billings went out correctly, but the outstanding
premia for accounting and actuarial purposes were incorrect. Three people in the
actuarial division had to turn around and work full time trying to figure out what the
reserves should be for year-end and to check them.

Somebody from the actuarial division went to the systems division and said, "Could
we have a look at the programs because, hey, there's something wrong here?" "No,
that's our job." "Would you let us submit some test data and see if we can figure
out what it is?" "No, that's not your job. It's the line area and ours,” and they
signed off. Five years later, the system finally had to be abandoned at a cost of
around $5 million. Why? Simply because somebody was guarding their turf a little
too much.

Another example was in a company where a consolidated functions system was
brought in. Unfortunately, they didn't have the manpower to bring it all in at once,
and the valuation was left on the old system. The record-keeping was done in
parallel, and the accounting was on the new system. Well, the accountants said the
new system would produce results as of December 31. The cutoff would be on
December 31. Then the actuarial division said, "Look, we're on the old system.
We've got to cut off on the 15th because there's a lot of manual work in the old
system." The accountants said, "We don't care."

The result was that on the third of January, when the results came in, everybody
got called down to the president's office. There was one serious problem. The
company had no earnings. Guess what? Cutting off the two systems on two
different dates had resulted in an error the size of the amount of earnings. So for
goodness sakes, make sure all the parties, all the line areas and the systems areas,
work together and know what each other is doing.

There is a lot of discussion about the fact that systems and actuarial are different. |
come from a university that is noted for both its actuarial and computer programs,
and | have some records in my office. What we used to do back in the 1960s at my
university was check students and give them the actuarial aptitude test. The ones
who passed were allowed to go on in actuarial science. The ones who failed were
put into computer science.

This story goes back to about that time. There was an actuary working for the
company who wanted to develop a cash value disability product. Those of you who
are familiar with that type of product know that there is a tremendous dependence
of the premium on the cash value and the cash value on the premium. The two are
very closely intertwined. So one of the top systems analysts was assighed to this,
somebody with a master's degree from the University of Waterloo in computer
science, really up there with the latest technology. He programmed things, and it
was all checked out. On Saturday morning, he started a mainframe computer at 8
a.m. Well, about 2:30 the next morning, he got a phone call from the computer

Actuaries versus IT—The Perpetual Dilemma 21

staff. They wanted to go home. Why? Because there was nothing else left to do, but
his program was still running. He had them stop it. He discovered that it had
narrowed the premium down to somewhere between $40 and $140. On Monday
morning, he got called to the chief actuary's office, an old gentleman about my age,
who asked what the results were. "Well, somewhere between $40 and $140, sir."

The old gentleman looked out his window at the beautiful Manitoba maple that was
in green leaf at the time and thought for about a minute and a half and asked,
"What did you use for a starting value?" "Zero." That's perfect, good computerese.
That's where you start. That's what they teach us in university. He looked outside
for another 15 seconds and then said, "Try $85 for your starting value." Next
Saturday morning, 8:00, the program gets started with $85. Two minutes and 15
seconds later, the program stops. The systems analyst gets called in. The program
had run, and the premium was something like $84.27. Moral? Communicate.

I work in a shop where theory is something that we dispense and teach students.
When | started, most of us were practicing actuaries and not theoretically oriented.
I was the theory man at the time when | started. Now | find I'm the guy whao's
practical, and the others are more theoretical than | am. Realize something: some
of the old goats like me who have been around forever can turn around and, using
rules of thumb, come fairly close to the approximations that can be done with all
these technical things. | noticed one of the older, gray-haired people in the
audience who has got a little bit of experience going, "Mmmm, | know what you
mean."” Use that experience that's around, because sometimes it's worth a lot more
than technology.

Finally, | saw one computer system where the line area and the systems people had
agreed on 250 consistency checks. Some months later, the systems analyst was
down in the line area, and in stumbled somebody with a whole pile of error
messages printed out, thousands of them. The systems analyst asked, "What's
going on?" Well, it turned out that three of the consistency checks that had been
asked for worked beautifully. The only problem was that most of the policies
violated these consistency checks. So every month when things were run, they got
almost a complete list of their policies. Instead of telling the systems people that,
"Hey, the consistency checks that you're running, some of them are worthless, let's
take them out," they just turned around, let them be produced, and then threw
them out and, in fact, were ridiculing the systems people for all their mistakes.
Communicate your problems and make sure that any error messages that you're
using are not only technically correct, but that they're actually useful. Thanks very
much.

