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Summary: The manner in which the actuarial profession models and manages 
mortality risk is undergoing dramatic changes. New modeling techniques have led 
to better risk management tools. Capital markets solutions are evolving for insurers 
wishing to protect against unfavorable mortality developments in both life insurance 
and annuity products. In this session recent key developments in mortality 
modeling and in the transfer of mortality risk are examined. 
 
DR. MARY HARDY: We have two speakers. Iain Currie is a reader at Heriot-Watt 
University in Scotland, in the department of actuarial mathematics and statistics. 
Iain is going to talk about the work that he has been doing on mortality, which has 
already had a significant effect on the assumptions used in U.K. pricing. Then 
Professor Sam Cox from Georgia State University will talk about securitization of 
mortality risk. We're looking at two different aspects of mortality in this session. 
This is a standing education and research session; we like to bring to the annual 
meeting sessions that indicate the practical applications of research in the discipline 
of actuarial science.  
 
DR. IAIN D. CURRIE: I'm delighted to be able to present some work that I've 
been doing with my colleagues, James Kirkby, a student of mine; Maria Durban, 
who works in Madrid; and Paul Eilers of Leiden University. We met last month at the 
Research Institute in Edinburgh to put the final touches to this talk.  
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While I was doing some background research for this talk, I thought I would look at 
some of the history of the problems of longevity. The earliest example I could find 
for problems in annuities actually occurred in the Old Testament. In Genesis 5, you 
read that Methuselah lived for 969 years. What is much less widely known is that he 
had a hefty annuity with Red Sea Life. This company went out of business because 
it couldn't meet this liability. So already 4,000 or 5,000 years ago, depending 
whether you counted from his death or from his birth, insurers were having 
problems with longevity. On the other hand, Shakespeare had a much more 
optimistic view of the longevity problem. In "Macbeth," Act II, Scene II, Macbeth 
proclaims, "There's nothing serious in mortality. All is but toys." That was 1606.  
 
A little more recently, the mathematicians started getting in on the act. A famous 
actuary, Benjamin Gompertz, writing in Philosophical Transactions of the Royal 
Society of London in 1825, made the amazing observation that over a long period of 
human life span, the force of mortality was geometric in age. This was a surprising, 
simple observation. Then in your own North American Actuarial Journal, which is 
more or less up-to-date, Lee had a paper entitled "The Lee-Carter Method for 
Forecasting Mortality, with Various Extensions and Applications." These two works 
are separated by almost 200 years.  
 
Gompertz, on the one hand, has a model for mortality for a single year of life. The 
Lee-Carter model is much more ambitious in some ways. It's a model for a 
mortality table, so you have a table of observed mortalities that's indexed by age 
and by year. The two models are different in nature. The Gompertz model is a linear 
model on the log scale, so it's a smooth model. The Lee-Carter model is a discrete 
model, where each age and each year gets a parameter. What I'm hoping to do in 
this talk is try and fit the ideas of Gompertz and Lee-Carter together to give us a 
smooth Lee-Carter model. Perhaps if there's time at the end, I'll indicate some 
further extensions, as well.  
 
Here's the plan of the talk. I'll outline some data so that you can have something to 
fix in your mind. We'll go through Gompertz models and show how we can make 
smooth models out of these. The idea is basically just simple regression with a 
modern twist. I'll describe the Lee-Carter model and how we can make that a 
smooth model. I'll describe some technical difficulties (there may not be time for 
that), and finally, if time allows, I'll talk about flexible two-dimensional methods.  
 
This is something you should keep in your mind for the duration of the talk. I'm 
going to be using some data on assured lives' mortality, so the data are claims on 
assured lives. There are 90 ages (roughly, not exactly), from ages 11 to 100, and 
we have observations from 1947 to 1999, which is just over 50 years of data. That's 
the number of claims, and matching that, we have the exposures (exposed to risk). 
If we divide one table by the other, we can get a raw estimate of the force of 
mortality at each age and in each year. The big question for pricing is, what is 
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mortality going to do in the future? It's a large question mark. Because of the 
requirements of insurers (they are daunting), we are expected to make a guess, an 
intelligent guess with any luck, about what the force of mortality is going to be in 
perhaps even 50 years' time. That's an ambitious program. One of the main things I 
want to say here is that one should be aware of that difficulty.  
 
Let's go back to 1825 and Gompertz' famous equation, µx = ABx, showing that the 
force of mortality is geometric in age. Being a simple mathematician, I'm not 
comfortable with multiplication, so everything will be done on the log scale. That 
will turn it into a nice little addition, log µx = log A+log B x = a+bx. Thus, the log of 
the force of mortality is linear in age. Once you've got that, you can easily make it 
more complicated. You could have what I would call a quadratic Gompertz model, 
log µx = a+bx+cx2, or cubic or whatever you like.  
 
Insurance data are different from population data. With population data, you have 
large numbers of observations. However, with insurance data, particularly at 
younger ages, you can often have small numbers of deaths and small numbers of 
claims, so you ought to use an appropriate model here. An appropriate model would 
be a Poisson model. The number of claims follows a Poisson distribution, whose 
mean is given by the exposure times the force of mortality, or dx ~ P(E c

x ųx). If you 
express that in the log scale, it simply says that the log of the model force of 
mortality is going to be linear, logE c

x µx = logE c
x +a+bx, or quadratic, log E c

x µx = log 

E c
x +a+bx+cx2, or whatever. That's a regression framework.  

 
What we're interested in is the expectation of the number of claims. It's a linear 
function of the explanatory variable, year of age. So that's the regression equation, 
except that it's a little trickier than that because we've got a Poisson variable, and 
that gives us a generalized linear model. Just think of it in terms of an ordinary 
regression with a Poisson variable. When I take one year of data—Benjamin 
Gompertz would have understood this clearly—and we're on the log scale, from 
roughly age middle 30s all the way up to age 80, the log of the force of mortality 
lies beautifully on a straight line, which is Gompertz' famous observation. It goes 
haywire at either end, but for a large span of life, you have linearity. There's 
nothing particular about saying that you have to do this for a single year of life; you 
could also do it for a single age. Then you would have a Gompertz model in time. 
Say we've taken age 65. The log of the forces of mortality at age 65 of the linear 
Gompertz function is rather unsatisfactory, but if you put a quadratic through it, it 
works well (see Currie, page 8).  
 
That's the past. The reason you're here is that you'd like to know what's going to 
happen in the future. The quadratic model seems to do a decent job, so we will just 
continue it. You have to make a choice here. How are we going to project into the 
future? This is the choice of forecast function. One classic way of proceeding is to 
get a good fit to the data and then use the same function in the future. If that's 
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what is going to happen, that indicates the most extraordinary improvements in 
mortality over the next 50 years. You don't have to choose a quadratic. Who exactly 
knows what's going to happen? Instead of continuing with a quadratic, we could 
just fit the tangent at the last year, and there's a linear extrapolation (see Currie, 
page 11). Perhaps people are a little more comfortable with that.  
 
Because we're in a nice statistical framework where all the theory has been worked 
out, we can also calculate confidence intervals. This is interesting, except that it's 
exceptionally misleading. The usual idea with a confidence interval is that if you can 
compute a confidence interval, you can be pretty sure that your predicted values 
are going to lie in the confidence interval. But 50 years out is a pretty confident 
prediction. If we thought that we could predict things as accurately as that, I think 
we'd all be extremely happy. What has gone wrong? A confidence interval is always 
computed conditional on a model being correct, so we have a strong model 
assumption here. We've assumed that we have a Poisson variable. We've assumed 
that the force of mortality follows a simple quadratic function. There's a massive 
assumption going in, and that propagates through into the future and gives us a 
tight confidence interval (see Currie, page 12). I think that's optimistic indeed.  
 
Let's think a little more about regression. This is a first course in statistics. What is 
regression? In linear regression you have two basis functions, a+bx. It's linear 
combinations of 1 and x. Quadratic regression is linear combinations of 1, x, and x2, 
and so on for polynomial regression. You can calculate the means as linear 
combinations, and you can also express that neatly in matrix form. This is a rather 
nice idea. Regression is simply a linear combination of basis functions. Then you 
make a little leap (or perhaps a big leap) and say that we don't have to use simple 
basis functions or polynomial functions, that we could use any functions and then 
just use the same ideas.  
 
Here are these things that I've called "B-splines" (see Currie, page 14). I'll tell you 
what they are in a moment, but it doesn't matter. These are just functions that are 
replacing 1, x, and x2. We've replaced them with p functions. We can work out the 
means in exactly the same way. We may express it in matrix form in exactly the 
same way. The question is, can we choose these functions in a better way than just 
using 1, x, and x2? That's what you always do when you're in your first year of 
college, but maybe there are other ways of doing this that might have some 
advantages.  
 
I'm a great fan of using the B-spline functions as the basis functions. A B-spline is 
well-behaved; it's not an intimidating function at all. This is a cubic B-spline (see 
Currie, page 15). It consists of four pieces bolted together at dots, which are called 
knots. Each piece is a cubic. It looks beautifully smooth in the drawings, but it's not 
perfectly smooth. The first and second derivatives are smooth at the knots. You get 
this function that's almost a smooth function; it has little hiccups in the higher 
derivatives, but to the eye it looks perfectly smooth. We have a whole collection of 
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these, and this is the basis that I'm going to use. I think there are 10 basis 
functions here (see Currie, page 16). We could say that the force of mortality in the 
log scale is going to be a linear combination of these basis functions in precisely the 
same way it would be a linear combination of 1, x, and x2. There is no change here, 
apart from using these different basis functions.  
 
So we put it into an ordinary regression, nothing fancy (see Currie, page 18). How 
does it work? Disaster. I've used 23 basis functions, and the basis functions are 
covering the range of the time axis densely. The regression is able to pick up the 
bobs and weaves in the actual observations. If you use 30, you will get an even 
wavier function. If you used fewer, it wouldn't wave about so much. That would be 
one idea. How could you manage to choose the right number of basis functions? 
That's one approach, but it's not what I do.  
 
Here's a nice observation. The red dots are the regression coefficients. These are 
plotted at the centers of their own basis functions. Now you can see what has gone 
wrong. The reason that the fitted function is bobbing and weaving around is that 
the coefficients bob and weave around, so if we could stop them from doing that, 
we would get a nice new fit. My colleague Paul Eilers and his colleague Brian Marx 
had this idea that they should penalize bobbing and weaving in the coefficients. 
They have this idea of penalties. Here's a first order and second order of penalties 
(see Currie, page 19). We're just taking the coefficients, writing them out in a line 
and defining a penalty function. I don't want the first one to be too different from 
the second, the second to be too different from the third and so on. That's a first 
order of penalty, and I can do the same thing with second order of penalties, as 
well. That's a simple function, and it's a quadratic form, so it could be written neatly 
in matrix notation.  
 
How do you balance the penalties (the smoothness requirements) with the fit? 
We've got two things that are competing head to head against each other now. 
We've got the data and the basis functions trying to do a great job on fitting and 
resulting in bobbing and weaving, and we've got the penalties saying, "Oh no, we 
don't want that; we want smoothness." How can we balance these two things? We 
have a balancing function here, which is known as the penalized likelihood function 
(see Currie, page 20). L(Θ) is the familiar log likelihood function, and that's the 
thing that's trying to make the fitted function follow the data.  
 
Then we have the penalty function, the quadratic form and the coefficients. It's 
trying to make things smooth. It's like a balance. We have fit from the likelihood 
function and smoothness from the penalty function. The amount of belief you give 
to one or to the other is measured by the quantity λ , which is the smoothing 
parameter. If you put λ  equal to zero, we just believe the data and get an 
unsmooth function. If you make λ  very large, it means that I want to have a very 
smooth function. The question has been reduced to choosing this value of λ . The 
normal equations are applied, but for the Poisson distribution. The Newton-Raphson 
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algorithm is a famous algorithm that we can use to solve the likelihood equations 
for the Poisson distribution. The main thing is that it's least squares. A nice 
mathematical point is that because the penalty has a quadratic form, it slips 
beautifully into this standard algorithm, and we stay within these squares.  
 
That's the technical side of things. How does it work? This λ  has to be chosen by 
some selection criteria. There's Akaike information criterion (AIC), Bayesian 
information criterion (BIC), generalized cross-validation (GCV) or a host of other 
things, as well, that will try and make a proper balance between following the data 
and following the likelihood and giving us a smooth function. How does it work? 
That looks a lot more comfortable (see Currie, page 21). Here, I think I've used 
BIC. This is age 65, and the penalty has smoothed out the function in what seems 
to be a reasonable, acceptable fashion. We're not fitting a cubic or a quadratic; 
we're trying to follow the data but follow them in such a way that the smoothness 
that we get reflects the variability in the data.  
 
You can do forecasting, as well. The way the forecasting works is to take the 
penalty function and say that you don't want to stop the coefficients anymore. In 
this case, if we're using a quadratic penalty function, that leads us to a linear 
extrapolation of the coefficients and a linear forecast. That's the basic method of 
forecasting with penalized splines. We can still compute confidence intervals. This is 
striking (see Currie, page 23). When we did the quadratic Gompertz, we had tight 
confidence intervals. This is a bit of a slap in the face, but it does look a little more 
realistic. It says that the farther out you go, the less confident you are; the funnel 
of doubt is widening out. I'm comfortable with this kind of picture, which I think 
does reflect more truly the kind of uncertainty that we'd expect to have so far into 
the future.  
 
That's the end of the first part of the talk. That's Gompertz with a modern twist. All 
we've done so far is look at a single age of data or a single year of data and, 
instead of using Gompertz' linear function, which works over part of the range of 
age, we've used a general smooth function that works over the whole range of age 
or time.  
 
Let's move up to a mortality table. I'm now going to describe the Lee-Carter 
method, which, as I mentioned at the start, has already been described in your own 
journal about four years ago in Lee's paper. That's what it looks like (see Currie, 
page 24). A few symbols are there, so I'll try to take this a little more slowly. It's a 
model for a table, so the variable is dx,t. It's indexed by age and by time, so x gives 
you the row, the age, and t gives you the column, the time. It's still a Poisson 
model; that's the same. It's a bilinear function. The α x is a measure of the overall 
force of mortality by age. The кt is an overall measure of the force, the time-
dependent element, and the ßx is a moderating function that moderates the time-
dependent element by age. The way to think about it is that for a fixed time it's a 
linear function, and for a fixed age it's a linear function. I'll show some graphs in a 
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moment that will make this clearer.  
 
One point of note is that we've got a lot of parameters here. Each age has got 90 
parameters times two, and each time has got 53 parameters. There's a bit of 
redundancy in here, which takes off a couple, but we've got about 230 parameters. 
That's a lot of parameters. How do you fit this model? We're mainly concerned with 
population data, not insurance data. I think that's an important point. They just use 
the least squares method on the log scale, so that's one way of doing it. Then a nice 
paper came out by some Belgium people in 2002 that made the obvious observation 
that because this is a Poisson model, you can write down the likelihood and 
therefore estimate the parameters using maximum likelihood. They did that, and 
that works well.  
 
I'm a statistician, so I have my own take on this. I like the idea of conditional 
generalized linear models. I think this makes the Lee-Carter process clear. Let's 
suppose that we knew the kappas. If we knew the kappas, we have a generalized 
linear model in age. The kappas now have got little hats on them to indicate that we 
know what the value is (see Currie, page 25). That's just a linear function now, so 
everything is simple, and I can fit that. I can work it the other way around, as well. 
If I know the alphas and the betas, I have a linear function in kappa, so I can 
estimate that. I can just jump back and forth between the two, and that will 
converge quickly. That works well.  
 
What does it mean? This explains what the Lee-Carter method does all together 
(see Currie, page 26). We've seen the alphas already; that's just the force of 
mortality by age. There we've got our Gompertz function going from about 40 up to 
80 or 90, which is familiar. Notice what I've plotted here. These are discrete. These 
alphas are discrete, so there's one alpha for each age, but I've joined them up. 
Look at the graph of the kappas; this is the time-dependent element. You people 
are interested in this. The kappa is the key to this. The kappa is coming thundering 
down, and that means that the force of mortality is improving rapidly. The 
improvement varies with age.  
 
Look at the moderating function, the beta that moderates the kappa by age. On the 
bottom right is the cross section of the surface for age 65. The key observation for 
me is that if you look at the bottom left and the bottom right, it's the same picture. 
Of course, that happens because the bottom right has got α 65 plus ß 65 times к, so 
all you're doing is scaling the kappa and shifting it. The way to think about the Lee-
Carter model is a heavy assumption. It takes the kappa function and scales and 
shifts it for every age. That's made clearer where you get ages 50, 60, 70 and 80. If 
you took the scales away, you couldn't tell them apart. But the scales are different; 
they're located differently and scaled differently, so the slopes are different. They 
only look the same because of the way they're plotted. That's a heavy assumption. 
What you get is nice.  
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There's a great thing about Lee-Carter. It works so well because you've got a strong 
signal in time. The argument here is a subtle one and a strong one. We're not too 
worried about how good a model this is of mortality. What we want to get is a 
strong signal in time so that we can get a clear projection. That's the thinking. Here 
we are forecasting the kappas (see Currie, page 29). The usual way of doing this is 
with time series. That's how Lee-Carter works. There are the projections in 10-year 
age bands. You can see that they're not parallel because the moderations are 
different, and they're at different heights because the alphas are different.  
 
Can we now put these two ideas together? We've got Gompertz in 1825 and Lee-
Carter in 2000, and we put these two things together. We can do this rather nicely. 
Here is the Lee-Carter model, and all I'm going to do is say the α X is our description 
of the overall mortality, so I can replace that with any function I like. In particular, I 
can replace it with a Gompertz function. This is what I've called the Gompertz-Lee-
Carter model (see Currie, page 30). I've replaced α X with a1+a2x, a linear function. 
I've imposed a structure on the overall mortality, a smooth structure. You can see 
what's coming, of course. We're going to come to general smooth structures, but at 
the moment this is just Gompertz. This is Lee-Carter with an overall Gompertz 
smooth function in age. I've printed both fits (see Currie, page 31). The red fit is 
the original discrete Lee-Carter, and the black fit is the Gompertz-Lee-Carter, where 
the overall age has been replaced by a linear function. This has a dramatic effect for 
the moderating function in particular. It has changed a lot. It has little effect on the 
kappa function and not much fit on the cross section at age 65.  
 
Now we've done all the preparatory work. We know how to fit a smooth function for 
any given age using our B-splines, so instead of replacing α X with a linear function, 
we'll just replace it with a smooth function. Why stop there? Let's replace the betas 
and the kappas; let's make them all smooth. I think this is a nice idea. As a 
statistician, one is trying to simplify things. The Lee-Carter model is a complicated 
model because of its large number of parameters. Let's try and cut that down. 
Maybe we can get a stronger signal and a more stable model. It looks less, but it's 
simpler. I've replaced the alphas with a smooth function, the betas with a smooth 
function and the kappas with a smooth function (see Currie, page 32). I'm going to 
use this jump-back-and-forward method, which is simple conceptually and fast to 
fit. Of course, I use penalties. The penalties are imposed on the alphas, or the a's, 
the b's and the к's. That ensures two things; it ensures that the function is smooth, 
and will also allow us to make projections.  
 
Here they are (see Currie, page 35). There's a lot happening. The red line is the 
original fit for the discrete Lee-Carter. The blue line is the smooth one. I've even 
put in the regression coefficients. They follow the functions that are used in the 
model. You can see that they're nice fits there.  
 
The reason why things look smooth on the alpha (see Currie, page 34, top left) is 
that we have an enormous scale. This is going on the log scale from -8 to -1. It's a 
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colossal scale, so things do look smooth. There's not much change there. The big 
change is on the betas. Their dashing about early on has been smoothed out. For 
the kappas, instead of having a function that's bobbing around to some extent, 
we've got a completely smooth function. You might be a little more comfortable 
with projecting using a smooth function. I'm not claiming that this is necessarily a 
better method here, but there are some advantages to it.  
 
We're not going to use a time series method to project; we're just going to use a 
simple penalty method. You saw the comparison of the two fits. The blue fit is a 
smooth fitted function, as opposed to the original Lee-Carter method, which gives 
you a slightly raggedy function. In projections, the alpha term essentially remains 
the same, and the beta remains the same. The kappa is the same, except it has 
been continued using the penalties. The projections are not the same. Should we 
worry? I don't think so. These are two different models. There are big differences.  
 
These are not the only two ways that you can do forecasting. People often say to 
me that they're looking forward to hearing about this great method of forecasting 
the future mortality. They seem to think that somehow I know how to do this. I 
cannot tell you that I know how to forecast mortality. I can tell you that I don't 
know how to do it. That's an important message. That's a serious message. You're 
going to have to think about your pricing in such a way that you don't assume that 
you know what is going to happen in 50 years' time. That might have some serious 
implications for your product design, for example, but that's something you know 
about and I can only comment on from the wings.  
 
FROM THE FLOOR: What about confidence intervals for those?  
 
DR. CURRIE: I can compute those, but I haven't shown them here. Lee-Carter 
confidence intervals are usually computed on the time series element.  
 
We are running a little short of time, so I'm going to skip through the next part; it's 
a technical thing. I want to say a little bit about my own work that I've been doing 
over the past few years with Paul Eilers and Maria Durban. You might have gotten 
the impression that I'm not completely sold on the Lee-Carter method of modeling. 
I said that four years, four cross sections for four different ages (ages 50, 60, 70 
and 80), all had the same form. Somehow or other that doesn't sound right. We 
would expect the pattern in mortality to be varying for different ages. That would 
seem to be almost self-evident, and yet the Lee-Carter model doesn't allow that. It 
may give good forecasts, so that's a different issue, but in terms of a model, it's not 
satisfactory. What I'm going to try and explain briefly is how you might be able to 
get a completely flexible approach to modeling, a genuine two-dimensional method.  
 
I'm going to ask you to switch on the imagination here. We have one B-spline basis 
in age (Ba, 90 x 13), and we have another B-spline basis in years (By, 53 x 10). I'm 
just going to multiply the two together. Every age is going to be multiplied by every 
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year. So we've got all these hills sitting along here, and all these hills sitting along 
here, and I'm going to multiply the two together. This is simple arithmetic. What do 
you get? That's what you get (see Currie, page 37). That's the basis that I'm going 
to use in two dimensions. It's an exact analog of what you would get in one 
dimension. It's easy to construct. Every slice in age is multiplied by the basis on the 
other side, and you get that picture. That's a small basis. It's a 3 x 3 basis. We're 
going to be using a big basis here. You might have 25 basis functions in age and 25 
basis functions in year. This will give us 500 basis functions. This is regression with 
500 variables.  
 
With each one of these little hills, we're going to associate a regression coefficient. 
That's going to enable us to follow the bobs and weaves of the mortality surface. 
I'm going to use penalties to make sure the thing doesn't go crazy and that we 
don't over-fit. We hope to get a general fitted surface that will follow faithfully, 
taking due account of the variation in the data, the mortality surface. There's a nice 
function that does all this. The thing that's done in the imagination is the Kronecker 
product of these two basis functions. That's the technical term for that. For 
penalties, we're going to have a penalty that's going to be associated with each 
regression coefficient. The coefficients live in the age-year plane. I'm going to have 
penalties on the age direction and I'm going to have penalties in the year direction. 
That should give us a smooth function (see Currie, page 39). There's what you get 
(see Currie, page 40). There's the fitted smooth function. It doesn't tell you much. 
The scale is large and cross sections are a bit better.  
 
What am I doing next? This is the acid test. This is a calibration exercise. I've used 
the first 25 years or so of data, and I'm going to forecast the next 25 years of data. 
This is not forecasting the future; this is forecasting the past. We know the answer, 
and we can stand up and be counted here. The forecast for age 35 doesn't do too 
bad a job (see Currie, page 41), but the important point is that the data lie 
comfortably within the forecast funnel. We're not going to get it right, but at least 
we're well inside our confidence interval.  
 
Here's age 65 (see Currie, page 42). This is what all the trouble is about. The 
mortality at ages 65, 70 and 75 has been increasing incredibly quickly, particularly 
over the last 10 years. We're not sure why that happens, but it's a fact. The 
forecast gets this wrong. My attitude would we be that if we're sitting in 1975 and 
thinking about where mortality is going to be in 25 years time, you'd be doing well 
to make a correct guess. We didn't get things absolutely right, but again, we're 
comfortably within the confidence interval. If you'd done some kind of discounting 
for the risk that's involved in forecasting, you would have protected yourself against 
the particularly rapid improvements in mortality that occurred.  
 
Looking at projections up to 2050 (see Currie, page 43), I'm sure some of you are 
wondering what has happened at ages 30 and 40. That's a striking thing. We've got 
this crossing. You may or may not be comfortable with this. What has happened to 
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age 30 over the past 20 years or so is that there has been a dramatic external 
impact from AIDS on the force of mortality at age 30. The force of mortality has 
become becalmed around age 30, but is continuing to fall around age 40.  
If you didn't like the resulting overlap there would be ways around this. You could 
use confidence intervals to shift things down if you wanted, or you could try fiddling 
with the penalty. But as far as the data are concerned, there's a strong suggestion 
that we may get crossing over in the future. Again, I would say that what's more 
likely is that you want to have a product that's not going to be so dependent on 
forecasting 50 years into the future.  
 
I have looked at the patterns by gender. They are different. This is a male pattern.  
 
Here are the ages in which you're particularly interested, ages 60 to 70 (see Currie, 
page 44). You can see that we haven't got power projections here. Here are four 
ages, adjacent ages, from 70 to 73 (see Currie, page 45). These are slightly 
different. They're not scaled and shifted; they're just slightly different, coming from 
the two-dimensional surface that we're fitting here. Projection at age 35 to 
2050―we're not sure what's happening (see Currie, age 46). Projection at age 65 
to 2050 is also shown (see Currie, page 47).  
 
This is a comparison of all three methods that I've shown you (see Currie, page 48). 
We've got the discrete Lee-Carter in red. We have the smooth Lee-Carter in blue, 
and we have the two-dimensional method in green. One can make some 
observations about things that are happening in that graph, but I don't know that 
any of them are profound. I think it so happens that for most of the ages, the two 
smooth methods give the same answer. I think that's a coincidence. The other fairly 
obvious point is that the discrete Lee-Carter is forecasting much faster 
improvements than either of the smooth methods. I think that's probably a general 
property of forecasting with a model with a lot of parameters in it. My methods are 
taking the number of parameters back, hugely. Although I have a large number of 
fitted parameters, somewhere on the order of 500, by the time we've put the 
smoothness on, we come back to about 70. The effective number of parameters is 
70, so I'm using far fewer parameters than the Lee-Carter method, and I think this 
is moderating the forecast. I think that's why that is happening. There might be a 
tendency for the Lee-Carter method to give more extreme forecasts simply because 
of its large number of parameters. That's a kind of speculative remark.  
 
I hope you're interested in what I've been saying. You might even be sufficiently 
interested to look at some of the papers. There are references in the handout that 
you can download from the Web site, or from my Web site, on a number of different 
aspects of mortality modeling.  
 
DR. HARDY: Because the two talks are different, we'll take questions on Iain's talk 
while that's fresh in your mind.  
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MR. SAM GUTTERMAN: The basic method assumes that the same forces of change 
are going to be in effect in the future that were effective in the experience period. 
That's a rather naïve type of forecasting method. Forces in the future are likely to 
be different by age and by gender. How can you utilize this method if you assume 
that the past is not necessarily indicative of the future?  
 
MR. CURRIE: I don't think you can. That's an easy question to answer. This 
method is absolutely dependent on saying that our best guide to the future is what 
has happened in the past. I understand what you're saying. You're getting at things 
like future medical advances. For example, what effect are statins going to have on 
the force of mortality? That might improve things out of all imagination. On the 
other hand, there are some other problems that might be building up. The obesity 
problem is a big issue in the United Kingdom, and I believe it's also an issue in the 
United States. That could drive things in the opposite direction. How can you 
balance these two things? I don't know the answer to that question. They might find 
a cure for AIDS. There are lots of things that you might want to try and build into a 
model of mortality. I think it's difficult to do that. I've hung my hat on the pole that 
says that the past is the best indicator of what we've got of the future. If we knew 
what effect statins were going to have and if we knew what effect obesity was going 
to have on the force of mortality, we could build it in. But I don't believe that we 
know that. It's a big issue. How do you get in these particular forces into any 
model? It's not an easy problem.  
 
DR. SAMUEL H. COX: I want to thank Iain for bringing his work here and 
presenting it. It's interesting. As Mary said, what Yijia Lin and I are working on is 
related in that the motivation for a lot of the risk management techniques we're 
going to talk about comes from the problem of projecting mortality. Maybe we'll 
have some things to say about that toward the end. The work that we're presenting 
today is going to appear in The Journal of Risk and Insurance some time, maybe 
early next year.  
 
We started this a couple of years ago. Yijia is a Ph.D. student at Georgia State. A 
couple of years ago, she came to me and said that she wanted to do her 
dissertation research in life insurance. She's not an actuarial student, so I told her 
that she didn't know enough mathematics and she would have to take a life 
contingencies class with our actuarial students, so she did that. Each year we give a 
prize for the best student in actuarial mathematics at the end of the year, and she 
won that prize. She picked it up quickly. Then last spring she wrote the first draft of 
this paper, which we've distributed to a number of people, and we've presented it to 
seminars at universities like Waterloo. We've gotten a lot of valuable comments and 
ideas, and we're grateful for them.  
 
What I'm going to talk about is generally about mortality-linked securities and 
mortality deals, in particular one deal we know about. I'm also going to talk about 
an idea that we got from Shaun Wang about how you might price mortality 
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securities.  
 
I'll give a general idea of what we're calling "mortality-based" securities and, in 
particular, the Swiss Re deal that we learned about in December 2003. Then there 
may be a discussion of the other aspect of mortality risk, longevity risk, and 
describe how we think that might be the basis for a mortality bond. This idea of 
securitizing mortality risk has been around a long time. The early securitizations of 
catastrophic property risks were in the early 1990s. In the mid-1990s there was 
some talk about mortality deals that would be similar to that, but the interest in it 
seemed to drop until a couple of years ago. We started hearing rumors of these 
deals, and finally one was announced by Swiss Re. 
  
There's a paper I wanted to mention that surveys a lot of life- and annuity-related 
securitizations. It's a recent paper by David Cummins. It's on his Web site at 
Wharton. He discusses five different classes of securitizations that are related to life 
insurance and annuities. All of them have mortality risk to some degree or another; 
some of them also have also lapse risks. What we're looking at is a pure mortality 
transaction, not some of the other aspects. What we're thinking of is a way to 
hedge mortality risk and isolate it from other risks that are included in these other 
kinds of securitizations. You can think of most of the other securitizations as being 
more similar to asset securitizations in the sense that an asset securitization, like a 
securitization of a bond portfolio or a loan portfolio, converting it and using this 
cash flow to support a bond is similar to these securitizations in that the part of the 
cash flow from a book of life insurance or annuity policies was dedicated to fund a 
bond, and that was sold to investors. That's similar to asset securitizations. The 
catastrophic risk securitizations and what we're thinking of as mortality 
securitizations are different in that they're based on the pure risk rather than 
forecasting cash flows. It's a little different from the other things he has in mind.  
 
This is the structure that we're looking at, and it's the one that Swiss Re used (see 
Cox, page 12). It's the same basic structure that was used in the catastrophic risk 
securitizations. A reinsurer, or in some cases an insurer, will form a special-purpose 
company. One of the early diagrams I saw like this involved USAA's securitization of 
its property risks. It formed a special-purpose company in the Cayman Islands. You 
can think of the special-purpose company as being a reinsurer itself but formed just 
for the purpose of issuing these bonds and providing the insurance to the insurer or 
reinsurer.  
 
Initially, the reinsurer pays the premium. The investors are going to buy bonds, so 
there will be a contribution from them. The total is used to buy collateral bonds, 
default-free bonds. Later, the income from the bonds, either in coupons or in 
redemptions, is used to fund obligations to the reinsurer and investors. In some 
years there will be benefits paid to the reinsurer, and in some years there will be 
benefits paid to the investors, in the forms of, say, bond coupons or maturity 
values. That works without any default risk. The program is set up so that the cash 
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flows from the bond portfolio always exactly fund the benefits to the reinsurer and 
the benefits to the investors.  
 
The way this structure works is that there's no default risk. The only risk is the risk 
that's written into the bond indentured in the case of catastrophic property risk. At 
USAA, for example, it was its own portfolio of losses in the Gulf coast and Atlantic 
coast on its own portfolio, so some measure of loss in that portfolio would be put 
into an algorithm, a function that was defined in the bond indenture. That would 
trigger a payment of B to USAA from the reinsurer, and then a decrease in D, 
correspondingly. The investors would not get the full coupon or the full redemption 
value. We're thinking that the allocation of B and D would depend on perhaps a 
mortality index or something like that.  
 
Let's look at the only actual deal I know about, although we've heard rumors of 
others. The Swiss Re deal was issued in December 2003. It's described in some of 
the literature that was published then as a four-year bond, but it matures in 
January 2007. I think the reason it's called a four-year bond is that there are four 
years of exposure to the investors for mortality risk. There are no coupons at risk. 
That is, the Dt, the coupon or the cash flows to the investors, is fixed and certain 
until the bond is redeemed, and then the investors may lose a portion or all of the 
redemption value. It was priced to sell at 1.35 percent over the London InterBank 
Offered Rate (LIBOR). The LIBOR rate at the time was low, so maybe as a 
percentage of the LIBOR rate, the premium might not look so low.  
 
The structure, that is, the rule that's written into the bond indenture that defines 
how the investors get their redemption value back (get the maturity value), is 
based on a population index. The index is a weighted average of population indices 
created by independent government agencies in the United States, United Kingdom, 
France, Italy and Switzerland. All of that is public information. The weights are in 
the bond indenture but were not published, so I don't know exactly what the 
weights on the country indices were. We did talk to some people at Swiss Re, and it 
was structured to reflect their own exposure in those countries. The triggering 
mechanism, then, is based on the maximum of those. If something goes wrong and 
the index goes wrong in the sense that mortality rates are higher than we would 
think, the bond investors are at risk for that event, and they'll lose a portion of their 
maturity value. The base level is the 2000. They calculate the 2002 index with 
those same weights, and then in 2003, 2004, 2005 and 2006, they recalculate the 
index. In any of those years, the Swiss Re could calculate the maturity value and 
reduce it if one of those values comes up high enough. If it stays below 1.3 times 
the base rate, that is, if it doesn't rise 30 percent above the base rate, there's no 
reduction in the redemption value; it pays the $400 million back. If it goes over 
that, the investors start losing the redemption value until the index goes to 150 
percent of the base value, and then they lose everything. That's the structure in it. 
It is a pure mortality deal.  
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We asked the company why it was doing this and what it had in mind. There were 
two main reasons. Swiss Re does a bit of securitization of insurance risks in the 
property area. It had in mind doing something like this for a while. Part of the 
motivation is to break the ice, to get investors may be comfortable with the so-
called catastrophe bonds, property risk, to get used to the idea of accepting some 
mortality risk. That was one reason. The other reason is that this is a hedge against 
an epidemic in the next three years. A shift at this range is an extreme shift, but it 
could happen with an epidemic, something like a 1918 flu epidemic.  
 
There's another approach other than using bonds, and we've heard that this is 
being considered. A swap approach would not have to be public. This could be a 
private transaction or one arranged through a dealer, broker or reinsurer. In that 
case, you replace the collateral by annualizing the premium from the reinsurer and 
the purchase payments from the investors. Think of it that way, but each, the 
reinsurer and the investors, pay fixed and get floating benefits. At each payment 
date, the fixed payments add up to the floating payments. The fixed payments are 
given to the broker or dealer. They apply the terms of the contract and decide how 
that's allocated as a benefit to the reinsurer to cover a mortality event or as a 
coupon to the investors as a return on their investment. This might be convenient in 
some cases. The disadvantage is that there's a default risk because the payments 
aren't collateralized. You're taking a risk that the other party might default.  
 
Here's the other side of the risks. Instead of focusing on a sharp increase in the 
mortality rates, how might you securitize risk of missing a projection of what Iain 
was talking about, the improvement in mortality? We're thinking of maybe a long-
term bond that has a way of allocating the risk of missing the projection to 
investors. The idea is to set a strike level for each future year. What we did was 
project into the future what the improvement in the force of mortality has been and 
get a projection (see Cox, page 21). Maybe you could do something more 
sophisticated along the lines Iain suggested. Set a projected value and then use 
that as the index,, like the index in the Swiss Re deal. In the case that the 
projection is conservative enough and that in the given pool that you're looking at, 
enough of them die so that the survivors to year t stays below the projection, 
there's no benefit to the reinsurer or to the originator. If you miss the projection 
and rise above that strike level, you start paying benefits at that point. The 
investors will start losing investment income until you reach a maximum. At that 
point the coverage is fixed; you get the maximum benefit provided by the bond. It's 
like a call spread, but one in each year.  
 
This is the net benefit to the insurer (see Cox, page 22). The number of effective 
annuitants—you can cast it that way—is what they projected if it's below the strike 
level, and then it stays at the projected value until you rise up to the second strike 
point, when you're at risk again. It could increase after that.  
 
What the investors get is the other side of it (see Cox, page 24). They get their full 
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coupon as long as the number of survivors stays below the first strike level, and 
then they start losing coupon as the forecast turns out to be not conservative 
enough. Eventually, if it is bad and rises above the second strike level, they don't 
get any coupon back. I say coupon because that's the way we've set it up, but you 
could also make the redemption value at risk also. In each year we'll have it split, 
so that the coupon amount exactly pays either investment return to the investors or 
benefits to the insurer. To do that, you've got to be able to convince the people 
involved of what the prices are so that you get enough premium from the insurance 
company and purchase price from the investors so that you can buy the 
collateralizing bond. What you need to buy is on the right side of equation (2), so 
you need to get that much (see Cox, page 28). The d's there are just risk-free 
discount factors in the market at the time that you buy the bond. You're going to 
buy a collateralized bond that is a risk-free bond.  
 
For the pricing, we used Shaun Wang's idea of effectively transferring the price of 
risk in one market to another. This is what he calls a distortion operator. It's based 
on the cumulative density function (cdf). This is how it works (see Cox, page 32). 
You transfer from one market to another, from one market where we can observe 
prices—that's, say, the immediate annuity market—into a bond market where we 
don't know the prices. Our idea is to make the pricing analogous. In the one market 
we'll think that the cdf is the base, or the physical, actual mortality that you might 
get. We're going to use the 1996 Individual Annuity Mortality Table for the original 
cumulative density function. Then there's a market price of risk, λ , that shifts that, 
and you bring it back to a new distribution, F*(x), that incorporates the market 
price of risk. Our cdf is tq65, doing it for age 65.  
 
We have a sample of market prices. The prices include expenses, so we use an 
expense assumption of 6 percent. In the paper there's some investigation of that, 
but if you were actually doing this maybe you'd have more access to the 
appropriate expense assumption than we did, so you might make a better 
application of this technique. What you do then is take the market prices and set 
them equal to the model prices, using lamda as a parameter (see Cox, page 37). 
On the right side, there's an error; the 7.48 is monthly, so it should be multiplied by 
12. The left side is market price. The right side is model, and we tune the model 
until we make them equal. That will give you a numerical value of lamda so that 
your model reflects the market prices. That's all in the annuity market, so in effect 
what we're doing is calculating what insurance companies demand for a market 
price of risk in their individual annuity market.  
 
The base (or physical or actual) distribution without regard to risk is the 1996 
Individual Annuity Mortality Table. After you calculate the market price of risk and 
then calculate the other distribution, it's shifted up and to the right, which is 
conservative, meaning that the people selling the annuities are anticipating people 
living longer than projected in the 1996 table (see Cox, page 39). That's all in the 
annuity market.  
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Now what we're going to do is take that distribution and apply it to price the bond. 
We set our strike levels by projecting improvement. We wind up calculating the 
price of the bond and the price of reinsurance premium (see Cox, page 41). They're 
relatively low. I think we ought to consider revising the paper. The reason they're 
low is that the spread between the strike prices is narrow. I didn't realize that until 
after the paper was accepted, so I haven't done anything about it yet. The second 
strike levels, X + C, needs to be adjusted because this is a light coverage the way 
we have it now.  
 
That's some indication of how things move. These are not projections; these are 
"what if" things. What if the mortality curve is not as you projected? We just used 
our own ideas of what might happen and how things might shift. You can do that 
and illustrate how investors' or reinsurers' positions would change.  
 
We're getting close to the end here. Our idea is that this could be used to increase 
capacity to take on longevity risk in the same way that Swiss Re used its deal in 
December to increase its capacity to take on life insurance risks. The security 
markets can provide increased capacity. They did it in the property risk area. They 
could use mortality bonds. I also showed how swaps might be used. We illustrated 
how Wang's transform can be used in pricing. There are other methods, and we're 
looking at some other methods for essentially modeling the market price of risk. 
There are other approaches. These are some of the papers we used in getting to 
this point (see Cox, page 48). I mentioned Cummins' paper as a good overview of 
securitization in general. The papers by Shaun Wang describe his method of 
transforming distributions and applying them in a number of different ways.  
 
MR. LAWRENCE S. CARSON: Did the Swiss Re mortality bond have any exclusions 
for terrorism, nuclear, biological or chemical?  
 
MR. COX: No, there are no exclusions. Just calculate the public indices, public 
available information. If they rise for any reason, the bond indenture is applied. It 
doesn't matter why they rise. It could be a terrorism event; it wouldn't matter. 
There's also a feature in the bond that allows it to delay the redemption. Let's say 
that in 2006 there's an epidemic, and the bond matures on January 1, 2007. The 
public information won't be available then; it will be some time later. It has an 
option to delay payment of the redemption value in that case. It can wait until the 
data are available.  
 
FROM THE FLOOR: That was similar to a question that I had. I know that the 
population data get revised historically, so the question is, how do they handle that 
on a contract?  
 
MR. COX: These are such extreme levels that everyone would know if there's going 
to be something worth delaying repayment of the amount at risk. The one that the 
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interest didn't delay in was Swiss Re. It has to continue making the interest 
payment if it continues it, but it can delay it up to three years. 
  
DR. HARRY PANJER: Iain, you used the B-spline approach for both age and time. 
It seemed to me that the functions originally were relatively smooth. You could 
have used smoothing splines or something like that, just cubic splines, for each of 
them and gone through the same kind of approach. I didn't have a clear insight into 
the number of parameters and dimensionality of the problem that was introduced 
by using B-splines. I wonder if some other simpler methods might produce the 
dimensionality. I suspect that the answer is no because you're assuming the B-
splines and those are fixed quantities and there's only one parameter per B-spline. 
 
DR. CURRIE: You always have the problem of determining the dimensionality of 
your problem. The way that we approach it is to over-parameterize to a huge 
degree and then use the penalties to scale it down appropriately. But you're 
absolutely right, and I did indicate in the talk that there is another approach. You 
can try and fiddle around with the level of parameterization. That was a popular 
approach in the 1970s and 1980s, which essentially involves choosing the knot 
positions. You can certainly go that way if you're more comfortable with that 
approach. I favor the way that we approach it because you remain within a 
regression framework, and mathematically it is an attractive scheme, whereas knot 
selection is not easy mathematically. It's a difficult optimization problem.  
 
MR. ANDRE CHOQUET: My question is for Sam. I was wondering if you had 
experience with the application of mortality bonds for pension plans in the sense of 
hedging mortality risk, or if you had an opinion on how it could be used for that?  
DR. COX: The example I gave was insurer/reinsurer, but certainly a pension plan, 
say a large corporate plan, could do the same thing. A lot of firms have 
sophisticated hedging activities in other areas of risk, so it seemed like a natural 
thing that a private corporate pension plan with long obligations could do the same 
sort of thing. However, I haven't seen it. The only other things we've heard about 
are swaps within, say, a family of companies, where the swap is used to shift 
mortality risk from one insurer to another, but it’s not taken to the public.  
 


