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1. Introduction
The task of determining the optimal rate increase 
for a block of individual or small group health 
(ISH) insurance policies presents a special chal-
lenge for actuaries. A key complicating factor is 
that a rate increase often leads to anti-selective 
lapse—a tendency that healthy lives lapse at a 
higher rate than impaired lives—resulting in an 
adverse change in the health mix of insureds. (For 
brevity, the term insured or life is used throughout 
this paper to refer to an individual, a family or 
a small group). In addition, a profit maximizing 
optimal rate increase solution needs to take into 
account the market price or the prevailing com-
petitive prices in the market. In traditional actuarial 
models, anti selective lapse is simply assumed and 
market price not explicitly considered. In this 
article, we present a new model in which anti selec-
tive lapse emerges endogenously, as a result of rate 
restriction and market competition, and an optimal 
pricing solution can be obtained.

Many of us have an intuitive understanding of 
how anti selective lapse occurs. A distinguish-
ing feature of the ISH market is differential rate 
restriction. Specifically, there are strict regulatory 
limits on how much renewal rates may vary within 
a class of insureds to reflect each insured’s cur-
rent health status or claim risk, although renewal 
increases applied at the block level are generally 
not restricted. (These limits exist because in the 
absence of these limits, insureds with serious long 
term illnesses are vulnerable to selective high 
renewal rate increases.)  As a consequence, within a 
block, impaired lives’ renewal rates are subsidized 
by healthy lives. On the other hand, new busi-
ness rates are not subject to the same strict limits. 
Insurers are allowed (or at least, with much less 
restriction) to medically underwrite and rate new 
policies. If an insured decides to switch insurers, 
his new policy rates will be set according to his cur-
rent risk. It is then natural that when there is a large 
renewal rate increase, insureds would shop around; 
those who could find lower price alternatives in the 
market would likely lapse, and those who could not 

would likely stay. The former are disproportionately 
healthy lives and the latter impaired lives. One key 
task in this new model is to formalize this intuition. 
 
In the following, we present the model with mini-
mal technical details. Our focus is on the concepts, 
relations, and implications of the model. We first 
describe the individual behavior of an insured and 
then the aggregate behavior of a block. (The math-
ematical details of the model can be found in a paper 
by this author in the 2009.1 issue of the ARCH avail-
able on the SOA Web site.  http://soa.org/library/pro-
ceedings/arch/2009/arch-2009-iss1-wei.pdf. A quick 
note on notation:  In the detailed paper, log trans-
formed variables were extensively used for technical 
reasons. In this article, only standard variables are 
used for the sake of readability.)

2. Individual Model

Individual Lapse Behavior
We first consider individual lapse behavior arising 
from an insured switching from the current insurer 
to another insurer for a lower price in the market 
(We shall ignore, for simplicity, other types of 
lapse). The probability of price induced lapse L due 
to switching for insured x is expressed as a function 
of adjusted price P’ and market price M   
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from lapse L and price P using the inverse lapse 
function. This is convenient as the detailed competi-
tive prices for many types of policies are often not 
available. Function S is derived from historical rela-
tionship between lapse L and price P.

Setting Premium Rates
In this market, insurers are assumed to set price 
P based on the insured’s expected cost C plus a 
margin, but there are three exceptions: 1) deviation 
of renewal rate from cost due to rate restriction, 2) 
insurers’ inability to accurately forecast medical 
cost trend, and 3) strategic pricing in which the price 
is set above or below the cost (for profit or market 
share). 

When the new business rate is unrestricted, it turns 
out that market price M is proportional to cost C for 
all insureds in a block.

Excess risk 
A central notion of this model is excess risk. 
Conceptually, excess risk is the portion of market 
price which is not in the actual price, because of 
rate restrictions. Consider a block of heterogeneous 
insureds. Let x be an insured with adjusted premium 
rate P’, cost C, and market price M, x0 a standard life 
with adjusted premium rate P’0 , cost C0, and market 
price M0 , and x1 an impaired life with adjusted pre-
mium rate P’1, cost C1, and market price M1. Define 
excess risk V for x, expressed relative to a standard 
life, as  

 
For impaired life x1, it is easy to see that 

policy L =S(1)=1/2. The insured is indifferent. In this case, when L=1/2, P > M, due to 
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To illustrate, consider a policy with premium rate  
P= $1000, the cost of switching equal 10 percent 
of premium, and a product quality (which can 
be either higher or lower than average competi-
tion) commanding an extra 5 percent of pre-
mium. Then the premium adjustment factor A= 
(1+10%)*(1+5%) =1.155. The adjusted price P’= 
$1000/1.155 = $865. Suppose that the market price 
M is also $865, then the lapse probability for this 
policy L=S(1)=1/2. The insured is indifferent. In 
this case, when L=1/2, P > M, due to the existence 
of switching cost and a positive quality premium.  

The “s”-shape of function S is intended to capture 
the fact that a homogeneous class of insureds tends 
to exhibit heterogeneous lapse response to price 
and any prediction of lapse will have a non zero 
variance. If we could predict individual lapse per-
fectly, with a zero variance, then S is reduced to a 
step function. The step lapse function often leads to 
greatly simplified models. 
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M and premium adjustment factor A. Note the rela-
tion that if L = ½ then P’=M or P/A =M. So if M is 
known and L=1/2, we can calculate A=P/M. M is 
initially calculated as a weighted average of com-
petitive prices. In many cases, we may reasonably 
assume that A is the same for all policies in a block. 
Once A is known, M can be subsequently calculated 

policy L =S(1)=1/2. The insured is indifferent. In this case, when L=1/2, P > M, due to 
the existence of switching cost and a positive quality premium.   
 
The “s”-shape of function S is intended to capture the fact that a homogeneous class of 
insureds tends to exhibit heterogeneous lapse response to price and any prediction of 
lapse will have a non-zero variance. If we could predict individual lapse perfectly, with a 
zero variance, then S is reduced to a step function. The step lapse function often leads to 
greatly simplified models.  
 
Let’s consider how we might estimate market price M and premium adjustment factor A. 
Note the relation that if L = ½ then =M or P/A =M. So if M is known and L=1/2, we 
can calculate A=P/M. M is initially calculated as a weighted average of competitive 
prices. In many cases, we may reasonably assume that A is the same for all policies in a 
block. Once A is known, M can be subsequently calculated from lapse L and price P 
using the inverse lapse function. This is convenient as the detailed competitive prices for 
many types of policies are often not available. Function S is derived from historical 
relationship between lapse L and price P. 
 
Setting Premium Rates 
In this market, insurers are assumed to set price P based on the insured’s expected cost C 
plus a margin, but there are three exceptions: 1) deviation of renewal rate from cost due 
to rate restriction, 2) insurers’ inability to accurately forecast medical cost trend, and 3) 
strategic pricing in which the price is set above or below the cost (for profit or market 
share).  
 
When the new business rate is unrestricted, it turns out that market price M is 
proportional to cost C for all insureds in a block. 
 
Excess risk  
A central notion of this model is excess risk. Conceptually, excess risk is the portion of 
market price which is not in the actual price, because of rate restrictions. Consider a 
block of heterogeneous insureds. Let x be an insured with adjusted premium rate , cost 
C, and market price M,  a standard life with adjusted premium rate , cost , and 
market price , and  an impaired life with adjusted premium rate , cost , and 
market price . Define excess risk V for x, expressed relative to a standard life, as   
 

 
 
For impaired life , it is easy to see that  due to the subsidy received 
by . The excess risk . For standard life , the excess risk 

. To illustrate, suppose =$900, =$1000, =$1100 and 
=1500, then = (1500/1000)/ (1100/900) =1.227.  represents the extra market 

price not reflected in the insured’s premium rate due to rate restriction.  

FIGURE 1 
LAPSE FUNCTIONS

1.0

0.8 

0.6

0.4

0.2

0.0

100.00

S-Function

Price (Log scale)

Step Function

La
p

se
 P

ro
b

ab
ili

ty
 L

 (P
)

1000.00 10000.00
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ness rate is unre-
stricted, it turns out 
that market price 
M is proportional 
to cost C for all 
insureds in a block.
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In addition to their differences in excess risk, these 
five blocks also vary by base cost. The base cost of 
a block reflects the provider discount as well as the 
general expense of an insurer. Figure 3 positions 
these five blocks in a two dimensional map of aver-
age excess risk vs. base cost. In particular, Block 1 
has low excess risk but high base cost and, in con-
trast, Block 5 high excess risk but low base cost. In 
the real world, Block 1 represents an insurer that is 
good at underwriting but not good in obtaining pro-
vider discount and managing expenses, and block 5 
represents the opposite. 

Now let 
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 the mar-
ket price for x0 . We shall refer P’0 as premium rate 
level and  M0  as market price level. Let R denote the 
percentage of rate increase.  Let P’0 (R) denote  P’0   as 
a function of rate increase R. Then P’0 (0) is initial 
premium rate level for x0 when R= 0. Define R0=M0 

/ P’0 (0) -1. Then P’0 (0).(1+ R0)=M0  Intuitively, R0 is 
the percentage rate increase needed to bring P’0 to 
match  M0. 

For ease of comparison, initial premium rate level  
P’0 (0) is assumed to be 20 percent below the market 
price level for all blocks. In other words, for all 
blocks, if R=20%, then P’0 = M0 or the premium rate 
level matches the market price level. So R0=20% for 
all blocks. 
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Several loss ratio patterns emerged among these 
blocks. When R=0, the initial loss ratios differ 
considerably. When R < R0 (R0=20%), loss ratio is 
decreasing with R in all blocks  When R

function of rate increase R. Then (0) is initial premium rate level for  when R=0. 
Define . Then . Intuitively, is the percentage rate 
increase needed to bring  to match .  
 
For ease of comparison, initial premium rate level (0) is assumed to be 20 percent 
below the market price level for all blocks. In other words, for all blocks, if R=20%, then 

= or the premium rate level matches the market price level. So =20% for all 
blocks.  
 
Within a block, initial premium rates vary by insureds’ benefits and risk load. All 
insureds within a block are assumed to receive the same percentage rate increase (This is 
not restrictive because the risk load can vary). Furthermore, the step lapse function is 
used for simplicity. 
 
Applying the lapse formula  to each insured in a block, we 
calculate the aggregate lapse rate of the block as a function of rate increase R (Figure 4). 

 

 
 
We make a few observations. When R <  ( =20%), the premium rate level (R) < 
market price level , and aggregate lapse rate =0 in all blocks. When , then 

, and aggregate lapse rate is increasing with R. These blocks show different 
lapse sensitivity to price. Blocks 1 and 2, with the highest proportion of healthy lives, 
exhibit the steepest increases in lapse, and Blocks 4 and 5, with the lowest proportion of 
healthy lives, exhibit the slowest increases. The rate increase-induced lapses in these 
blocks are necessarily anti-selective in nature.     
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 M0, and aggre-
gate lapse rate is increasing with R. These blocks 
show different lapse sensitivity to price. Blocks 1 
and 2, with the highest proportion of healthy lives, 
exhibit the steepest increases in lapse, and Blocks 4 
and 5, with the lowest proportion of healthy lives, 
exhibit the slowest increases. The rate increase-
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Next we calculate the aggregate loss ratio as a func-
tion of rate increase for each block (Figure 5). 
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as a function of internal drivers and an underwriting 
cycle index:

 

A is the price adjustment factor described before, B 
is a firm-specific cost factor, 

 
 

 
A is the price adjustment factor described before, B is a firm-specific cost factor, is 
average excess risk for a block,  is market cost level or a weighted average of all 
competitors’ cost for a standard life,  is an underwriting cycle index ( = market price 
level / market cost level), 
 
The formula captures what we intuitively know. To increase profit capacity, an insurer 
can employ three basic strategies: 1) raise A: increase perceived quality and the cost of 
switching; 2) reduce B: lower cost and obtain better provider discount, 3) lower : 
improve underwriting and risk assessment.  is outside the insurer’s control, and profit 
capacity fluctuates with . Due to leveraging, small changes in A, B, , or  lead to 
large swings in profit capacity. 
 
To illustrate, suppose Policy Inforce =100,000, = $2,000, =1.5, A=1.0, =1.4, B= 
1.0, we can calculate profit capacity = $20,000,000. Furthermore, a 1 percent change in 
any of the drivers A, B, , or  produces a 14 percent–15 percent swing in profit 
capacity.  
 
 
6. Non-step Lapse Effect 
 
So far, the step lapse function was used. As a result, we were able to obtain a simplified 
model with easy-to-understand results. In the real world, we cannot predict individual 
lapse perfectly, so a non-step lapse function is more realistic. Let’s look at an example 
which illustrates how a non-step lapse function might affect the model. 
 
Figure 7 compares the two methods of calculating aggregate profit function for Block 2. 
When the non-step function is used, the overall effect is a shift of the aggregate profit 
curve to the right. The optimal rate increase shifted from R= to R=  where  is 
somewhat higher than . But the essential characters and general results of the aggregate 
profit function remain unchanged.  
 
The non-step function has similar effects on aggregate lapse and loss ratio behavior.  

 is average excess 
risk for a block, 
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6. Non-step Lapse Effect 
 
So far, the step lapse function was used. As a result, we were able to obtain a simplified 
model with easy-to-understand results. In the real world, we cannot predict individual 
lapse perfectly, so a non-step lapse function is more realistic. Let’s look at an example 
which illustrates how a non-step lapse function might affect the model. 
 
Figure 7 compares the two methods of calculating aggregate profit function for Block 2. 
When the non-step function is used, the overall effect is a shift of the aggregate profit 
curve to the right. The optimal rate increase shifted from R= 0R to R= 1R  where 1R  is 
somewhat higher than 0R . But the essential characters and general results of the aggregate 
profit function remain unchanged.  
 
The non-step function has similar effects on aggregate lapse and loss ratio behavior.  
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model with easy-to-understand results. In the real world, we cannot predict individual 
lapse perfectly, so a non-step lapse function is more realistic. Let’s look at an example 
which illustrates how a non-step lapse function might affect the model. 
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 produces a 14 percent–15 percent swing in profit 
capacity. 

6. Non step Lapse Effect
So far, the step lapse function was used. As a result, 
we were able to obtain a simplified model with 
easy to understand results. In the real world, we 
cannot predict individual lapse perfectly, so a non-
step lapse function is more realistic. Let’s look at 
an example which illustrates how a non-step lapse 
function might affect the model.

Figure 7 compares the two methods of calculating 
aggregate profit function for Block 2. When the non 
step function is used, the overall effect is a shift of 
the aggregate profit curve to the right. The optimal 
rate increase shifted from R=R0  to R=R1  where R1 is 
somewhat higher than R0. But the essential charac-
ters and general results of the aggregate profit func-
tion remain unchanged. 

4. Optimal Pricing
Two distinct optimal pricing strategies emerged. 
First, for Blocks 4 and 5, the two blocks with the 
least healthy mixes of insureds, the optimal strategy 
is to maximize rate increase R (to the extent pos-
sible within the limits of the rating law). Second, 
for Blocks 1, 2, and 3, which have healthier mix 
of insureds, the optimal strategy is to set R=R0 or 
set   P’0 = M0 ,  i.e., set the premium rate level to the 
market price level.

Sustainable blocks
Blocks 1 and 2 belong to an important class of 
blocks called sustainable blocks, which are char-
acterized by

• A high proportion of healthy lives
• Profit is maximized when R=R0 or P’0 =M0 

• At optimal price, the price-induced lapse is zero 

Note that these blocks are theoretically sustainable 
as it is in the insurer’s self-interest to keep rate 
increases moderate and lapses minimal. Setting 
R=R0 amounts to giving only the trend increases in 
the long run.

5. Profit Drivers
Define profit capacity as maximum profit attained 
(at optimal price) in a block. It turns out that for 
sustainable blocks, profit capacity can be expressed 
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A is the price adjustment factor described before, B is a firm-specific cost factor, V is 
average excess risk for a block, C  is market cost level or a weighted average of all 
competitors’ cost for a standard life,  is an underwriting cycle index ( = market price 
level / market cost level), 
 
The formula captures what we intuitively know. To increase profit capacity, an insurer 
can employ three basic strategies: 1) raise A: increase perceived quality and the cost of 
switching; 2) reduce B: lower cost and obtain better provider discount, 3) lower V : 
improve underwriting and risk assessment.  is outside the insurer’s control, and profit 
capacity fluctuates with . Due to leveraging, small changes in A, B, V , or  lead to 
large swings in profit capacity. 
 
To illustrate, suppose Policy Inforce =100,000, C = $2,000, =1.5, A=1.0, V =1.4, B= 
1.0, we can calculate profit capacity = $20,000,000. Furthermore, a 1 percent change in 
any of the drivers A, B, V , or  produces a 14 percent–15 percent swing in profit 
capacity.  
 
 
6. Non-step Lapse Effect 
 
So far, the step lapse function was used. As a result, we were able to obtain a simplified 
model with easy-to-understand results. In the real world, we cannot predict individual 
lapse perfectly, so a non-step lapse function is more realistic. Let’s look at an example 
which illustrates how a non-step lapse function might affect the model. 
 
Figure 7 compares the two methods of calculating aggregate profit function for Block 2. 
When the non-step function is used, the overall effect is a shift of the aggregate profit 
curve to the right. The optimal rate increase shifted from R= 0R to R= 1R  where 1R  is 
somewhat higher than 0R . But the essential characters and general results of the aggregate 
profit function remain unchanged.  
 
The non-step function has similar effects on aggregate lapse and loss ratio behavior.  
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independently:  1) make sure to track competitive 
prices by market;  2) for optimal pricing, lapse is 
as important as cost or risk; 3) build a good lapse 
model; 4) monitor different types of lapse, espe-
cially base lapse vs. price-induced lapse; 5) if lapse 
rates exceed a base level, then prices are probably 
too high; and 6) set a target lapse rate for each class 
of insureds. 

Finally, the model can be generalized. 
The excess risk distributions used can be 
easily extended to a general form. The 
basic framework of the model also allows 
new businesses to be incorporated. The 
model structure lends itself well to com-
puter modeling.  n

The non step function has similar effects on aggre-
gate lapse and loss ratio behavior. 
 

7. Conclusion
We developed a model in which anti selective lapse 
emerges naturally as a result of differential rate 
restriction and market competition. We applied 
the model to determine optimal rate increases in 
representative blocks with different mix of insureds 
and cost structures. The model has several practi-
cal applications and yielded new insights into the 
behavior of ISH insurance in a competitive market.

One key insight is that for a class of sustainable 
blocks, insurers can maximize profit while keeping 
rate increases moderate and lapses low. Sustainable 
blocks are good for both insurers and insureds. 
This could have implications for product design as 
well as regulation. A potential implication is that a 
disciplined insurer could offer contractually, at no 
extra cost, a renewal rate guarantee linked (within a 
small range) to a broad market price index, or alter-
natively, linked to, as a proxy, a medical cost index.

It may be worth mentioning some additional practi-
cal implications or potential rules for optimal pric-
ing. These rules, though model based, can be used 
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