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Appendix 1

THEORY BEHIND MACAULAY DURATION AND ILLUSTRATIVE EXAMPLES

Definition of Duration

Macaulay duration is the weighted average of the time to each future cash
flow. The weights are the present value of the corresponding cash flows. In

symbols,

Duration (D)

z tvtCFt/P, where
t=0

Z vtCFt.
t=0

"
"

Thus, duration provides us with a sense for the average "length" of an asset
or liability. Note that in this definition, we assume a flat yield curve. In a later

section, we will examine the implications of a nonlevel yield curve.

Example of Duration

Consider the following example:

o Liability: $100, 16 percent, 6.9-year compound bullet (to

pay $278.46 at maturity).
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o Asset: $100, 16 percent, 30-year mortgage (to pay

$16.19 per annum for 30 years).

o If interest rates drop to 14 percent, market values (MV) change

as follows:

L

MVt = 278.46/(1.14)8-9 - 112.75.

Mt = 16.19 aggy1ay = 113.37.

The excess of asset over liability value represents a .5% gain.

o If interest rates increase to 18 percent:
MLt = 278.46/(1.18)%-9 - 88.87.
mh - 16.19 a - 89.32
. 3_tﬂ 18% 3.
o Again, assets now exceed liabilities by .5%.

Thus, we are now well protected against interest shifts. In fact, we

appear to gain either way. We will come back to this in the next section.

It is instructive to examine this example from the maturity date viewpoint:
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Value of Assets at Maturity of Liabilities, if
Interest = i% to Maturity

16% 14% 18%
From cash flow reinvestment?® $166.12  $155.49  $177.42
From liquidation of ::1ssetsb 112.37 124.51 102.43
[ JTotal $278.49  $280.00  $279.85

a. 16.19 =x s’ai x (1 +1i) 0.9.

b, 16.19 x azyp x (1+1) 0.9.

In each case, the total value of the assets is reasonably close to the
required payment of $278.46 at maturity. Note, though, that the two pieces
shown move in different directions. If interest rates fall to 14 percent, we gain
on liquidation of assets (versus the 16 percent base case) but lose on the
reinvestment of the annual cash flow. In the 18 percent scenario, just the
opposite holds. One can thus begin to see how this works. For a better

understanding, consider the following theoretical development.

Duration: Theoretical Development

Classical Immunication Theory

At = cash flow of assets at time t.

Bt = cash flow of liabilities at time t.

Goal of classical immunization theory is to achieve the

following:
Loat o L gt
(1) t Atv = % Btv

regardless of the interest rate.

Al-3



To simplify the notation, let's define:

To determine the conditions that need to hold to ensure that

equation 1 is true, we define
() f@ = PT - P

If £(i)=0, what we want is f(i")™>f(i) for all interest rates i', or in
other words we want f(i) to be a minimum point of the function: f.
This will be the case if the first derivative of f(i) equals 0 and the

second derivative > 0, so that our conditions become

Lot Yot
(3 £ tv At = % tv'B

t* (first derivative = 0).

L .2t Y o2t
() t ty At > t tv Bt' (second derivative >0).
The following indicators were then developed as tools for

utilizing this theory:

)

D'Al* = asset duration = t tVtAt/PA.

DIi' = liability duration = ¥ tVtBt/PL.

Dg = asset spread (or convexity) of payments = % tzvtAt/ PA.
DI; = liability spread of payments = % ‘l’.zvtBt/PL .

Al-4



Assuming that:

pA = Pl at the initial interest rate i,
Then D‘? = DIi' and Dg = DIE are necessary and sufficient to

ensure that

at any interest rate.

Note that the notation for Macaulay duration may be D or Dl' The latter

is often used to distinguish the first moment (Dl) from the second moment (DZ)'

In the example previously given, D% = 82.2 and DIE = 47.6. Thus, D? = DIi'
and A L .
D ) >D2, which assures us that the present value of the asset cash flows

will equal or exceed the present value of the liability cash flows at all interest

rates. As we did see, this inequality held for various interest rates.

The requirement involving the D2's implies that the absolute "length" or
spread of the assets is somehow "longer" than that of the liabilities. In the
example given, we saw that this permitted losses upon liquidation to be offset by
gains upon cash flow reinvestment, or vice versa. Thus, we can see that the DZ
requirement is necessary. In fact, if we had switched the asset and liability in
this example, then even though durations matched, we would have (small) losses
upon interest rate moves. From the calculus, we can see that f(i) would be at a

maximum of i rather than a minimum.
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The phenomenon where one can gain if interest rates move anywhere was

noted by I. T. Vemderhoof,1 who suggests that in real life, the structure of

interest rates (that is, yield curves) prevent such all-win situations.

Duration as Measure of Change in Price per Change in Interest
Now consider an alternate demonstration. Assume

Ct = cash flow at time t.

Po = purchase price at time o :

% Ct/(l+i)t.

We can obtain the marginal change in price due to a change in interest rate

by taking the derivative of P with respect to (i); that is,

t
P jgi=-2tc/a+dttis o1 Y tv'e
o/ t [T+ t

or

dp = -di ) tvtc
° (1+1) t

Dividing both sides by Po yields

: t . . t
d& i di ) tC,v _ di Z tv Ct
p (1+1) Py (1+i) Py

I. T. Vanderhoof. "Immunization with (Almost) No Mathematics." The
Actuary 16, no. 4 (1982): 1, 4, 7.
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Interest
Rate

16%
17
18
20

or

% change in price = % change in (1 + i) x (-duration).

One implication of this result is that if the durations of the assets
and liabilities are identical, then a change in interest rates will produce
comparable changes in market values. In other words, immunization is

achieved.

It is important to note, though, that exact matching is ensured only
for infinitesimal changes in interest, that is changes by di. In fact, once
interest rates change by di, the new duration based on this new interest
rate will likely no longer match; however, as we saw in the last section, if
DZA >1'_2Lat the’original interest rate, the asset market value will still

exceed the liability value with further changes in interest rates.

For example, assume $100 is invested in a 30-year mortgage yielding
16 percent; the following table compares the percentage change in market
value produced by the duration formula just given to the actual percentage

change in price under various interest rates:

Duration Formula Actual Change in Market Value
(1) (2) 3) (4) (5) (6)
%Change % Change
Duration in (1 +1) Market from Ratio of
at 16% from 1.16 -(1) x (2) Value 16% Value (3) to (5)
6.90 0.00% 0.00% $100.00 0.00% —_—
6.90 0.86 -5.93 94.38 -5.62 105.5%
6.90 1.72 -11.87 89.32 -10.68 111.1
6.90 3.45 -23.81 80.61 -19.39 122.8
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Thus, as interest rates move significantly from the base rate, duration

becomes less useful as a measure of price change.

Other Properties of Duration

It is often necessary to combine duration for several assets and/or
liabilities. Fortunately, duration has a simple aggregation property, developed
here:

Let At and A: denote cash flows for two separate assets, and D and D1

H

denote their respective durations. The duration for the combined asset,

DC, equals

pC

Ztvt(At + Atl) /th(At + Ail)

(ZtvtAt +ZtvtAt1) / @+ Pl

(DP + DlPl) /(P + Pl)
1

p—P_ .p! _E_.
P+P P+P

Thus, if the durations and present values of the separate assets are known,
it is easy to compute the duration of the combined asset. Furthermore, this
relationship is useful for deriving additional properties of immunization and
duration.

For example, it is usually the case that when working with statutory
liabilities and the associated assets, that PA exceeds PL. Recall that equality is
assumed in the classical immunization requirements. We can modify the

traditional requirements in one of two ways, depending on our goals.
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Assume first that we want the dollar amount of "economic surplus" (S = ph

- PL) to be at least as great in all other interest scenarios. Stated differently,

we want to immunize the dollar amount of surplus.

Relative to the calculus development used earlier, we still want the

A

function f(i) = P - PL to be at a maximum at i, so that we want f'(i) = 0, and

f"(i>0. Therefore,

P t+l t+l, _
/(i) = - Ltv AL+ YtviTie, = 0

»> Zt:vtAt - ZtvtBt X

»>  pApA L plpl o

(1) p? = plpl/pA and

£(4) =[Zt(t+1)vt+2 A, - T t(t+1)vt*2Bt] > o

> thvtA,c +ZtvtAt>[t2vtB,c +y tvtBt]

»> PAD’Z‘ + PAR >PLD|2‘ + pipt

»— PADQ + PAetot Pt >PLD'§ + plot

»> PADIZ\ > PLDIZ‘, or

) D >>p'05/P"  (all assuming condition 1 holds).

¢ DA
Thus, if P*>PL ;54 conditions 1 and 2 hold, the value of surplus, or £(i),
will be at least as great at other interest rates. Note that PA = PL is just a

special case of this more general case.
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Some may instead wish to immunize the surplus - to - liability ratio (S/PL)

so that it will be at least as great at other interest rates. It turns out that this is

L

achieved by the original conditions, ph - D™ and D‘%> DI?j, when PA>PL.

To see this, define PS = PA - PL, and consider the following:

o We can carve out representative assets whose present value, PAL, equals
PL at the initial interest rate. By representative, I mean that
pAL = pA - pl ana
DZAL = DZA >D2L. Let P° equal the present value of the

Let Ps equal the present value of the remaining assets.

‘?I‘; PIi' y and PS denote the present values at a different interest rate.

o Let P 1

o From the duration conditions, we know that PAII‘ >PI{.

0 This implies that :

s s
P 1
—_ = —_

AL L
P Py
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o Since we "carved" out representative assets, Pf/PAiL = PS/PAL = PS/PL

for any interest rate, so that
S, pl = pS/pl
PI/P1 = P°/P.

Shortcomings of Duration

There are a few practical and theoretical difficulties in actually using
duration. Omne problem is that we can be matched (DA = DL) today, but
mismatched tomorrow, even without any changes in interest rates. Consider the

following example:

) Liability: $100, 16 percent, 6.9 - year compound bullet (to pay

$278.46 at maturity).

o Asset: $100, 16 percent, 30 - year mortgage (to pay $16.19 per

annum).

30 . 30
o  Atissue,D"=6.9=D" (= y tvt/z Y.

t=1 t=1

DL A
2 = 417.6. D 2 = 82.2.
o One year later,
pl = 5.9
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D depends to some extent on how the first payment
was invested. If invested in a cash equivalent
instrument,

29 29
pA =1 + yexvt| /14 vl 6o

t=1 t=1
If the first payment is reinvested in a 29-year mortgage,

29 29
DA=Z txvlz vt=6.85.

t=1 t=1 l

Note especially that DA may change only slightly, where as DL changed
rather significantly. What this implies is that if durations are matched today,
and interest rates change today, we should be in good shape. However, if one
year passes and then interest rates change, we are no longer protected. The

solution to this problem is active portfolio management.

Another interesting problem is that the values of D, and D, usually vary
with interest rates. Thus, if interest rates shift, durations may no longer match,

which may or may not be a problem. If the shift occurs immediately after we

determined D‘? = Dll'

against further interest rate changes that may occur immediately.

and D‘;> DIE at the original i, then we are still protected

Example:

o At time O:
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Liability: $100, 16 percent, 6.9 - year compound bullet (to pay

$278.46 at maturity).

Asset: $100, 16 percent, 30 - year mortgage (to pay $16.19 per

annum).

DL = 6.9 = D?; DL = 47.6; DA = 82.2.

2 2
o At time 0, assume interest rates shift to 18 percent; evaluate at time = 0:
pl - 278.46 x v % = 88.87.

18%
pA-16.19x%a = 89.32
. 30118% 2

pl = 6.9 years.

30
A t A
D= tZ:ltvls% /Plgop = 6-3-

Note that durations and market values no longer match. This is not a
problem, since at 16 percent we have seen that all necessary conditions for

immunization are satisfied. However, it can lead to a misinterpretation of

results.
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If, at a given interest rate, our three conditions are satisfied, we are

protected. If not, it is not always clear where we stand. Consider the following

example:

Liability: $100, 16 percent, 8 - year compound bullet (to pay

$327.84 at maturity).

Asset: $100, 16 percent, 30 - year mortgage (to pay $16.19 per

annum).

At 16% :

o  p*=pl-4100.00.
o D*=69# pl=s.0.
A _ L _
o D, =82.2 D = 64.0.
. L A . . . .
Since D™ >D"", one might guess that interest rate increases will

cause a gain, whereas interest rate declines should cause losses. This

is almost, but not quite, true:

i PA PL %
8% 182.26 177.12 +2.8%
10 152.62 152.94 0.2
12 130.41 132.41 -1.5
14 113.37 114.93 -1.4
16 100.00 100.00 0.0
18 89.32 87.22 2.4
20 80.61 76.25 5.7
22 73.40 66.80 9.9

Al-14



o It turns out that at 12.75 percent, D? = Dll‘ = 8.0, DAZ‘ =107.4 and

DY = 100,

but PA = 123.51 and PL = 125.52. Interestingly, then, i = 12.75 is the
point of maximum loss. If we could increase our assets by 1.6
percent (125.52/123.51), all conditions would be satisfied (at 12.75

percent) and PA would then equal or exceed PL at all other interest

rates.

The conclusion of all this is that if we can find any interest rate such that

PA > PL,
A _ L

D 1 D1 , and
A L

P, = Db

then we are protected against immediate changes in interest rates. If not, we

need to restructure the assets and/or liabilities to satisfy these three conditions.

Call and Withdrawal Options

The theoretical justification for duration assumes that cash flows are

independent of the interest scenario. If, instead, the assets call when interest
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rates decline, or policyholders withdraw when interest rates rise, then losses
could result, regardless of the duration tests. This is a major shortcoming of

simple duration satistics.

Term Structure of Interest Rates

The term structure of interest rates is the structure of yields on debt

instruments that differ only in the time remaining to their maturity dates.

One purpose of this theory is to explain the relationship between the yield

curve and investors' expectations of future yields.2 Notation used is as follows:

R = Actual yield per period at time t on an investment maturing n

periods from time t,

e = Expected yield per period at time t on an investment maturing
?

in 1 period from time t.

Thus, the Rn 's are the yields one would observe in a standard yield curve
]

t

at time t. The r 's are l-year yields that investors anticipate will apply to
’

t

future periods.

2 This subject is covered in Chapter 14 of Security Market by Garbade.
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The Term Structure Theory holds that these two yields are closely

interrelated. In fact,

—

R = T (R

n,t n RygtTfypeat --c*r

1.t + n-1 (See footnote 3.)
b

Numerical examples of the r's versus R's follow:

Case A Case B
Expected Future Yields Term Yields at Expected Future Yields Term Yields at

Lt+k B Ryt Lt+k b Ryt
16.0% 16.00% 12.0% ; 12.00%
15.5 15.75 12.5 12.25

15.0 15.50 13.0 12.50

14.5 15.25 13.5 12.75

14.0 15.00 14.0 13.00

We can now modify the Classical Immunization Theory to accommodate this non-

level yield curve. Assume the following:

At = cash flow of assets at time t.
Bt = cash flow of liabilities at time t.
3

Both R and ry a.re defined as continuous interest rates. Thus,

RZ t. tRl tx rl,t * 1, so that R, l(R SR 1)/n. The theory also

prov1des for the existence of risk premlums m reahty that serve to create
equilibrium in the market between supply and demand for issues of different
maturities.
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We want to achieve the following equation, regardless of the interest rate or

rates:
Ay ) By B,
+ +o..> + +.
(1 + rl,O) (1 + rl,o)(l + rl,l) . (1 + rl,o) (1 + rl,O)(l + rl,l)
It turns out that if:
(1) X tAt _® Bt (or D} =D
1 L I1
t=1 [ ( t=1 7T
1¢4r, ) (1+r, ) ;
i=0 1.1 i=0 1.1
o t2n, 0 28 AL
(2) Zl = t >z-: 1 t (or Dz>02)
L | A ST S I AN S
i=0 i i=0 i
then if interest rates change, such that
d(l + rl,t) = da(1 + '1,0) ’ for all t,
d(1 + rl,t) 1+ rl,O)

then PA will equal or exceed the pl at the new interest rate or rates. This
additional requirement implies that there cannot be drastic changes in the slope

of the yield curve. The following example will illustrate.
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Example:

Expectations (r1 t): ro*= 12 percent incremented by % percent per
? ?

year to 16.5 percent at t = 9.

Liability: $100, 12.92 percent, 4.43 - year compound bullet (to pay

$171.31 at maturity).

Assets: $100, 13.30 percent, 10 - year mortgage (to pay $18.65

per annum).
L A
D = 443=D,.

L _ A _
DZ—ZO. D2—27.

If (1 + r t) decreases by 5% (r1 0= (1.12) x 0.95 -1 = 6.4%
b s

ry s 6.9% 4..., T19 = 10.7%), then

$125.75.

d
1

J
[H]

$127.18 (1.1% gain).

I (1+r t) increases by 5% (r1 0= (1.12) x 1.05 - 1 = 17.6%,
) ’

'y o= 18.1%,..., ' = 22.3%), then

)
1}

$80.72.

d
I}

$81.31 (0.7% gain).
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o If the slope steepens to roT 12% (1'1,l =13%,..., r9" 21%),
then
Pl = $96.87.
PA = $95.42 (1.5% loss).
o If the slope becomes flat at 16% (r1 ¢ = 16% for all t), then
b
Pl = $88.76.
A .
P = $90.14 (1.6% gain).
o If the slope declines (rl’0 = 12%, r= 11.5% ,..., 9" 7.5%),
then
Pl = $107.36.
A .
P = $111.50 (3.9% gain).

This example demonstrates that if the Y t's change by a constant
’

percentage, the PA will exceed the PL. Note, though, that in some cases, even

where the r, .'s changed by other than a constant percentage, we still gained.

1,t
Only in the case where the slope became more than proportionately steeper did

we lose.
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I believe that this may be a general truth although we have not yet
rigorously proved it. The requirement of the Dz's implies that the spread of the
assets is greater than that of the liabilities. Thus, a steeper yield will likely
reduce the market value of assets more than it will reduce the market value of

liabilities. A decline in the slope will have the opposite effect.

In any case, this represents another shortcoming in the concept of duration.
Even if we meet the conditions of the Dl's and DZ'S, we may still lose, should the

yvield curve change shape dramatically.
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