
*Copyright © 2005, Society of Actuaries

†Mr. Alex Korogodsky, not a member of the sponsoring organizations, is senior manager at Ernst & Young in New
York, NY.

Note: The charts referred to in the text can be downloaded at: http://handouts.soa.org/conted/cearchive/NewOrleans-
May05/053_bk.pdf.

RECORD, Volume 31, No. 1*
New Orleans Life Spring Meeting
May 22–24, 2005

Session 53 OF
The Need for Speed: Achieving Maximum Run Time
Performance

Tracks: Risk Management, Technology

Moderator: Francis P. Sabatini

Panelists: Philip Gold
 Alex Korogodsky†

Summary: Risk management, valuation and product development activities have
required increasingly complex financial models. These models could require seriatim
processing, nested stochastic processes and thousands of scenarios. For many of
these activities, run times can be measured in days and even months if the right
technology is not applied. This session has practitioners discussing the ways they
have addressed run time issues by leveraging technology, using thoughtful
approaches to coding and model construction and other techniques. The presenters
share their approaches to gaining speed. These include software and coding
optimization, hardware optimization, distributed processing and parallel and grid
computing techniques. The attendee receives an understanding of the need for
carefully planned approaches to modeling and the creation of effective modeling
environments.

MR. FRANCIS P. SABATINI: I've been doing risk management for a long time,
and in the past several years I've learned to appreciate the need for speed. This will
be an interesting topic and a unique combination of the Technology Section and the
Risk Management Section, although most of the material is going to focus on the
need for speed.

The Need for Speed: Achieving Maximum Run Time Performance 2

Alex Korogodsky is a senior manager with Ernst & Young (E&Y) in our New York
office. He is not an actuary. He has spent most of his career on the technology side,
working at Prudential and then with E&Y, where he plays a very active role in
defining technology solutions for E&Y in terms of our modeling environment as well
as for many of our clients.

Phil Gold is vice president for R&D with GGY. He is a fellow of the Institute of
Actuaries, has a master of arts degree, and he holds degrees in economics and
operational research. He has worked in product development at Abbey Life in
England, followed by a four-year stint at Manual Life in the group annuity and
reinsurance areas. He became a vice president at the National Reinsurance
Company of Canada. He is the incoming chair of the SOA Technology Section.

MR. ALEX KOROGODSKY: Performance optimization is dear to my heart because
it's probably one of the most important things that we do right now for the firm, as
well as for our clients. You know that the industry is intensively competitive. The
products are more complex than ever. Volatility of the market reflects the pressure
to grow GAAP earnings. All these challenges, in turn, are transmitted to the
actuarial domain, and we're asked to do more work in less time with fewer people.

As an example of a typical computational task, I'd like to consider, say, a liability
Greeks calculation via the overnight seriatim process. Basically the nature of this
calculation is that you take 500,000 policies over a 20-year projection, you have
1,000 base scenarios, and then for every Greek you would have two additional
scenarios. Shock up and shock down, and if, for instance, you're doing a delta, rho
and gamma hedging, you wind up with 7,000 scenarios right there. When you try to
estimate how long it would take to run through this stuff, you wind up with
anywhere from 200 to 400 days of single-CPU run time.

The bottom line is that you can't get to solving this problem by an incremental
advance in performance. You need a radical improvement, and that's what we want
to talk to you about today. One of the traditional approaches to solving for this that
we hear from some people is, "Let's not even bother. Forget about it. We'll manage
without it." Another traditional approach is to go to your senior management and
set the expectations by saying, "Well, I need a couple of weeks to run that model,
and God forbid that I have an input error or any other issue with the model that I
need to run. " As long as the management is willing to live with that type of
approach, you might be fine.

Sacrificing on the model complexity—simplifying the models by reconfiguring and
restructuring—is yet another approach to take. Some people throw additional
computers into the run, manually divide up the work between those computers,
manually push the "Run" button on each computer and then assemble the results at
the end. That sort of works, as long as you have maybe seven to 10 machines. But
I can hardly imagine how we can do it on hundreds of CPUs.

The Need for Speed: Achieving Maximum Run Time Performance 3

Apparently these approaches have a big advantage: there is no need for any sort of
revolution here. It's no major change, right? That's an incremental change. But as
such, it's still labor intensive. It's just an incremental improvement over what you
have to date. Ultimately, it becomes a logistical nightmare.

Personally, my number one challenge to all of these approaches is, how do I explain
to my family that I have to go to work on Sunday or Saturday and run the models?
My wife doesn't want to live with that. She said, "You've got to do something."

Also, how do you manually start the work on hundreds of computers, and how do
you manage that run? How do you manage the fact that you have a number of
modelers competing for the same computing resources? They all want to use that
CPU power that you have. How do you handle the failure? How uncommon is it for
us to start a model on Friday night before leaving the office, hoping that by Monday
it will be done? We come back on Monday and find out that it crashed only a half-
hour after we left the office. That has happened a few times. How do we manage
that? How do we utilize the computing power that our companies already have in
place? There are hundreds and thousands of CPUs literally sleeping overnight, doing
nothing or close to nothing. Is there a way to leverage that, especially during the
peak times during the month end, quarter end, and year end?

Most important, as we start tapping into the advanced computational resources in
our companies, how do we make IT folks comfortable? You all know that they can
promote your initiative or they can kill it in about five minutes by coming up with
15 arguments why not to do things. All of these are challenges to solving the
problem.

What we suggest is the framework that I want to set up today, which is to use a
holistic approach. It's not a one-dimensional problem that we're trying to solve
here. What we need is a robust computational infrastructure, a modeling
infrastructure that can allow you to deliver order of magnitude improvements.

The four dimensions of this framework are optimized processes, optimized
hardware, optimized model architecture and optimized model code. I'm going to
take you through each one of these four dimensions in the next 10 or 15 minutes
and talk a little bit about each and see what's involved. We do see in practice that
this approach works and delivers order of magnitude improvement. However, we
need to recognize that it's a transformational thing; it's not an incremental change.
You need to rethink the way that you do modeling today in order to reap those
benefits.

First is the optimized process dimension. This is everything that happens before and
right after the calculation engine phase. All these things need to be optimized and
processes made repeatable, auditable and, to the extent possible, automated. This
is integrating everything that you serve to the model as an input: the data, in-
force/new business, the assumptions, the product specifications. The focus is data

The Need for Speed: Achieving Maximum Run Time Performance 4

quality, because we see that if you spend time out front cleaning up, then you have
to deal with fewer engine failures.

I had a conversation with one of my clients a couple of weeks ago who said, "Well,
it's a great approach, and we like it a lot. Don't worry about the data quality—we've
got it." I've been in the insurance industry too long to know that our data are not
perfect. If you don't believe me, the session right across from us is talking for an
hour and a half just about data quality. It's very important to isolate these
problems early in the game, so that they don't lead you to catastrophic results on
the engine.

Decision support capability is everything that happens to the model outputs after
the engine's work. This mainly speaks to your ability to report, analyze and explain
the results. Again, the idea with process optimization is that you remove any sort of
process bottlenecks that stop you from being effective.

One other thing that is critical here and that we see as being more and more
important is the model development life cycle. What this refers to is the second
generation modeling platform, such as ALFA, MoSes and Prophet. All come with the
ability for you to program in languages like C or C++. This is a serious
programming environment, and software engineering learned a long time ago that
you need to have productivity effects to manage this cycle. How do you develop the
code? How do you manage the code? How do you deploy the code? How do you
manage your test environment versus "product environment"? There are ways to
do that. There is no need to reinvent the wheel. If we learn from the software
engineering industry, we could adopt a few approaches that work very effectively in
that. We don't need to be cutting and pasting the code, etc.

The second dimension is hardware optimization. The rationale there actually is that
optimized hardware placed very well with the fourth dimension, which is the
optimized model code. The notion here is that the more hardware optimization you
do, the less you need to optimize the code and the less need you have for sitting
there and figuring out what else you need to do to get to your desired run times?

When we talk about optimized hardware, there are two fundamentally interesting
concepts that we need to consider. One is that you need to have a capability to
analyze and test implications of different performance optimization techniques. It's
almost like a test bed or a sandbox environment where you can experiment, which
in all theory and practice should be independent from where you run your
production models. So that you can afford to tie in those computing resources at
the same time, you do need that capability of researching and diagnosing where
the bottlenecks are.

In this production type of environment where you run your models, a great idea
would be to run them remotely so that you connect to that environment, start the
model, disconnect, do your other things, then connect later, get the results and

The Need for Speed: Achieving Maximum Run Time Performance 5

move on. You don't want to tie in, like we used to tie in, our consultants' laptops or
employees' laptops or desktops with the model run. There is production
infrastructure that can handle that.

One of the factors to consider in that regard would be, first of all, the resource
utilization on your computer. Again, you need to understand how your model is
using those resources, how it's using the CPU cycles and how it's using the
memory. What's happening with the input/output operations? How often does it
read and write to and from the disk? What are the network utilization patterns?
Also, consider advances in microchip technology. Intel's Pentium 4, for instance,
comes with a hyperthreading option, and you could squeeze some additional CPU
cycles based on that technology. Then, of course, there's a big conversation about
distributive environments. Distributive environments work great for a small number
of computers, anywhere from 20 to maybe 40 to 50. When you start to reach 100
or so machines, the traditional distributive environment fails, and then you need to
start thinking about utilizing grid-enabled computing, which helps with this
multiple-user, multiple-resource job management and resource utilization.

The third dimension of the framework is the optimized model architecture. This is,
for instance, the cell structure. Some models that I find in forecasting don't have to
have the degree of detail that, for instance, the risk-related or capital-related
modeling efforts have. Of course, all these second-generation modeling platforms
come with a model building facility where you can do that right in the model. The
question is, do you need to? Do you have to? Is it the most optimal way? We've
seen time after time that people are starting to move this functionality out of the
modeling engine into the tools that manage the data, the design to manage the
data, and letting the engines do what they're best at, which is run the calculations.
You need to think about whether this is the case that you'd like to try and decide.

Eliminating unnecessary output is another idea that could be used here. I am
talking about a production model run where you don't need to write to the wrong
log. This is number one. Most engines today will create the wrong log, and you
don't need to have it done for production purposes. As you're developing the
model, it's extremely important as you're trying to validate the model. But beyond
that, for production runs it's an extreme.

In terms of estimating what columns you need, should you increase from the
model, do you need all of them or maybe a subset? Do you need to use columns, or
could you use fixed arrays? Things like that are important. If you have a top model
with submodel structures, is it important for you to output everything from the
submodels, or can you just limit the model output to the top model only? All these
considerations play into, as I was saying before, what happens to my model output
later. All this decision-support capability to analyze and explain the results,
depending on what requirements you have for that, you would need to scale down
on your output as part of the model architecture.

The Need for Speed: Achieving Maximum Run Time Performance 6

Then there are some other techniques, for instance, pregenerating static cash flows
for products that don't have a dependency on economic scenarios. For example, do
we need to calculate the reserves that require reprojections, or could you settle for
something smaller than that or easier than that, such as cash surrender value for
certain types of models? There are different tricks of the trade here. Some of the
examples that I'm giving are just examples, and there's much more to it, of course.

The fourth dimension is code optimization. Again, this is the capability that
becomes available with the second-generation tools, as they have what they call
"open code." It's not the open sort of engine code; it's the open application code
where you can create your models in C or C++ language. Naturally, the minute you
start using your programming language like C or C++, you open a big opportunity
door to code optimization, and we have decades of experience in optimizing the C
code.

Let's talk about some of the most important things for us to worry about. First, do
we access our multidimensional arrays in a row order? The reason for that concern
is that they're stored in memory in row order, and if you were copying the columns,
then you're creating a lot of inefficiencies for the CPU and memory allocation.
There's a big topic that talks about loop optimization such as loop unrolling and
removing invariant data so that you could do the calculations outside of the loop
instead of sticking them in there.

There's also the matter of using the math functions. Phil is going to give you more
details on how to deal with that, but as an example, obviously a power function is
very CPU-expensive and, to the extent possible, if you can replace it with a
multiplication function, that would be a way to go. The other rationale with math
functions, for instance, is that you could look into replacing your division with
multiplication, or you could be working with numbers and then divide them by 100
instead of using floating-point calculations. There are tricks like, for instance, using
single quotes around your alphanumeric data instead of double quotes. All that
optimizes the code, and, again, to the extent possible, even the 10, 15 or 20
percent performance that you can squeeze at this level will help.

The role of compilers is also important because in all this you used to be boxed in
with a choice of one compiler. Our research shows that while some compilers are
great in doing the model development and help you to quickly compile the models,
they're providing the opposite effect during the run time. There are compilers
where maybe it takes them longer to compile, but the run time is much faster. We
were able to prove this point during some of our benchmark tests. We found out
that one compiler, for instance, works from a run time perspective better than
others. Intel works better than Microsoft. As a related topic, you could use special
math libraries that are designed to be more efficient than native C++ calculations.
Again, it's all connected to the notion of compilers, because typically these math
libraries are provided to you as source code.

The Need for Speed: Achieving Maximum Run Time Performance 7

There are a couple of considerations that you need to keep in mind. First,
performance depends on the type of the model and application. We're often asked,
"How much faster can my MoSes model be or my ALFA model be?" That's an unfair
question. I always tell my graduate students the perfect answer: It depends.
Everything is so dependent on a particular application or on a particular model. But
typically, you see the run time spiraling here. The question becomes, what was the
coefficient of linearity? How linear is linear? Another consideration that has great
importance for distributive computing is to recognize the fact that models respond
differently to advancing the number of model cells versus advancing the numbers of
scenarios.

I'll make a controversial statement here, which I know some of you might
challenge. I believe that if you spend enough time on model optimization, you can
get comparable run times no matter what tool you use. This especially refers to
second-generation tools, where there are great capabilities in terms of hardware
and language optimization. Probably the systems that are closed code and vendor-
made might be optimized a little further than that. But if we're comparing apples to
apples and just talk about the second-generation modeling platforms, I'm sure we
can get to very comparable run times. The most important consideration is that you
have to invest in studying the behavior of your model to diagnose where the
bottom maxes out. What really happens with your model so that you can then
address this for the dimensions in a most optimal way?

I'd like to say a word on grid computing now. In the last couple of SOA events,
there have been a number of presentations on grid computing. Vendors tell you
how great this approach is, and it is indeed great. You get an instant 10 or 20
percent performance gratification by deploying grid technology simply because you
know the modeling tool vendors built this distributive computing functionality with
their packages, but that's not what they're good at. Their niche is the actuarial
calculation engine. The grid vendors, on the other hand, are very experienced in
distributive computing. Needless to say, they are capable of creating much leaner
distribution methodology.

The second consideration with grids is that if you try to benchmark whether or not
to use the grid, comparing your distributive processing on five CPUs, five computers
or 10 computers, and then running those five on five machines connected with the
grid, you're not going to see a lot of performance improvement. The performance
advantage you will notice is as you step into hundreds of CPUs, which is something
that simple distributive processing just can't handle. This goes back to one of the
challenges that I said up front in this presentation: How do you leverage the use of
hundreds and thousands of sleeping CPUs in your company?

Scalability is another thing, which is how you merge this peak time need for
computational resources. There's fault tolerance, which is how you protect from
those issues related to a model crash. If one of the computational notes dies in the
middle of the run, what does it mean for the whole run? Does it need to be

The Need for Speed: Achieving Maximum Run Time Performance 8

restarted? Hopefully not. Service levels allow you to schedule resources and runs
much more flexibly. Most important, since you can't really deploy grids in your own
data center within the actuarial department, IT people will challenge you. For what
else can we leverage that technology for? The notion here is that you can leverage
it to pretty much anything and everything, including, by the way, your Excel models
if you still have those. You can grid-enable the Excel models. Security is a
consideration.

Most of the real benefits are public; they've been advertised by the companies that
have made strides with high-performance computing (HPC). I've decided not to
give you the company names for obvious reasons, but if you're interested, I can
refer you. Some of the things that people have reported is that you can truly go
from a 10- to 100-CPU environment capability. Real-life clients report performance
improvements such as going from 2.5 hours to 10 minutes, or from 18 hours to 32
minutes. This is drastic. This is the order of magnitude improvement that we seek.

Most important, people say that they can reverse this long-standing paradigm of
actuaries messing around with data and pushing the buttons 80 percent of the time
and interpreting the results 20 percent of the time. Now you can reverse that and
spend most of your time analyzing the results, which is what you have been trained
to do. People talk about delivering higher-quality services to clients faster than ever
before. I'm sure your chief actuary would be happy to hear that. Ultimately, that
leads to a stable environment. So the benefits are there. They've been recorded.

The last thing I want to talk about is resolving the considerations. I had an e-mail
in my mailbox three months ago. I printed it out, and it's now hanging on top of my
desk. The e-mail said, "Alex, we're ready to move on the high-performance
computing environment. Where can we buy one?" Then it asked me how much it
cost. Unfortunately, there is no cookie cutter here. You can't buy it; you need to
build it. You need to invest time in this. You need to invest time in models, in
restructuring and in rethinking the model architecture, because some models that
we've seen are distributed out of the box, and some are not. That goes back to
what I was saying about code optimization. If you can use vector arrays, they're
very much distributed. If not, then they're not. You need to have the capability to
diagnose your bottlenecks and how you optimize for speed. That capability has to
be there. You need to solve the problem. Are you building your own mini-actuarial
data center? Are you going to leverage the computing resources available to you in
a company? You do need to have the adequate service level for CPU utilization,
because if you are tapping into computers for people who don't have anything for
modeling responsibilities and they want to run something on their machines and
their CPU is 100 percent utilized, they're not going to be happy campers. You do
need to somehow manage that.

The bottom line is that the market is heating up for this. There is a need. Frank and
others talked about this yesterday during their sessions when they talked about
hedging, C-3 Phase 2 and other computationally intensive modeling topics. They

The Need for Speed: Achieving Maximum Run Time Performance 9

said one thing at the end of the presentation: How do we deal with the run times?
It's crazy what's going on. So there is a need there. Many actuarial software
vendors are developing capability for that. In terms of your competition, a lot of our
clients are already working on that or thinking about it, or they are already finished
working on that. It is, I think, very critical for you to think of a strategy there.

MR. PHILIP GOLD: I'd like to begin with a few words of background. Like most of
you, I imagine, I became an actuary because I wanted to work with computers.
That was the promise I was given when I was hired at Abbey Life in England, and
they were true to their word. In those days, I wrote pricing programs and rate
manuals in FORTRAN. In 1980, I moved to Manual Life in Toronto and developed
group pricing programs in APL before switching to financial reinsurance. In 1984, I
became vice president of underwriting at National Reinsurance and somehow found
time to develop a pricing system for reinsurance in Basic. Today, my company, GGY
Inc., is in the business of writing actuarial pricing valuation of modeling software for
the insurance industry and has been doing so for over 16 years. We employ around
30 developers, the majority of which are actuaries. I'm in charge of the R&D area.
Our developers spend about a third of their time developing new functionality, a
third of their time on checking and testing and a third of their time on optimizing
the code for maximum performance and reliability. That allocation is rather unusual
in the industry and reflects a long-term perspective.

Speed has always been vitally important to us, and we've developed quite a
reputation in this area. We need the speed so that companies can use our software
for seriatim or life-by-life valuation or seriatim-based modeling. Now that stochastic
processing has become more and more important to our users, we've been placing
an even greater priority on finding new ways to speed up our system. We have
devoted a lot of time and effort to the task. The aim is to create a system capable
of running stochastic seriatim modeling and valuation for large blocks of business in
a 12-hour time period. If you can't run something overnight, then it's difficult to
build a daily work schedule around it.

I'm going to take you through a number of concepts today, some of which are quite
straightforward, some more esoteric, and some only for the seasoned C++
programmer, for which I apologize in advance. I'm a very practical fellow, and I'm
not going to introduce any ideas that I haven't put into practice myself. This list is
extensive, but each item I cover has already proved its worth in creating software
to meet that ambitious target.

You can get speed through a number of approaches. You can write fast code, you
can bring in parallel processing or you can make approximations. For those
approximations, you can use simplified models, you can use fewer scenarios, you
can use representative scenarios, you can do sampling of records or grouping of
records and you can switch from accurate calculations to, say, quarterly or annual
calculations instead. I'm not going to talk about approximations today. I'm going to
focus my attention on the first two of these options. But if you're interested in

The Need for Speed: Achieving Maximum Run Time Performance 10

pursuing the approximations, you will need to do a lot of testing of your preferred
approach against the full calculation in order to calibrate your model initially and
then again from time to time. So you will still need a fast, accurate baseline model
on hand.

The further you can get using the first two techniques, the less use you will need to
make of the various approximation methods. The object in this game is to make the
software and the hardware run fast enough so that you don't have to make many
or any approximations. Today I'll do my best to cover the various techniques my
company has researched and implemented to get these very long run times down
to manageable proportions. If you're writing your own system, you can use some or
all of these techniques. If you're buying software off the peg or there's already a
software system in place, these ideas may provide a useful checklist.

First, you need to choose an appropriate development language. If you're trying to
build a fast system, you'd better choose a fast language and compiler. In the past,
the fastest language was Fortran. This may still be the fastest language for pure
calculations, but it's pretty much a dead language these days. At one time, APL was
a popular language for actuaries, but it's fallen out of favor today. Today's
languages are mostly object-oriented, for very good reasons.

Object orientation allows you to build and maintain powerful, complex systems,
which would be almost impossible using traditional approaches. When we first
started, we were writing in Professional Basic. But we moved our calculation engine
to C++ many years ago because our experiments with various languages showed
us that C++ was extremely fast and well suited to our application. C++ in the right
hands is capable of extremely high processing speeds, higher than any other
modern object-oriented language. The emphasis is on the phrase "in the right
hands," since C++ is extremely demanding of developers, and I would not
recommend it for anyone other than full-time professional programmers. Messing
with pointers and multiple inheritance can be a two-edged sword. It can yield
remarkable results, and it can get you into trouble very quickly.

While C++ is appropriate for our shop, it may not be the right tool for your
development. Each language has its own strengths and weaknesses. Visual Basic
(VB), for example, allows you to get a lot of code written very quickly. But that
code will not run at the same speed, nor will you have the same flexibility over the
environment as the guys who program in C++. The good news is that some of the
other modern languages, such as Java and C# and VB.NET, come with some pretty
smart compilers, which are reducing the performance gap between them and C++
and are well suited to smaller scales of development. Some people have had great
success using Excel or other Microsoft office components as a base for their
software.
When you choose your architecture, there are many choices to be made, depending
on your objectives. Are you programming for yourself, or are there multiple end
users? Is this a general-purpose system or a single-purpose tool? Does it have to

The Need for Speed: Achieving Maximum Run Time Performance 11

work just with your current products, or should it be capable of modeling any
product you can think of? How should the end user gain access to leading edge
product features? What's the life cycle of this product? Do you intend to maintain
this system for the next 20 years or just the next six months? If you're in it for the
long term, it makes sense to build a hierarchy of efficient classes and algorithms,
which can take years to develop, and to come back to these classes from time to
time and optimize them further with the aid of the latest techniques and hindsight.
All of these considerations can affect the run speed of the software.

Consider the open code question. You may not have considered that open code can
impose a large penalty on speed, but we found that closed or vendor-maintained
code gives us the opportunity to fully optimize the code, both globally and through
time, which would not be possible if our clients were also making changes or
additions to the code. We chose the vendor-maintained approach to get the
maximum possible speed. Of all the factors I'll talk about today, this is probably the
single most significant contributor to the speed of our software.

Let's talk about databases. You probably need a database engine of some kind to
support your calculations. You'll probably use it for both the input and the output of
your model. There are many such engines on the market. Your first decision is
whether to use an embedded engine or to rely on an external relational database,
such as Oracle or SQL Server. In our case, we used a database engine of our own
design for many years and then switched to the Jet database engine with our move
to Windows. Jet has its limitations, but it is much faster than the SQL Server or
Oracle for some operations, and you can address it directly with SQL from within
C++.

The raw speed of a database engine is only one of the considerations. Connectivity
is also important and must be matched to the needs of the intended users and the
platforms on which they will run. Scalability to large file sizes, wide record sets and
multiple users and processors are all-important qualities, while the single most
important concern is robustness. How reliable is this engine under load? We've
conducted a lot of research into database engines, and I can tell you with full
confidence that there's simply no one database that does everything well. Each
database engine is optimized for a different purpose. There are many data
benchmarks posted for the different engines on the market. We found that these
benchmarks bore little relationship to the particular tasks for which we would be
needing the databases. We simply had to write our own test suites for the things
that we felt were the most important.

We were quite stunned by the results of our experiments. The ones that looked the
best on paper were often resource-hungry and unreliable. Those that worked best
were often those with the longest history of development behind them, not
necessarily the latest-and-greatest object databases. Throw your preconceptions
out the window. In the end, we decided that our system could be considered as a
number of separate modules and that our best strategy was to match each part of

The Need for Speed: Achieving Maximum Run Time Performance 12

the system to the database engine best suited to its requirements.

Now I'd like to say a word or two about Extensible Markup Language (XML).
Although it's very useful for many different purposes, you'd be best advised not to
make use of XML in time-critical processing because it is very wordy compared to
regular database record sets, and it takes longer to read and write than traditional
methods. Housing and conversions of data types can take a significant amount of
time if you're working with millions of records, and it's best to remove these from
the critical path.

We found that one way to speed up the calculations is to have all the data
relationships in compiled source code. But that's an awkward and unreliable way to
program a system for the long term. The alternative is to arrange these
relationships in a database to be queried at run time. This database approach is fine
for readability and long-term development, but at run time you have to query that
database, and this slows down the system. To get the best of both worlds, we
maintain all the relationships in databases, for which we have developed some very
fancy visual editing tools, but we also write code generators that build code directly
from those definitions in the database. The output from these code generations
gets compiled with the other source code. It takes longer to build the system, but it
runs much faster. Another advantage of this approach is that we can insert lots of
validity tests into the code generator to make sure that the database relationships
are consistent. If these tests fail, the system build fails too, and the inappropriate
relationships can never reach production.

File storage is about the slowest thing you can do on a computer, so you should
take steps to optimize it as much as possible. If you have to read or write data, it's
always much faster to do so in large blocks rather than field by field or record by
record. You lose the ability to perform certain database operations, but you gain
speed. Our developers chose carefully what will be a field in a RecordSet, and what
will be stored as part of a large binary blob attached to that RecordSet for speed. If
you do use binary storage techniques, then you'll need to offer utilities to give the
users access to the original database fields on demand through some kind of
import/export facility. Most developers do not bother with this dual approach since
it complicates the programming and can lead to a duplication of data, but we found
it to be of enormous benefit in speeding up stochastic processing and well worth the
effort.

We normally think of data compression as trading speed for file size. If you're
careful, data compression can save you time as well as disk space. Consider a large
set of model projections, with maybe 100 lines being tracked for 50 years monthly.
If you can compress the data first, perhaps by using some kind of PKZIP algorithm,
and then save it as a binary block, you'll save a lot of hard disk writing time, often
much more than the time it takes to do the compression. You lose the ability to
retrieve individual values from the file because you can no longer locate to a
specific field, so there are disadvantages, but for some kinds of information this is

The Need for Speed: Achieving Maximum Run Time Performance 13

not important. In our software, we use six different proprietary lossless
compression algorithms just for storing projections, and we do save both a lot of
time and a lot of disk space.

I'm going to talk about micro-optimization. If you're after the highest performance,
you need to pay attention to the relative speed of those simple operations that may
be called billions of times in your modeling run. We all know that raising to a power
is slower than multiplication, so your standard optimization should always include
replacing powers by multiplications and replacing multiplications by additions
wherever possible. We found an enormous payoff by fundamental optimizations to
the root and power functions, which are used extensively in interest rate
conversions. The best way is to rewrite the code so you don't have to call a power
function, but if you can't eliminate it altogether, you may be able to add a run time
test that only calls the power function if certain conditions are met. Then you can
start developing caches.

A cache is a memory system that can store one or more previous results of a
calculation or read request. When you call a cached function, it looks to see
whether it already has the answer in memory before doing the calculation or read.
If the calculations you're trying to perform are the same as ones you recently
performed, by caching the previous inputs and outputs to the power function, you
can save time. You cache can be a simple one-element structure or a complex one
with an extensive history. Alternatively, you can use maps or lookup tables. In our
code, we found that in some cases up to 40 percent of run time was spent inside
rate conversion routines. By optimizing the code using advanced cascading caches,
we brought the time down to 10 percent. We then reduced that to 3 percent
through a proprietary technique we call "intelligent caching." We then reduced
down to the 1-percent level through the use of some advance mathematics to
replace the C++ pow function with a series of faster functions that work within
specific ranges and through the use of a controller to arbitrate between them.

Let's talk about the order of calculations. Our first approach to stochastic processing
was to put a big loop around our model for the number of scenarios to process.
With minimal programming we could get the right answers. But that loop meant
every policy had to be read in once per scenario. If you're running 1,000 scenarios,
you're reading the assumptions 1,000 times. By offering an alternative order of
processing so that the scenario loop comes within the policy loop, we were able to
speed up the system dramatically. This was a lot more work for the developers, but
it paid off big time. Each way to arrange the loops has its advantages and
disadvantages, so you may end up supporting multiple methods.

Memory is faster than disk, so a good deal of optimization work is to replace disk
reads with memory reads. The danger in this approach is that your model quickly
becomes a memory hog, and this restricts the kind of hardware on which you can
run it. You need a very big machine. A great deal of attention to detail is needed so
that memory is allocated to the most significant items. We try to avoid any

The Need for Speed: Achieving Maximum Run Time Performance 14

structure that makes the amount of memory required depend on the number of
records to process or the number of scenarios, since this limits the size of your
model. For some orders of calculation we can achieve this, while for others you may
need more memory if you increase the number of scenarios. In such cases, you
should give tools to the user to manage the memory. Show the user how many
scenarios he or she can run or how many time periods he or she can include on a
given set of hardware.

The most successful techniques for optimizing performance through the use of
memory involve caching. We devote a specific amount of memory to a given
purpose. For instance, you might dedicate 10 megabytes for holding recently used
tables. You need to do a lot of experimentation to optimize cache design and sizes.
Other techniques involve the use of global and static memory, and, if you use
memory in this way, you have to be very careful to make sure that the arrays are
set up and refreshed at the right time.

Now we get to one of the most esoteric items. In a complex system, you may be
reading the product features many times even for a single policy. For example, the
premiums for valuation purposes may not be the same as the actual product
premiums. If you're running four reserves and a projection basis, that can mean
reading the premiums five times. Even if the commission scale doesn't change, you
may need to recalculate the commissions because they depend on the premiums
that may have changed. So we developed a set of dependency switches and an in-
memory message board to keep track of all these things on a dynamic basis. When
you calculate the tax reserves, for example, the system will only prepare the
premium vector if it has changed since the last basis. It will only calculate
commissions if the premium scale has just changed and so on. The ultimate aim of
this message board system is that no assumption needs to be looked up unless it
has changed, whether it's between reserve bases, between scenarios or between
model points. This is pretty advanced optimization. It took a lot of care to set up
initially, but now it works well for us with very little maintenance.

For those of you familiar with Developer Studio, this technology may be similar to
the incremental compile feature, which means that in a big project, only some of
the source files have changed since your last compile. Just those files will be
compiled this time around. That, of course, makes a very big difference to the
speed of computation.

Let's talk about some dynamic optimization methods. Ideally, the code you run
through on any run should be just those lines that are necessary to produce the
output required. For example, if you're trying to calculate a return on investment
that doesn't depend on required surplus, then skip the required surplus calculation.
One solution is to have different compiled code for each possible requirement and
to run the code that best fits the requirement of this run. If you allow a lot of choice
of outputs, then this may lead to a large number of executables, which may be too
much to manage. Another way is to have a system of flags that direct traffic

The Need for Speed: Achieving Maximum Run Time Performance 15

through the code, avoiding the unnecessary routines. This is an area in which you
can invest a lot of time to get a rich payoff. It may also require you to reorder your
code. A third, more advanced, way is to make use of C++ virtual functions. In this
case, at run time you would create an instance of an object from a short list of
different types, according to the purpose of this particular run. Then you process it
through one or more virtual functions. Each type of object may implement the
same virtual function in a different way, some faster than others. By this technique,
you've transformed a static code convenience, the virtual function, into a dynamic
speed optimization.

When you have your model programmed, you can see how fast it runs. But with the
help of a profiler, you can see where the bottlenecks are, where the most time is
spent and how often each routine is called. Unfortunately, profilers affect the run
speed of the program they're measuring. Rather like trying to view an electron, you
bump into Heisenberg's uncertainty principle, so the timing results are often
distorted and misleading, although the number of calls reported should be accurate.
Some profilers allow you to set the unit of time measurement, and we found that
this is a useful tool. Without naming names, some profilers are much better than
others, and none are perfect. We supplement our profiler of choice by the addition
of some home-built tools that can be applied to particular sections of code to give
much more accurate diagnostics.

I'm going to get into some specific C++ optimizations. Native C++ arrays are fast,
but they're inflexible and bug-prone. They do not indicate out-of-bounds conditions.
They can't be dynamically resized, and they are always zero-based. Not everything
is zero-based out there in real life. Bounds checking is vital, at least in debug
builds, in getting robust code. So we looked for a set of safe, flexible vector classes
that we could use instead. We were not happy with anything commercially
available, so we built our own, not just one set, but several, each customized to a
particular purpose. One set of classes provides fixed-size arrays. These provide
identical performance to the built-in C arrays, but provide such object features as
subscript checking in debug builds and the ability to retrieve both data and
dimensions. These sets of vectors avoid any memory allocations. Another set of
classes provides resizable arrays. Indexing speed is not quite as fast as the fixed
size arrays, but it's very close. These classes provide intelligent memory allocations
that recycle dead blocks from previous allocations.

Another aspect is decomposition, which Alex referred to before but not by that
name. Since two-dimensional indexing of arrays is slower than vector indexing, all
of the vector classes support the feature of decomposition. A two-dimensional array
can, without any memory overhead, decompose into individual one-dimensional
vectors. It's very handy to grab a one-dimensional slice of a two-dimensional array
just prior to a loop and index on that within the loop. It can also speed up the code
calculation. You can write code in C++ that's compiler switch dependent. So for
debug builds, we've built classes with full bound checking and diagnostics. For
release builds, we drop this excessive baggage.

The Need for Speed: Achieving Maximum Run Time Performance 16

The goal of C++ was to provide a great many high-level abstractions. The central
idea was to create a nice programming environment for the programmer. The C
language, its precursor, took the opposite approach. It provided features only if
they could be implemented well on a given machine architecture. Native C data
types such as int and float provide the best machine access. To write a truly fast
program, you have to remember to favor native types in time-critical code. In less
critical code, C++ objects are useful. They provide a way to glue the program
together in a manageable way. They're particularly useful in performing automated
cleanup, since objects have destructors that are automatically called.

Originally in the C language, there was a requirement that all of the variables used
by a function were to be declared at the start of that function. C++ by design
permitted variables to be declared on just about any line, even nested at any level
of indentation. We extensively exploit this new C++ rule. For example, some code
may only become active when certain controlling assumptions are met. Therefore,
code nested three levels deep will also include its own set of working variables
that's at the same level. If the code is executed, the corresponding variables are
initialized just in time. Otherwise, the initialization for those variables is skipped.

Vendors of C++ compilers such as Intel and Microsoft always claim that their
compiler performs miracles. The truth is that each compiler has its own strengths
and weaknesses. It's useful from time to time to take a look at the compiler output.
Anyone with knowledge of assembly language and a bit of curiosity could do this.
It's often shocking to see how much code is generated for some constructs, and it
could be quite pleasing to see just how clever the compiler is at other things.

We break our objects into two categories: those that need dynamic memory
allocations and those that don't. I'll call those "fat" objects and "thin" objects. We
use thin objects liberally throughout our program. We declare and use them at any
point in our code and allow them to be created and destroyed frequently. The fat
objects are carefully managed so that we keep them for much longer durations,
often for the duration of a calculation. We also avoid any pass-by-values uses of a
fat object since these perform wasteful memory allocations.

If you're not careful, it's quite easy for a C++ program to spend 20 percent or more
of its execution time doing dynamic memory allocations via the new operator. This
happens if lots of objects are being created and destroyed, staying around only for
brief periods. We've carefully constructed our code so that no more than 1 percent
of the execution time is used for dynamic memory allocations. Many objects are set
up only in the initialization phase and then persist for the entire calculation. Vector
classes either do no memory allocations or allocate memory initially and then
carefully recycle it after that. Many of the objects we use are designed so that they
don't perform dynamic memory allocations. Instead, they use stack-based
allocations, which are much faster, relying on the chip itself.

The Need for Speed: Achieving Maximum Run Time Performance 17

Finally, let's talk about accuracy of calculations. We quickly forget that our actuarial
assumptions are pretty rough. Can we really estimate a lapse rate to more than two
significant figures? We should think carefully before using the slower double-
precision variables. You may need them sometimes, but probably not all of the
time.

Now we'll talk about the hardware. You can optimize for different hardware. Often
this involves the choice of the right compiler and the setting of the appropriate
optimization switches. But sometimes compiler optimizations are dangerous and
can give wrong answers, so you need to compare the release and debug builds of
your software on large sets of data. Make sure they're giving the same answers.

The next big thing, of course, is 64-bit software. Because it offers improved access
to large amounts of memory, we can expect some significant improvements from
this source in the near future.

You should assess how the performance of software correlates to the processor
used, the speed of the hard disks, the bandwidth of the network and the amount of
memory. Then communicate this clearly to the users. Warn the users of things that
may adversely affect the performance of your software. For example, virus
checkers may have a big impact. I can't overstate the importance of this aspect of
tuning for speed. That gives you the most bang for the least buck.

Let's talk about setup speed. A very important aspect of speed that's frequently
overlooked is, how long does it take to set up the system to do the calculations that
you want? That includes any time necessary to cover the programming of missing
features and the time to map the data into the system. How long does it take from
the day the software arrives until you have a fully operational model? How long
does it take to modify the system to meet the changing requirements?

Our approach is radically different from that some others have taken. With a
vendor-maintained system such as ours, features go into the system as fast as we
can program them, but sometimes our clients need changes faster than we can
manage. We had to find a way of accommodating those requirements, so we've
introduced formula tables where the users can add logic, which we interpret or
compile at run time. Other vendors have attacked these problems in different ways.
My point here is not to argue for our way above others, but rather to emphasize the
importance of this consideration. Much of the user's time will be spent setting up
tables and loading seriatim or model data into the system. Try to minimize the
learning curve here; the user will thank you. If you're setting something up just for
one purpose, you may try a direct feed from the administration systems. If this is a
multipurpose tool, then you need to offer it to all that can adjust to any data
format. Either way, if you're processing large quantities of data, input speed can be
significant once you include pausing, mapping and validation. This isn't the
glamorous area, and it doesn't involve any special actuarial insight, but it is an
important aspect.

The Need for Speed: Achieving Maximum Run Time Performance 18

It's my strongest wish that when processing blocks of in-force business, whether for
valuation, as a liability modeling or as stochastic processing, the system you use is
fast enough that you can process seriatim data without grouping or sampling. It's
so much easier to get the information into the system if you're not struggling with
effective grouping techniques. Can you really spend the time validating your
grouping methodology? I used to be a member of the opposite camp, so I'm a
born-again seriatimist.

We've talked about distributed processing already. You can use distributed
processing to accelerate a modeling system by running parallel calculations on
multiple processors, in one box or over multiple boxes. Ideally, if you have 20
processes, your program should run 20 times faster. The more research and
development you do in this area, the closer you'll come to this ideal. It takes a lot
of work to provide a simple but fully scalable model for the users. I can give you a
few pointers.

You need to think carefully about which parts of your software need the benefit of
parallel processing. How are the various threads or processes going to
communicate with each other? Remember that memory messaging is much faster
than file messaging. You need to minimize network traffic and response times. Do
you split the work by policy, by scenario or by some other characteristic? You're
only as fast as the slowest machine. How do you minimize the overhang times
when some processors are busy and others are finished? You also need to think
about bringing the results together from all the different processors. Speeding up
the calculation is only part of the job here. You also have to make it reliable and
easy to use. You need to develop fault tolerance logic, because the user probably
cannot afford the time to run the job again if a network connection goes down the
first time. Load balancing is the process of making sure the work is being
distributed optimally all the way through, even if conditions change during the run.
Hardware vendors may tell you that these capabilities are built into their machines,
and to a limited extent they are. But the primary load is on the software developer
to build software to fully support these objectives.

I'd like to talk about grid computing. As you add more and more machines to a
distributive processing farm, the complexities of managing it become greater and
greater. The answer to this problem is grid computing, which automates the task of
managing the farm so that many more processes can be used. As you scale up the
number of processes, maintaining run time scalability becomes tougher and
tougher. Even more attention must be paid to every recovery and scheduling for
multiple users. In this area, it may pay to find partners with specific expertise.
Companies like Platform Computing, the largest grid computing company in the
world, specialize in this area, and they can help you set up your grid.

I've included a couple of charts to show the results of some experiments we ran at
IBM's laboratories in San Mateo(see page 8, slides 1 and 2). On 64 machines we

The Need for Speed: Achieving Maximum Run Time Performance 19

were able to run about 61 times faster than on one machine. That's good
scalability. The second chart shows the effect on run time of increasing the number
of processes for a variety of different batch jobs. As you can see, they all scale well,
but some scale much better than others. The order of the loops has the biggest
impact on the ultimate scalability. You can see in this job that we reduced a 120-
hour run time to two hours.

We all make mistakes. If it's a simple code error, we can fix it readily. But what if
it's more basic than that? What if we have some of our fundamental architecture
wrong? What if the way we chose to design the program means that the maximum
speed can never be obtained? We can plow on regardless, we can go back and
change the architecture or we can offer maybe two different ways to run the
software—the old way and the new way.

The big deal here is admitting the mistake. The bigger the mistake, the harder it
may be to admit it. For example, we developed a data management program in
FoxPro separate from our model. At the time, it seemed like the right thing to do,
since our model was a DOS program. Later, when we moved our model to
Windows, we realized that a single application combining the model with data
management would be much more flexible and efficient, but it would be a massive
undertaking to get all the users over the transition. We spent several man-years in
developing tools to automate that transition over and above all the work to design
all the data management facilities in C++. So admitting mistakes can be very
expensive, but if you don't do it, your ultimate progress may be limited. Choose
short-term pain for long-term gain. Now, you won't necessarily find your mistakes
unless you specifically look for them. This should be a continuous process, and you
need to allocate time for it.

I can sum up by saying that speed is not something you can eke out of a system
after you've developed all the functionality. Rather, you need to consider your
requirements for speed up front. It can affect the programming language you use
and even the equipment you target. Then you have to have speed in mind as a
prime requirement all along the way, and you must be willing to go back and fix
past mistakes, since no one has perfect foresight. It takes more than good
decision-making and efficient code. You must be aware of the compromises in
functionality that you're making for speed gains, and also the converse: how much
you're impairing the speed run by insisting on certain functionality or detail. Speak
to the users, make sure you're on the same page or offer two or more ways to run
things—a slower, more detailed method and a faster, less detailed method.

As your application develops, you need to use profiling tools to discover the
roadblocks preventing your software from running at high speed. You have to be
willing to invest a lot of time and effort into fine details. If you haven't done so
already, now you need to research ways to introduce parallel processing into your
code to take advantage of distributive processing and grid computing. Scale up
your application to meet ever-increasing demands.

The Need for Speed: Achieving Maximum Run Time Performance 20

You should also note that many of the techniques I've covered are very labor-
intensive and costly to implement. Thomas Carlisle said that genius is an infinite
capacity for taking pains. I like that. By that definition, I'm a genius, and you can
be one too.

MR. SABATINI: What I take away from the two sets of remarks is that to get our
jobs done, particularly around modeling, we're going to need to develop the right
environment, think about how we want to structure it and constantly monitor that
environment to make sure that we're maximizing run time performance.

MS. JOANN WILSON: Have you ever heard of the Condor software for grid
computing? I know that it's free software, and we were thinking about trying it out.
Have you tried it out, and if so, can you give us any information on how it works
with actuarial software?

MR. KOROGODSKY: Yes, our practice works with a number of partners, and folks
from the University of Wisconsin who originated the Condor project are on the list.
We've had some meetings with them. We do know that their software does work.
It's free. I think it works with actuarial software, specifically with MoSes. I'll give
you a word of caution, though. If you try to, for instance, implement that type of
approach in the context of your company, you might have difficulties pushing that
through your IT people because it's a university project. They're not a software
company, they don't have proper support, and IT will raise that as flags.

There are some interesting advantages of using Condor as opposed to production
grid software packages. But specifically related to what I talked about regarding the
utilization of sleeping computers, Condor allows you a lot of flexibility in setting up
utilization levels. For instance, you can reach out to your favorite team in the
company, which is accounting, and agree with them that their utilization of a
particular computer is 9 every evening to 2 every morning at 80 percent of CPU
cycle. The rest you can take. Condor allows you to do things like that very flexibly.
But, again, it has some drawbacks in terms of acceptability in the corporate IT
environment.

MR. HUBERT MUELLER: My question to either of the panelists is on the use of
sliding windows. One thing we've done with MoSes is that when you have large
numbers of model points, usually our constraint is their RAM memory. Would either
of you comment on the use of sliding windows and how that could help manage
that better or maybe allow a larger number of model points to be projected?

MR. GOLD: I can only say that the software shouldn't limit the number of model
points. In our software, you can run one model point or 100 million, and the
memory requirement wouldn't change. I cannot answer your specific question.

MR. MILLER: I'm talking about how you could use that to optimize. You can run a

The Need for Speed: Achieving Maximum Run Time Performance 21

large number of model points in a shorter timeframe.

MR. KOROGODSKY: This question is specific to MOSES software. Others probably
don't have that functionality built in. We definitely have seen that the sliding
windows technique allows you to optimize the memory usage. MoSes, as well as
any other second-generation actuarial modeling platform, is very memory-hungry. I
think that there are a number of memory management techniques, and sliding
windows is one of them. Another one is an extra 1 gigabyte of RAM. That
functionality is also unique to MoSes. There are a number of good techniques, and
absolutely it needs to be done and needs to be used. I think that there are issues of
the MoSes modeler to which you can refer, or you can talk to us and we'll tell you
how to do that.

FROM THE FLOOR: At the beginning of the session, Alex, you talked about a
situation where you set up a model and were ready to run it late Friday, and then
when you returned to the office Monday morning, the model had crashed a half-
hour after you left on Friday. How do we handle that if we're using not in-house
developed programs but using software from the market? How can we effectively
set up to avoid that happening?

MR. KOROGODSKY: You do need to look into specific software packages. Again,
utilization of grid vendors would help you get there because the grid engine is
installed on every computer, on every CPU that you're utilizing during your run. It
also has the fault tolerance monitoring functionality. What it does is report back to
head node the unavailability of a certain node, and then the work gets redistributed
to the other nodes that are available. It will prolong your run time obviously,
because you just load a computational resource. But, again, the grid can go and
seek an additional computational node that was not regionally included in yours.
You might not get your run time prolonged. The bottom line is that, although you
could probably spend a lifetime designing that from scratch, I would recommend
that you reach out to a professional software company that deals with that and just
integrate it with your homegrown solution.

MR. WILL MITCHELL: I have a question about the merits of closed code versus
open code. My experience has been with a system that uses open code. One
advantage I've seen is that it seems like people who are not sophisticated
programmers who are working in product development can experiment with
different designs. Are there some limitations with a closed code?

MR. GOLD: Closed code puts a tremendous burden on the developer of that closed
code. You can't do the same amount of work as vendors of open source software
and expect to get away with it because you would end up with software that was
just simply not functional enough, and people would quickly move into the open
source area. So you have to work a whole lot faster and a lot harder. You have
bigger development teams. But the payoff is run times two orders of magnitude
faster than the open code software. It's a very big payoff.

The Need for Speed: Achieving Maximum Run Time Performance 22

I mentioned that the solution we found to the inability of the user to get right into
the code was to introduce these formula tables in our system. It was a lot of work
for us to develop. But now we use this to develop our own code in Visual Basic and
write VB code and have access to variables in certain places in the system. That
code is simply data; it is not source code. It is compiled at run time, and it works
pretty fast. But it doesn't become part of these systems, so there's no problem
when there's an update. It's just data, like a premium table. It's a lot of work to put
in that kind of run time compiler, but that's what you have to do to compete with
open source kinds of code if you're going to have closed code.

MR. KOROGODSKY: Don't tell your IT people you're purchasing an open source
system, all right? It might not fly that well. I have a couple of side comments on
what Phil was saying. One is that you need to understand that when you talk about
modeling environments being open code, they're open application code, that is, the
model itself. The engine is still locked down by the vendor. It's a locked-down
calculation engine with the application code being open. Personally, I believe that
allows you a greater flexibility in performance-tuning of your particular model and
your particular application, as opposed to generically the calculation engine.

MR. SABATINI: From my perspective, it's a good news/bad news situation. The
open code allows you to customize the tool to do exactly what you want it to do.
That's the good news. The bad news is that to do it optimally, you have to have the
right kind of environment that allows you to optimize that code. I think Phil's point
is that if you don't have that efficiency in the code, then by having the flexibility to
change the code, you're bogging down your processing environment. To Alex's
point, if you're going to work with an open code system, then you need to have a
computing environment and the skill sets to make sure that you optimize that
environment appropriately. Otherwise, you then pass on that responsibility to a
vendor in a closed code system.

FROM THE FLOOR: We talk a lot about forecasting and using fairly new
programming systems. A lot of us are probably dealing with legacy systems. How
do these concepts relate to legacy systems? Can we adopt them, or do we need to
go to something more modern? Also, you talked about forecasting. Can these be
carried over to a production environment system as well?

MR. GOLD: There is a lot of talk about grid computing and scavenging. For
production environments you're talking about—for example, it's quarter end and I
have to have C-3 Phase 2 done within three days—you don't want to be relying on
people's desktops. You need dedicated equipment, or something like that maybe
takes place. Get through your calculations in the right amount of time. We're
finding that companies are not allowing their data to be distributed across their
desktops for security reasons. That's not a safe way of dealing. They don't want
people running from their desktops, and they don't want people's desktops being
used. We're talking dedicated machines.

The Need for Speed: Achieving Maximum Run Time Performance 23

MR. KOROGODSKY: In fact, it's a very good question. A trend in the last year has
been, can we utilize purely modeling platforms—ALFA, MoSes, Prophet—for
production environments? Can we use these environments with the controlled
environments? The answer is yes. We have experience implementing systems like
that. Whether you choose to take your forecasting and totally revamp it and put it
in another software, or whether you choose to live with the software that you might
have in house already that you've been using for the last five or 10 years, that to
me is a secondary question. The question is, are you ready to step up that
capability? The choice between the two, while important, is only 25 percent of the
deal. You need to optimize the processes. You need to optimize the infrastructure.
Even organizational change itself is going to be something to tackle. Unless you get
these people, processes, technologies and strategy together to think about your
planning and forecasting capability, software alone is not going to do the trick.

MR. LAWRENCE S. CARSON: My question is a follow-up to the point you just
made. You talked about organizational change and starting to talk about these open
application code systems. Have you found companies moving to more of a
centralized modeling function or having a team of people who do nothing but
optimize and sort of go back to the old system where you have a job to do and you
cue it up for somebody to work on?

MR. KOROGODSKY: Definitely, yes. Everything that you say is taking place right
now. We help a lot of our clients realize that dream. One of the most common
approaches to that is a subgroup of a modeling team called modeling stewards. The
things that I talked about (in terms of the code optimization, model architecture,
working with IT people, infrastructure, hardware and all that stuff, as well as other
sorts of R&D things that need to be done within the modeling unit) are the types of
tasks that modeling stewards can embark on if that group exists. But, again, it's an
organizational change. It's not enough to just get your senior management to buy
in. Buy-in isn't going to work; you need their full engagement in driving that
concept through organization. There are a lot of issues with that. It's not an easy
task, but it's a task, once accomplished, that gets you to the new level absolutely.

MR. SABATINI: With open code, the whole subject of diversion control becomes
extremely important. You need to establish processes to manage origin control. It
doesn't matter whether it's an open code system or even a code system that allows
you to make these changes; you still need to maintain that version as well.

