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Executive Summary 
Introduction 
In this work we have conducted a detailed statistical analysis of mortality improvement 
for the Canadian population and for the Canadian insured lives. Our objective has been to 
construct and calibrate a statistical model for mortality improvement. Previous analysis of 
mortality improvement has focused on annuitants’ mortality, where prudence requires that 
mortality improvement is taken into consideration. In this paper we consider mortality 
improvement in the context of life insurance, where any allowance for improvement 
represents a less prudent approach than assuming current mortality rates continue. One of 
the questions that we consider is whether there is sufficiently strong evidence to allow for 
any improvement at all. 
 
Our approach has been to model simultaneously the insured lives and the whole 
population. The population data is more credible, as there is more exposure and a longer 
history. The insured lives data behaves similarly to the population data, though not 
identically. We have postulated and fitted a model for the population data, and 
subsequently fitted a model for the relationship between the population data and the 
insured lives data, allowing us to take advantage of the population experience in 
modeling the insured lives mortality. 
 
 
The model 
The model we have used to project mortality is an adapted version of the Lee-Carter 
(1992a) model. This separates the mortality into two parts; one models the age effect and 
one models the time effect. We work with the central rate of mortality for each age, mx. 
This is an estimate of the mid-year force of mortality, μx+½. As is customary, we assume a 

constant force over the year of age to give an estimated survival probability xm
x ep −= . 

The formula derived for the improvement factor is a multiple of the central rate of 
mortality, and is therefore applied as an exponent to the survival probabilities from the 
base table, which we have derived from the 2001 mortality. That is, if p(x,s) denotes the 
one year survival probability for the year 2001+s, for a life aged x, and px denotes the 
survival probability for (x) in 2001, then the improvement factor Is(x,s) is applied as 
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),( sxIs
xpp(x,s) =              (0.1) 

The improvement factor depends on the age x, the period-ahead forecast, s (measured 
from 2001, the final year of our data) and the confidence level k, which allows for a 
specified probabilistic margin for adverse deviation, and is explained further in the 
following paragraph. The equation for the improvement factor is  

( )suukszsxIs xxx ,2,1 ˆˆˆexp),( ++=           (0.2) 

The parameters zx, u1,x and u2,x  are derived and estimated in Section 4, with full tables of 
values given in Appendix D. The k factor can be taken as k=Φ-1(α) for some confidence 
level α. If α=0.75, for example, then k=Φ-1(0.75)=0.674 and there is, approximately, a 
75% probability that the true Is(x,s) will be less than the estimated value. Note that this is 
non-diversifiable risk; the true value of Is(x,s) is the same for all lives. Using k=Φ-1(0.75) 
gives a 75% probability that the true value is less than the estimated value for all lives, 
not separately for each life. The consequence is important; it means there remains a 25% 
chance that the mortality is underestimated for the whole portfolio.  
 
The central estimate of Is(x,s) is )ˆexp( szx ; applying this factor to the 25-year survival 
probability of a 35-year old man, using the parameters estimated in the paper, indicates a 
2.5% improvement in the overall mortality – that is, with no mortality improvement we 
expect 93.0% of lives to survive 25 years; allowing for mortality improvement using the 
central estimate increases the survival probability to 95.3%. However, using k=0.674 to 
allow for 75% confidence, the 25-year survival probability for (35) becomes 94.7%, and 
using k=1.96 for 97.5% confidence, the 25-year survival probability for (35) becomes 
93.6%, not much larger than with no allowance at all. We find similar results for men age 
45, and for women; they are summarized in the following table: 
 
 

25-Year Survival Probabilities 
 No 

improvement 
Central 
estimate 

75%  
confidence 

97.5% 
confidence 

Males age 35 93.0% 95.3% 94.7% 93.2% 
Males age 45 82.7% 88.8% 87.2% 83.4% 
Females age 35 95.2% 97.0% 96.5% 95.5% 
Females age 45 87.6% 91.2% 90.1% 87.6% 

 
This table indicates that, at least for solvency capital, it may not be wise to make 
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substantial allowance for longevity improvement in life insurance. Although it seems 
likely from the historical data (and the model chosen) that there will be some 
improvement, there is around a 2.5% probability that rates do not improve by any 
significant amount.  

 
Smoker status 
 

These rates are ultimate and aggregate smoker/non-smoker. The data collected on 
smoker/non-smoker status of Canadian Insured lives is highly inadequate. For the earliest 
years, only around 2% of the exposure and death data is classified by smoker status. Even 
in later years, in the 2001-2 data, for example, 75% of the exposure and 89% of the 
deaths have undetermined smoker status. We are conscious of the industry’s strong desire 
for a smoker/non-smoker split of the results. Nevertheless, the data available, at less than 
10% of the total overall, is too sparse for any reliable inference. If the industry can 
improve its data collecting processes to offer reliable information on smoker status for all 
or almost all of the business written, then in around 5 years we might begin to have 
enough for some preliminary conclusions. 

 
Selection effects 

As with the smoker status, for early durations the data is sparse. In Section 4.3 we 
have investigated whether there is any significant selection effect on the pace of 
improvement, and have found there is not. 

 
 

 
Conclusions and Recommendations 

 
It is important when using this model to bear in mind the limitations of models in general, 
and of our parametric model in particular. We have taken a purely statistical approach to 
this project, by which we mean we have used the past to model the future. There is an 
argument that a sudden structural shift could render the historical experience irrelevant to 
the future experience; if this argument is true, then, our model will not be valid. The 
analysis of mortality improvement on a qualitative, subjective basis, for example, 
considering the possible effect on mortality of trends in obesity is outside the scope or 
remit of this paper. Also, by using many years of historical data, mortality shocks 
applying to limited ages, such as the effect of AIDS on younger male mortality in the 
decade from around 1986-1995 are, to some extent, smoothed out of the data. The 
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potential financial impact of a short term mortality shock is, however, clearly an 
important consideration. The probability of such a shock may be fairly low, but combined 
with a severity that could be very high, the overall effect may be highly significant. Such 
a shock is entirely possible, even within a general trend of improving mortality.  

 
We make only very general recommendations here; the interpretation of our results 

for practical application belongs with the regulators in discussion with the Canadian 
Institute of Actuaries. Notwithstanding this, we offer some suggestions: 

1. For the purpose of total balance sheet solvency, that is, including provision 
for adverse deviation and MCCSR, there is no strong evidence to allow for 
mortality improvement for insured lives. 

2. If mortality improvement is to be allowed for, either in the reserves or the 
total balance sheet capital, then we propose the use of the adapted Lee-Carter 
model, using Brouhns method for utilizing the population and insured lives 
data, to give improvement factors applied as an exponent to the time zero 
survival probabilities. 

3. The parameter estimation for the model should be repeated at regular, 
frequent intervals. 

4. There should be a concerted industry initiative to improve the central 
collection of insured lives data, in particular with respect to the smoking 
status information. 

5. The statistical model we have used does not take structural shifts into 
consideration, and may underestimate the effect of mortality shocks that 
would results from a flu pandemic. In addition, the necessary parametric 
structure of the model may indicate somewhat narrower confidence intervals 
than we would find with a less parametric approach; we therefore suggest 
that the application of mortality improvement factors beyond, say, 25 years 
should be regarded with very great caution. 
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1. INTRODUCTION 

The objective of this report is to develop a mortality improvement scale (or scales) to 
incorporate mortality improvement in product analysis, pricing and reserving for life 
insurance products of Canadian life insurance companies. Conventional mortality 
improvement scales assume that age-specific death rates fall by a fixed percentage per 
year, and this percentage is very often estimated by trending past observations, coupled 
with some “professional judgment”. Prime examples include the AA Scale in the Society 
of Actuaries 1994 Group Annuity Mortality Table, the Improvement Factors in the 
Society of Actuaries 2001 Valuation Basic Experience Table, and the Reduction Factors 
in the Institute of Actuaries “92” Series Base Table. The study of mortality improvement 
in actuarial contexts has focused on annuitants’ mortality, where allowance for improved 
mortality is a clear financial imperative. In life insurance, the use of mortality 
improvement scales may offer an opportunity to reduce costs, but actuarial prudence 
requires that such improvement is reasonably predictable. 

Deterministic mortality improvement scales are not able to provide a holistic picture 
of longevity risk. As with investment risk in equity-linked insurance, longevity risk is 
non-diversifiable, since any change in the overall mortality level affects all life insurance 
policies in force. In line with the current actuarial approach to the assessment and 
management of investment risk in the North America (see Hardy, 2003), the revision of 
mortality improvement scales should be moved to a stochastic, model-based framework, 
allowing actuaries to assess quantitatively the underlying uncertainties in the application 
of the improvement scales. This offers, for example, a scientific basis for the margin for 
adverse deviation for the mortality assumption. 

Willekens (1990) suggested that stochastic models for forecasting mortality can be 
roughly divided into two categories, namely, extrapolative and process-oriented. A mutual 
shortcoming of all extrapolative models is an entire reliance on observed past trends, and 
consequently a lack of information on the forces shaping the changes in mortality. 
Nevertheless, the implementation of process-oriented methods is always obscured by the 
statistical difficulties in determining the dependencies between causes of death, and more 
importantly the unavailability of the required individual level data – the Canadian insured 
lives experience available to this study contains no information on causes of death and 
risk factors other than smoker-status (and even the smoker status information is missing 
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for most records). For that reason, we shall focus on various extrapolative models. These 
models shall give us prediction intervals that could allow for a wide range of possible 
outcomes, so as to cope with our ignorance of the complex biological mechanisms 
underlying. 

The implementation of extrapolative models is not straightforward, due primarily to 
the two limitations in the available Canadian insured lives experience. First, the 
experience is available for only 20 policy years (1982 – 1983 to 2001 – 2002), which is 
probably too short for a direct statistical projection, no matter which model is used. 
Second, in earlier policy years, the volume of data with known smoker status is extremely 
scanty –there is no smoker information in the ultimate data before policy year 1992 – 
1993. This inevitably precludes the estimation of the mortality improvement scale 
separately for smokers and non-smokers. 

To overcome these problems, we rely additionally on the Canadian population 
mortality experience, which covers a far longer period of 81 calendar years (1921 to 
2002), and is much richer in the number of exposed-to-risk. Based on the fact that the 
Canadian population is highly insured, we believe that both mortality experiences should 
share common features, which means the simpler approach of fitting solely to the insured 
lives data is, in a sense, inefficient. In our proposed methodology, both the insured lives 
and population experience are projected simultaneously by means of a joint model, which 
consists of four fitting stages. First, at the population level, we project future values of 
forces of mortality. Second, we summarize the projection by some tractable mathematical 
formulae, which give the mortality improvement scales for the population. Third, we 
search for a persistent parametric relationship between the experiences of the population 
and the insured lives. Fourth, based on the parametric relationship, we modify the results 
in stage two to final improvements scales applicable to the insured lives mortality. If 
necessary, these scales are further adjusted for the differentials arise from the selection 
effect and/or the smoker-status. 

The flow of this report follows the logical sequence in which the ultimate 
improvement scales are derived. In more detail, the structure of this report is as follows.  

In Section 2, we state all sources of data, and discuss the adjustments made to the 
raw data at the very advanced ages. 

In Section 3, we introduce various stochastic models for forecasting mortality. These 
models are modified to suit our purposes, and are then fitted to the population experience. 
We also consider the so-called cohort effect manifested in the United Kingdom. 
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In Section 4, we focus on the insured lives. We firstly perform a two dimensional 
graduation to obtain base tables and smoothed insured lives experience, which is then 
related to the population experience by an appropriate parametric model. This 
relationship, along with the results in Section 3, gives the desired mortality improvement 
scales.  

Finally, in Section 5, we provide a brief discussion on the maximum life span, and 
give several recommendations to actuaries using the improvement scales. 

2.  SOURCES OF DATA 

The revision of mortality improvement scales is based on the experiences of both the 
general population and the insured lives in Canada. For more informative conclusions in 
the analyses of the old-age mortality, the cohort effect and the exogenous interventions 
affecting mortality improvements, mortality data of the populations in England and Wales, 
the United States and Japan are also considered. Below we list all sources of data, the 
sample period, and the modifications made (if any). 

 Canada – general population 

Historical death counts (Dx) and mid-year population estimates (proxy for the central 
exposure-to-risk, Ex) for both sexes and for every single year of age up to 89 are 
obtained from the Human Mortality Database (HMD) and the CANSIM (a 
socio-economic database provided by Statistics Canada, see Statistics Canada, 
2004).  

Data from calendar year 1920 to 1997 are available from the HMD. According 
to the HMD documentation, complete vital statistics data back to 1921 are not 
available for all regions of Canada. The following are the changes in the coverage of 
the vital statistics during that period. 

• Deaths counts exclude Newfoundland prior to 1949, and the Territories (Yukon 
and Northwest Territories) prior to 1950.  

• Prior to 1944 all vital events were classified by place of occurrence. Since 1944, 
births and deaths are classified by area of reported residence. 

• Population counts for Canada exclude Newfoundland prior to 1949, but include 
the Territories from 1921. Fortunately, the fact the Yukon and NWT are 
included in the population counts but not in the death counts does not introduce 
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a significant bias in the calculation of age specific death rates, since the 
population in the these regions is very small – In 1921, Yukon and NWT 
accounted for only 0.14% of the total population of Canada (12,200 persons out 
of 8,787,400). 

• From 1921 to 1970, except in 1961 and 1966, population counts are the 
estimates of population on June 1 produced by Statistics Canada. 

• In 1961 and 1966, population counts are the Census populations on June 1. 
Starting in 1971, population counts are the population estimates on July 1 
produced by Statistics Canada. These estimates include a correction for net 
undercount.  

Rigorous outlier analyses in later part of this report indicate that the effect of 
these changes is not substantial. 

From 1998 onwards, the required data are obtained from CANSIM. To ensure 
data homogeneity, we compared the overlapping portion (death counts and 
population estimates are available from both sources from 1971 to 1997), and we 
found that the data series commensurate reasonably well with each other. 

 Canada – insured lives 

The insured lives experience used in this study was collected over a 20-year period 
covering policy year 1982 – 1983 to policy year 2001 – 2002 from all life insurance 
companies in Canada by the Institute of Insurance and Pension Research (IIPR), the 
University of Waterloo. The mortality data are available for every single year of age 
up to 99, and are segregated by: 

i. sex – male and females; 
ii. duration – 1, 2, and so on up to 15, and ultimate (16+); 
iii. smoker status – smoker, non-smoker and indeterminate (no smoker 

breakdown in the ultimate data prior to policy year 1992 – 1993). 

In each category, Dx and Ex are given in terms of both the number of lives and 
the amount of insurance. We prefer “numbers” to “amounts” as Currie et al. (2004) 
pointed out that an undesirable statistical problem known as over-dispersion is much 
more substantial if stochastic mortality models are fitted to “amounts”.  

 The United States – general population 

Age-specific central rates of death (mx) for both sexes from 1900 to 2000 are 
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obtained from the National Center for Health Statistics (NCHS, 2004a, 2004b), 
Center of Diseases Control and Prevention. Unfortunately, the mortality data are 
presented in an abridged form, i.e., values of death rates are shown at age 0, age 
group 1 – 4, decadal age groups 5 – 14, 15 – 24, and so on up to 75 – 84, and the 
open age group 85 and over. We apply the disaggregation method proposed by 
Pollard (1988) to derive full life tables from the mortality data tabulated in 10-year 
age groups, assuming that the force of mortality varies in an exponential manner and 
that the population is stable within each of the age intervals. 

Again, the mid-year population estimates are used as a proxy for Ex. Population 
estimates for every single year of age are obtained from the United States Census 
Bureau (2004). From 1990 to 2000, the estimates can be retrieved online, and from 
1900 to 1989, the estimates are obtained by a written request. 

 Japan, England and Wales – general population 

Historical death counts and mid-year population estimates (proxy for Ex) are 
obtained from the HMD. Numerical values are given for both sexes and for every 
single year of age from 0 to 99. The Japanese data covers calendar year 1950 to 
2000, while the English and Welsh data covers calendar year 1841 to 2003. 

At very high ages, the ratio of death counts to the number of exposure-to-risk may 
not be reliable, due partly to the inaccuracy of reported age at death, and partly to the 
sampling error when the number of death and the number of exposure-to-risk are small. 
Bourbeau and Desjardins (2002) performed a systematic verification of ages at death in 
Canada. Based on the verified observations, they obtained a preliminary estimation of 
centenarian mortality by using the extinct generation method (Vincent, 1951). They 
concluded that, for the time being, official statistics are not to be counted on to provide a 
conclusive picture of patterns of mortality at the highest ages in Canada, and 
mathematical techniques must still be counted on to establish the later years of the life 
tables. 

 There are a variety of mathematical models for old age mortality, for example: 

i. The cubic polynomial function used by CIA 69-75 (Panjer and Russo ,1992; 
Panjer and Tan,1995); 

ii. The old-age mortality standard developed by Himes et al. (1994); 
iii. The old-age term of the Heligman-Pollard mortality model (Heligman and 

Pollard, 1980); 
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iv. The Coale-Kisker method of closure of life tables (Coale and Guo, 1989; 
Coale and Kisker, 1990). 

We refer the reader to Buettner (2002) for a detailed examination of the last three 
models. Based on the goodness of fit, we choose the Coale-Kisker method, which is also 
used by Lee and Carter (1992a) in forecasting the United States mortality. In the 
Coale-Kisker method, it is assumed that probabilities of death are increasing with age at a 
linearly decreasing rate. For x ≥ 85, define  

k(x) = k(x−1) – R, (2.1) 

where ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

−1

ln
x

x

m
m

xk , and R is a constant. Extending the formula up to x = 110 and 

summing up,  

k(85) + … + k(110) = 26k(84) – R(1 + 2 + … + 26). (2.2) 

Solving for R, we obtain 

351
)ln()ln()84(26 11084 mmk

R
−+

= . (2.3) 

To minimize the effect of random fluctuations, k(84) is replaced by ( )84*k , which is 
the arithmetic average of k(82) to k(86), i.e., 

.
5
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Similarly, ( )84ln m  is replaced by ( )*
84ln m , which is defined as  

( ) ( ) ( )*
83
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84 ln84ln mkm += , (2.5) 
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3

ln()ln( 848382*
83

mmm
m

++
= . Substituting ( )84*k  and ( )*

84ln m  in R, we obtain 
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In the implementation of Coale-Kisker method, m110 is assumed to be 1.0 for males. 
Such an assumption is based on the fact that there were almost no survivors at age greater 
than 110. For females, m110 is chosen as 0.8 so as to avoid imposing a crossover of male 
and female mortality at age 110.  

 Figure 2.1 displays the application of the Coale-Kisker method to the Canadian 
population data. The extrapolation shows no discernable discrepancy with the raw data 
from age 85 to 89, and progresses logically to the more advanced ages. To diagnose the 
performance of the Coale-Kisker method beyond age 89, we also utilize the method in the 
Japanese and English and Welsh population data, which are available up to age 99. 
Figures 2.2 and 2.3 indicate that the method works well in both data sets. 
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Fig. 2.1. The Coale-Kisker extrapolation, Canadian population, 1990, (a) male, (b) female. 
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Fig. 2.2. The Coale-Kisker extrapolation, Japanese population, 1990, (a) male, (b) female. 
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Fig. 2.3. The Coale-Kisker extrapolation, English and Welsh population, 1990, (a) male, (b) female. 
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3.  FORECASTING THE MORTALITY OF THE CANADIAN POPULATION 

In this section, we will apply two families of stochastic mortality models, namely, the 
penalized spline regression, P-splines (Currie et al., 2004), and the Lee-Carter model 
(Lee and Carter, 1992a), to the Canadian population mortality. These two families of 
models are also recommended by the Continuous Mortality Investigation Bureau (CMIB) 
of the Institute of Actuaries in projecting the insured lives experience in the United 
Kingdom (see CMIB, 2005). For each family of models, we will explain in detail how the 
model parameters are estimated, and how the “best estimate” and the prediction interval 
of future death rates are derived. We will also discuss the limitations of each family of 
models, and propose new variants to ameliorate.   

3.1 THE P-SPLINES REGRESSION 

Below we give a succinct description of the P-Splines regression and its relevance to 
mortality forecasting. We refer the reader to Eilers and Marx (1996) for detailed 
descriptions of the method, and Currie et al. (2004) for a recent application of the method 
in projecting the UK insured lives experience. In brief, the P-Splines method is a 
combination of following: 

i. Smoothing the historical mortality rates. This is done by a two-dimensional 
regression with cubic B-splines as the basis. To avoid over-fitting, a penalty 
function is considered in the maximum likelihood estimation of parameters. 

ii. Extrapolating the historical mortality rates. This is done by treating the future 
mortality rates as missing data. The penalty function, subjectively chosen by the 
forecaster, determines the “best estimate” of future mortality rates.  

We shall begin with the one-dimensional case. Let Dx,t , µx,t and Ex,t respectively be 
the number of deaths, the force of mortality, and the number of exposure-to-risk at age x 
and time t. For convenience we write d´ = (Dx,1, Dx,2, …, Dx,T), µ´ = (µx,1, µx,2, …, µx,T), 
and e´ = (Ex,1, Ex,2, …, Ex,T), where T is the length of time-series. We use the mortality data 
of a 20-year-old male Canadian (i.e. x = 20 and T = 81, from 1921-2002) to illustrate the 
one- dimensional case.  

 In the P-splines method, we assume that Dx,t is a realization of a Poisson distribution 
with mean Ex,t µx,t. A straightforward approach to model µx,t over time might be to fit a 
log-linear regression, say, 
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( ) ttx εtaaμ ++= 21,ln , (3.1) 

where a1 and a2 are the regression coefficients and εt is the error term. In matrix form, we 
can rewrite (3.1) as  

( ) txtx εμ ,,ln += Ba , (3.2) 

where a´ = (a1, a2) and B = (1, t). In the statistical literature, elements in B are known as 
basis functions. Figure 3.1 shows that the simple form of B = (1, t) does not fit well to the 
data that appears to be curved. To improve the fit, we may introduce an additional basis 
function, say t2, which gives B = (1, t, t2). 
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Fig. 3.1. Observed values of ln(µ20,t) and fitted values using B = {1, x}. 

 

 An even more flexible basis may be provided by a set of cubic B-splines, i.e. B = 
(B1(x), B2(x), …, BK(x)). Each Bi(x) is a B-spline, which consists of cubic polynomial 
pieces joining together smoothly. Such a basis for K = 19 is shown in Figure 3.2. Note 
that each time point in the domain t = {1, 2, …, 81} is covered by four non-zero B-splines. 
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For instance, at t = 18, B4(18), B5(18), B6(18) and B7(18) are non-zero. Hence, the fitted 
value of ln(µ20,18) under this basis will be: 

( ) ( ) ( ) ( ) ( ) ( )^ 19

1

^ ^
77

^
66

^
55

^
4410,20 1818181818ln ∑

=

+++==
i

ii aBaBaBaBaBμ . (3.3) 

The regression coefficients, ai, i = 1, 2, …, 19, can be estimated by maximizing the log 
likelihood function of the regression model, l(a;d,e). 
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Fig. 3.2. A basis of K = 19 cubic B-splines. 

 

Figure 3.3 shows the fitted model (darker line). Evidently, over-fitting exists. Eilers 
and Marx (1996) proposed penalizing the over-fit by placing a difference penalty on the 
adjacent ai’s. This penalty function is incorporated to the log likelihood function to give 
the penalized log likelihood: 

( ) ( ) ΔaΔaedaeda ''
2
1,;,; λll p −= , (3.4) 

where Δ is a difference matrix of order n. The maximization jointly maximizes the 
goodness-of-fit, which is measured by the usual log likelihood l(a;d,e), and minimizes the 
nth order differences between the adjacent ai’s so that they tend to lie on a degree n-1 
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polynomial. The relative importance of goodness-of-fit and smoothness is controlled by 
the smoothing parameter, λ. Let P = λΔ´Δ be the penalty matrix. The maximization of 
equation (3.4) gives the penalized likelihood equation: 

( ) PaeμdB =−' , (3.5) 

which can be solved by the scoring algorithm: 

⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ +=

−
~~~1~

^ ''' eμdBaBWBPBWBa , (3.6) 

where ~a , ~μ  and 
~

W  denote current estimates of a, μ and W, and ^a  denotes the 
updated estimate of a. Under the assumption that Dx,t follows a Poisson distribution with 
mean Ex,tµx,t, W = diag(μ). 

Finally, the approximate variance of the linear predictor is given by  

''Var
1

^^ BPBWBBaB
−

⎟
⎠
⎞

⎜
⎝
⎛ +≈⎟

⎠
⎞

⎜
⎝
⎛ . (3.7) 

Hence, assuming normality, the approximate 95% confidence interval for ln(µx,t) can be 
written as 

( ) ( )⎟
⎠
⎞

⎜
⎝
⎛± txtx μμ ,

^
,

^
lnVar96.1ln , (3.8) 

where ( )⎟
⎠
⎞

⎜
⎝
⎛

txμ ,
^lnVar  is the tth diagonal element in ⎟

⎠
⎞

⎜
⎝
⎛ ^Var aB . Figure 3.3 (the lighter line) 

shows that the penalty in (3.6) lessened the extent of over-fit.  

The penalized likelihood estimation is conditional on the choice of (1) the number of 
cubic B-splines, K, in the basis, (2) the order, n, in the penalty function, and (3) the 
smoothing parameter, λ. The choice of (1), the number of splines, is discussed in Eilers 
and Marx (1996), Ruppert (2002) and Currie and Durban (2002). They proposed the rule 
of thumb: 

{ } 340,4max += TK . (3.9) 

The choice of (2), the order of the penalty function, is closely related to the form of the 
forecast, and this will be explained in later part of this section. Finally, the choice of (3), 
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the smoothing parameter, relies on the Bayesian Information Criterion, BIC, (Schwarz, 
1978), which is defined as  

( )TrnDevBIC ×+= ln , (3.10) 

where Dev is the deviance, and Tr is the trace of the hat-matrix H, which is given by 

( ) WBPWBBBH '' 1−+= . (3.11) 

The smoothing parameter, λ, is chosen to minimize the BIC. 
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Fig. 3.3. Observed values of ln(µ20,t) and fitted values under different penalties.  

 

In forecasting, we treat the future values of Dx,t and Ex,t (t > T) as missing data, and 
perform model fitting and forecasting simultaneously. Suppose that we wish to forecast 
future death rates in S years from now. Then, we have to extend the original basis matrix 
B to B* that covers T + S years. B* can be written as  
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B1 and B2 contain the B-splines that cover the entire domain {1, 2, … ,T, T+1, …S}, and 
evaluate these B-splines at T+1, T+2, …, S. Define a weight matrix V = blockdiag(I; 0), 
where I is an identity matrix of size T and 0 is a square matrix of 0's of size S. Then, the 
scoring algorithm in equation (3.6) can be rewritten as 
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⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
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−
~~~1~

^ ''' eμdVBaBVWBPBVWBa , (3.13) 

which enables us to perform fitting and forecasting simultaneously. The variance and the 
approximate 95% interval forecast can be obtained using equations (3.7) and (3.8).  
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Fig. 3.4. Mean forecast and approximate 95% prediction interval of ln(µ20,t). Year 1921 to 2031 corresponds 

to t = 1, 2, …, 111.  
 

As mentioned earlier, the order (n) in the penalty function embedded in equation (3.4) 
plays a crucial role in the form of the forecast. Setting n = 1 essentially assumes no 
mortality improvement in the future. Setting n = 2 gives a linear forecast. Setting n = 3 
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gives a forecast that follows a quadratic function. As neither the consequence of n = 1 nor 
that of n = 3 seems reasonable in the context of mortality forecasting, we set n = 2. Figure 
3.4 shows both the mean forecast and the point-wise interval forecast of ln(µ20,t) under 
the one-dimensional P-splines regression. 

We now move on to the two-dimensional case. Let D = {Dx,t}X×T, M = {μx,t}X×T and 
E = {Ex,t}X×T, where X is the total number of ages. We consider x = 0, …, 99, so X = 100. 
Let Ba and By be the basis matrix when the P-splines regression is applied to the columns 
and rows of M respectively. It can be shown that the basis matrix for the two-dimensional 
model is 

ay BBB ⊗= , (3.14) 

where ⊗ denotes the Kronecker product operator. Similarly, let Δa and Δy be the 
difference matrix when the P-splines regression is applied to the columns and rows of M 
respectively. It can be shown that the penalty matrix for the two-dimensional model is 
given by 

ay cyyyaaca λλ IDDDDIP ⊗+⊗= '' , (3.15) 

where λa and λy are the smoothing parameter in age and year respectively; ca and cy are 
the number of columns in Ba and By respectively. Let vec(Y) be the operator that converts 
Y = [y1,y2, …, yN] into [y1´,y2´,…,yN´]´. Replacing B, P and d in equations (3.5) – (3.7) 
and (3.11) – (3.13) by equations (3.14) and (3.15) and vec(D) respectively gives the 
algorithm for smoothing and forecasting in the two-dimensional case. 

Figures 3.4 and 3.5 show the application of the P-splines regression to the Canadian 
population mortality. A feature of the P-splines forecast is that the confidence intervals 
are very wide – In some cases, e.g. male at age 0, the interval in the far future essentially 
spans all possible values that the death rate can attain. In addition, except at the older 
ages where the dispersion is large, the flexible P-splines demonstrate an excellent 
goodness-of-fit to the historical data. Wide confidence intervals do not imply a poor 
model per se – it may simply be that the data is so sparse and volatile that more confident 
prediction is not possible. 

Nevertheless, the P-splines perform poorly outside the region of the data. At infancy 
and the older ages, the mean forecasts rebound illegitimately at the forecast origin and 
then rise rapidly to an unacceptable level in the near future. For instance, in no more than 
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20 years, the mean forecast of –ln(m90) for male exceeds 0, or equivalently speaking, m90 
goes over 1. This phenomenon may be attributed to the following reasons. 

i. Inappropriate model assumptions. Strictly speaking, the P-splines method is 
merely an extension of the simple linear regression model, which means the 
implementation of P-splines assumes fundamentally that the death rates, or the 
“dependent variables”, are not serially correlated. This assumption may not be 
appropriate in the context of mortality forecasting, as we know that, at least on the 
time dimension, death rates form a time-series and are inter-dependent.  

No different from other extrapolative forecasting methods, the P-splines forecast 
is a weighted average of previous observations. The inappropriate assumption of 
independence might lead to an incorrect specification of weights such that the too 
much emphasis is placed on the very recent observations. In Figure 3.4, we can 
notice that the forecast is almost completely determined by the slope of the last 5 
(perhaps even fewer) observations. Consequently, a minor abnormality near the 
forecast origin could ruin the entire forecast.  

ii. Requirements of parsimony not met. The P-splines regression fails to maintain an 
appropriate balance between smoothness and goodness-of fit. The model selection 
criterion, BIC, seems to favor smaller values of la and ly, which lead to less 
penalty on over-fitting. This situation is analogous to fitting the historical data by 
an arbitrarily high degree polynomial, which would be almost guaranteed to give 
an unreasonable “best estimate”. The interval forecasts, which are computed by 
subtracting / adding 1.96 times the standard deviation from / to the “best estimate”, 
consequently give no sensible meaning, no matter how wide they are. 

Figure 3.6 shows the future age patterns of mortality projected by the P-splines 
regression. These patterns are rather different from the generally accepted ones. For the 
males, the projected pattern is almost flat from age 30 to 70, with a hump around age 70 
to 80. It also appears that the 95% confidence interval does not encompass any reasonable 
age pattern. For both sexes, the death rates demonstrate a counter intuitive fall at around 
age 90. Such a fall implies the existence of crossovers in age-specific mortality trends, 
which is in fact the primary problem of some other older approaches of mortality 
forecasting, e.g. extrapolating death rates age by age (see Keyfitz, 1982).  

To account for the anomalous projected age pattern, we revisit the nature of the 
P-splines regression. In contrast to other extrapolative methods, the P-splines method is 
two-dimensional in the sense that the entire mortality surface is allowed to change over 
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time. The high degree of freedom gives the P-splines method the competitive advantage 
of a high goodness-of-fit, and allows more uncertainties in the future that leads to wide 
confidence intervals. On the other hand, the method imposes very few constraints on the 
behavior of the forecast. As time passes by, the age pattern is gradually distorted. This 
problem may not be noticeable in Currie et al. (2004), probably because the method was 
applied only to ages 16 and over – the age pattern after the hump at the younger ages is 
fairly linear and stable over time. 

 The above suggests that the P-splines method does an excellent job in smoothing 
historical data but not in projecting the future mortality of Canadians. In this study, we 
shall use the P-splines regression for the purpose of data and parameter graduation, and 
seek alternative stochastic models for the ultimate calibration of improvement scales. 
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Fig 3.4. The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using P-splines 

regression, male. 
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Fig 3.4 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using P-splines 

regression, male. 
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Fig 3.4 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using P-splines 

regression, male. 
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Fig 3.5. The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using P-splines 

regression, female. 
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Fig 3.5 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using P-splines 

regression, female. 
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Fig 3.5 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using P-splines 

regression, female. 
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Fig. 3.6. The age pattern of mortality projected by the P-splines regression, (a) male and (b) female, 2051. 
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3.2 The Lee-Carter Model 

The Lee-Carter model has been extensively used by actuaries for a wide range of 
purposes, ranging from the assessment of retirement income adequacy (Chia and Tsui, 
2003) to the projection of mortality patterns at very old ages (Buettner, 2002). Tabeau 
(2001) provides a comprehensive review of the model. 

The model describes the logarithmically transformed age-specific central rate of 
death (mx,t)1 as a sum of an age-specific component (ax) that is independent of time, and 
the product of a time-varying parameter (kt, also known as the mortality index) that 
summarizes the general level of mortality and an additional age-specific component (bx) 
that represents how rapidly or slowly mortality at each age varies when the mortality 
index changes. Mathematically, 

 txtxxtx εkbam ,, )ln( ++= . (3.16) 

The final term, εx,t, is the error term that captures all the remaining variations. It is known 
that equation (3.16) is over-parameterized. To stipulate a unique solution, ax is usually 
taken as the arithmetic mean of the ln(mx,t) over time, while the sums of bx and kt are 
normalized to unity and zero respectively.  

Mortality forecasting in the Lee-Carter framework consists of two phases. Historical 
mortality data firstly determines parameters ax, bx and kt. After that, the fitted values of kt 
are further modeled by an autoregressive integrated moving average (ARIMA) 
time-series model, whose specification is determined by the orthodox Box and Jenkins 
(1976) approach. An order of (0,1,0), equivalent to a random walk with drift, usually 
gives a good fit, although sometimes an additional AR or MA term may give a slightly 
better one. The extrapolation of kt through the fitted ARIMA model gives the forecast of 
future central rates of death. 

Note that as all parameters on the right hand side of equation (3.16) are 
unobservable, fitting by the ordinary least squares method would be impossible. This can 
be resolved by using either the singular value decomposition (SVD) method proposed by 
(Lee and Carter, 1992a), or the maximum likelihood estimation (MLE) method suggested 
by Wilmoth (1993) and Brouhns et al. (2002). As the differences in their assumptions 

                                                 
1 In some literatures, the model is defined in terms of the force of mortality (μx,t). Nevertheless, under the 
assumption of constant force of mortality in fractional age, the central rate of death and the force of 
mortality are equivalent (see Bowers et al., 1997). 
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often lead to dissimilar results, an in-depth understanding of both methods is important. 
Below we give detailed descriptions of both methods.   

 Singular Value Decomposition 

The SVD method involves two stages. In the first stage, we set  

( )∑
=

=
T

t
txx m

T
a

0
,ln1 , (3.17) 

where T is the length of the time-series. Then, we apply SVD to the matrix of X = 
{ln(mx,t) – ax}, which breaks X down into a product of three matrices, denoted, U, S 
and V´. The columns of U are known as the left singular vectors and that of V are 
known as the right singular vectors. S is diagonal matrix and its elements are known 
as singular values. The first left singular vector gives an estimate of bx and the first 
right singular vector gives an estimate of kt. The first singular value is distributed to 
bx and kt so that they sum to one and zero respectively.  

As the SVD method is merely a mathematical approximation, the estimated 
number of deaths computed from the model fitted by SVD can be very different 
from the observed number of deaths. Lee and Carter (1992) suggested an ad hoc 
second stage estimation. In this stage, the fitted values of kt are re-estimated by 
solving for kt such that 

,}){exp( ,∑ +=
x

txtxxt EkbaD  (3.18) 

where Dt is the total number of deaths in time t. This is to ensure that the mortality 
schedules fitted over the sample years will reconcile the total number of deaths and 
the population age distributions. 

Suppose that the model is fitted to the historical data and an appropriate 
ARIMA model is estimated for the fitted values of kt. Let stk +

^  be the s-period 
ahead forecast of parameter kt. Then the s-period ahead forecast of the logarithm of 
the central rate of death rate is given by  

xsTxsTx bkam ^^^
,

^
)(ln ++ += , (3.19) 

Assuming that the model specification is correct, the true value of ln(mx,t+s) can 
be expressed as 
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sTxxxsTsTxxsTx εβbukαam ++++ +++++= ,

^^^

, ))(()()ln( , (3.20) 

where αx and βx are the errors in estimating ax and bx, uT+s is the error in the s-period 
ahead forecast of kt, and εx,T+s is all the remaining variations. Combining equations 
(3.19) and (3.20) gives an expression for the forecast error of the logarithm of the 
central rates of death:  

sTxsTxxsTxxstx kβuβbεαE ++++ ++++=
^^

,, )( . (3.21) 

In the computation of the interval forecast, we have to assume that the 
parameters are independent of each other. Under this assumption, the variance of the 
forecast error will be 
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where 2
,xασ , 2

,xβσ  are the error variance of xa^  and xb^  respectively; 2
,, sTxεσ +  is 

the variance of εx,T+s; and 2
, sTkσ +  is the variance of the error in the s-step ahead 

forecast of kt. The estimate of 2
,xασ  is the variance of ln(mx,t) over time divided by T, 

and that of 2
,, sTxεσ +  is the variance of the error in fitting age group x. The estimation 

of 2
,xβσ  requires bootstrapping (see Lee and Carter, 1992). The form of 2

, sTkσ +  
depends on the order of the fitted ARIMA model. However, the numerical values of 

2
, sTkσ + ’s can be easily obtained from standard statistical software, such as SAS. 

 Assuming further that normality holds, the approximate 95% point-wise 
interval forecast of ln(mx,t) can be written as 

( ) ( ) sTxEsTxsTx mm +++ += ,,,, 96.1ˆlnln σ .  (3.23) 

 Maximum Likelihood Estimation 

In MLE, the forecaster is required to specify a probability distribution for the 
number of deaths. Brouhns et al. (2002) assumed that the observed number of deaths 
is a realization of the Poisson distribution with mean equal to the expected number 
of deaths under the Lee-Carter model. Mathematically,  

 ( )( )txxtxtx kbaED +expPoisson~ ,, . (3.24) 
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Under equation (3.24), we can determine parameters ax, bx and kt by maximizing 
likelihood function, which is given by 

( ) ( )( ) ( )( )
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where a, b and k are vectors of the parameters ax, bx and kt. The maximization can 
be done by Newton’s method., which contains the iterative steps shown below. 
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where ( )v
xa^ , 

( )v
xb^  and 

( )v
tk^  are the estimate of ax, bx and kt in step v and 
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At each update, we impose respectively the scaling constraint and the location 
constraint to 

( )v
xb^  and 

( )v
tk^  for parameter uniqueness. The starting values ( )0^

xa , 
( )0^
xb  and 

( )0^
tk  are arbitrary, although a faster convergence can be achieved if the 

SVD estimates are used. The iteration stops when the change in the logarithm of 
equation (3.25) is less than 10−6. Note that equation (3.26) implies the equality 
between the observed number deaths and the fitted number of deaths on convergence, 
and hence, the ad hoc second stage estimation involved in the SVD method can be 
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circumvented.  

Having estimated the model parameters, we follow the usual procedure to 
project future values of kt through a properly identified ARIMA model. The s-period 
ahead forecast of the logarithm of the central rate of death rate is again given by 
equation (3.19). Brouhns et al. (2005) proposed computing the interval forecast by 
the parametric bootstrap method, which can be summarized as follows. 

i. Simulate N realizations from the Poisson distribution with mean equal to the 
fitted number of deaths under the Lee-Carter model. We use the transformed 
rejection method for generating Poisson random variables (Hörmann, 1993). 

ii. For each of the N realizations: 
(1) Re-estimate the model parameters ax, bx and kt using MLE. 
(2) Specify a new ARIMA model for the re-estimated kt. For simplicity, 

we keep the ARIMA order constant and change only the parameter 
values. 

(3) Simulate future values of kt under the newly specified ARIMA model. 
(4) Compute future values of central rates of death using the re-estimated 

ax and bx, and the simulated future values of kt under the re-specified 
ARIMA model. 

iii. Step (ii) gives an empirical distribution of ln(mx,t+s) for all x. The 2.5th and 
the 97.5th percentiles of the empirical distribution respectively yield the 
lower and upper limit of the 95% interval forecast of ln(mx,t+s). 

The above algorithm allows both the sampling fluctuation in the model 
parameters and stochastic error in the forecast of kt be included in the prediction 
interval. Also, Step (iii) implies that an asymmetric confidence interval is possible. 

Figures 3.7 and 3.8 contrast the two methods of fitting the Lee-Carter model. At 
most of the selected ages, the mean forecasts are very similar. Nonetheless, in some cases, 
for example males at age 30 and females at age 80, the fitted values obtained by MLE 
seemingly better capture the pattern of the historical death rates. This might be due to the 
avoidance of the ad hoc second stage estimation required in SVD. In all cases, the width 
of the interval forecasts are approximately equal, since the method of fitting does not alter 
the number of effective parameters, which means the same degree of freedom is given to 
the forecast. 

Occasionally, (for example, see the males at age 0) the fit near the forecast origin is 
imperfect. This is primarily due to the rigid model structure, which does not allow the 
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model to fit every part of the historical data perfectly. On the other hand, the rigid model 
structure keeps the principal of parsimony firm, and consequently, the forecasts are less 
vulnerable to the abnormalities near the forecast origin. In addition, as the Lee-Carter is 
heavily time-series based, the weights on previous observations have explicitly taken into 
account the autocorrelations in the historical rates, and this avoids an over-emphasis on 
the very recent observations. 

Figure 3.9 shows that the Lee-Carter model gives reasonable projections of future 
age pattern of mortality, which could be again attributed to the model structure. In 
Lee-Carter, mortality improvement is assumed to be additive (in log terms) to the 
fundamental age pattern of mortality, specified by parameters ax’s, which are assumed to 
be time invariant. As a result, even though mortality rates at different ages are allowed to 
improve at various paces, the age pattern in the far future could not be too much 
distorted. 

Though the rigid model structure gives the above appealing features, it might overly 
restrict the behavior of the future rates and hence might give confidence intervals that are 
too narrow to reflect the true level of uncertainty. In Section 3.4, we propose a relaxed 
version of the Lee-Carter, hoping that the relaxation could give wider confidence 
intervals for more possible outcomes, and at the same time could keep all the nice 
properties in the original version. 

Finally, in fitting the model, we might have smoothed out several discrepant 
observations that might arise from non-repetitive exogenous interventions, such as 
pandemics or wars. In Section 3.3, we conduct an outlier analysis to discern how these 
events might have affected the mortality series, and to predict how the future death rates 
series will respond if these or similar interruptive events recur. 
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Fig 3.7. The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using the Lee-Carter 

method, SVD and MLE with Poisson likelihood, male. 
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Fig 3.7 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using the 

Lee-Carter method, SVD and MLE with Poisson likelihood, male. 
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Fig 3.7 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using the 

Lee-Carter method, SVD and MLE with Poisson likelihood, male. 
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Fig 3.8. The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using the Lee-Carter 

method, SVD and MLE with Poisson likelihood, female. 
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Fig 3.8 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using the 

Lee-Carter method, SVD and MLE with Poisson likelihood, female. 
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Fig 3.8 (cont’d). The fitted (1921 – 2001) and projected (2002 – 2051) mortality experience using the 

Lee-Carter method, SVD and MLE with Poisson likelihood, female. 
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Fig. 3.9. The age pattern of mortality projected by Lee-Carter, SVD and MLE (Poisson), (a) male and (b) 

female, 2051. 
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3.3 EXTENSION OF LEE-CARTER (1): OUTLIER ANALYSIS 

The objectives of the outlier analysis are (1) to verify the integrity of the mortality data 
by systematically examining the interruptive phenomena in the historical mortality series, 
particularly at time points where the coverage of the vital statistics were changed (see 
Section 2); (2) to discern how non-repetitive exogenous interventions, such as wars and 
pandemics, might have affected the mortality series, and to predict how the variability of 
the series might change if these or similar interruptive events recur; (3) to avoid possible 
erroneous model specifications due to the “masking effect” of the outliers (see Tsay, 
1986).  

To perform the outlier analysis, we firstly fit the Lee-Carter model to the historical 
data. The SVD method is used in the following illustration although the MLE method is 
also acceptable. Having fitted the model, we follow the Box-Jenkins approach to give the 
time-varying parameter, kt, an appropriate ARIMA structure, which serves as the 
foundation of the outlier analysis. Let p, d and q be the order of the autoregressive 
polynomial, the number of differencing for stationary, and the order of the moving 
average polynomial respectively. Then, an ARIMA(p,d,q) model can be expressed as  

tt
d aBθkBBφ )()1)(( =− , (3.30) 

where kt is the Lee-Carter time-varying parameter, assumed to be outlier free; B is the 
backshift operator such that Bskt,= kt-s, 

pBφBφBφ p−−−= ...1)( 1 , 
qBθBθBθ q−−−= ...1)( 1 ; 

and {at} is a sequence of white noise random variables, iid with mean 0 and constant 
variance σ2. 

An outlier-contaminated time-series *
tk  consists of an outlier-free time-series kt and 

an exogenous intervention effect, denoted as Δt(T,ω), i.e., 

),(Δ* ωTkk ttt += , (3.31) 

where T is the location of the outlier and ω is the magnitude of the outlier. 

We consider four common types of outliers, namely, additive outlier (AO), 
innovational outlier (IO), level shift (LS) and temporary change (TC). 

 An AO affects only the level of a single observation, i.e., 
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)(),(Δ T
tt DωωT = . (3.32) 

 An IO affects all observations beyond T through the memory of the underlying 
outlier-free process, i.e., 

)(

)1)((
)(),(Δ T

tdt Dω
BBφ

BθωT
−

= . (3.33) 

 A LS affects a series at a given time, and its effect is permanent, i.e., 

)(

1
),( T

tt D
B

T
−

=Δ
ωω . (3.34) 

 A TC affects a series at a given time, and its effect decays exponentially according to 
a dampening factor, say δ, i.e., 

)(

1
),( T

tt D
B

T
δ

ωω
−

=Δ . (3.35) 

In practice, the value of δ often lies between 0.6 and 0.8 (Liu and Hudak, 1994, 
p.76). In this paper, we take δ = 0.7 as recommended by Chen and Liu (1993).  

In equations (3.32) – (3.35), t
TD )(  is an indicator variable which equals 1 when t = 

T and zero otherwise, representing the presence or absence of an outlier at time T. Figure 
3.10 illustrates these outlier types graphically. 

In general, the time-series of kt may contain more than one, say m, outliers, and we 
have the following general time-series outlier model: 

∑
=

+=
m

i
iittt ωTkk

1

* ),(Δ . (3.36) 

Define a polynomial π(B) as 

...1
)(

)1)(()( 2
21 −−−=

−
= BπBπ

Bθ
BBφBπ

d

. (3.37) 

Then equation (3.30) can be rewritten as 

tt akBπ =)( , (3.38) 

which allows the fitted residuals ^
te  to be expressed in the form of 

^ )( tt YBπe = . (3.39) 
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By series expansion, we arrive at the following expressions of fitted residual for each 
outlier type. 

AO: ,)(^
t

T
tt aDωe +=  (3.40) 

IO: ,)( )(^
t

T
tt aDBπωe +=  (3.41) 

TC: ,
)1(

)( )(^
t

T
tt aD

Bδ
Bπωe +

−
=  (3.42) 

LS: .
1

)( )(^
t

T
tt aD

B
Bπωe +

−
=  (3.43) 

Alternatively, we can rewrite equations (3.40) – (3.43) as a general time-series 
regression, i.e., 

tt atjdωe += ),(^ , (3.44) 

where };LS ,TC ,IO ,AO{=∈ Jj  0),( =tjd  for all j and t < T; 1),( =Tjd  for all j; 
and for all h ≥ 1, 

,0),AO( =+ hTd  

,),IO( hπhTd −=+  

∑
−

=

− −−=+
1

1

),TC(
h

i
hj

jh
h ππδδhTd , 

∑
=

−=+
h

i
iπhTd

1

1),LS( . 

Hence, for a given T (suspected location of the outlier) and j (suspected type of 
outlier), the magnitude of the outlier effect ω and its corresponding standardized 
t-statistic, τ(j,T), can be readily computed using the principle of least squares. The final 
test statistic is the maximum value of this t-statistic over all possible T and j, i.e., 

Τ )},({maxmax
1

Tj
JjnT

τ
∈≤≤

= . (3.45) 

For a given j, it follows approximately a normal distribution. An outlier of type j is 
detected if the final test statistic is greater than a critical value of C. We choose C = 2.5 as 
recommended by Liu and Hudak (1994) for a reasonable level of sensitivity. 

For the detection, estimation, and adjustment of outliers we use the iterative 
procedures proposed by Chen and Liu (1993) and Li and Chan (2005a). Working together, 
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these procedures may avoid the problem of erroneous model specification. The key steps 
in the iterative cycles are as follows. 

i. Tentative model identification. Use the Box-Jenkins approach to tentatively 
identify the order of the underlying outlier-free ARIMA(p,d,q) model. 

ii. Outlier detection. Compute the test-statistic in equation (3.45), and record the 
type and location of the corresponding outlier. Then, compare the test statistic 
with the critical value C. If it is smaller than C, jump to (i), otherwise, proceed to 
(iii). 

iii. Outlier adjustment. With the type and location of the identified outlier, re-estimate 
simultaneously the model parameters and the intervention model for the outlier 
effect. After the incorporation of the outlier effects, an outlier-adjusted data series 
is obtained. 

iv. Model Re-identification. Using the Box-Jenkins approach, re-identify the ARIMA 
model underlying the outlier-adjusted data series obtained in (iii). If the 
re-identification makes a difference in p, d, and/or q, go back to (ii) using the 
original unadjusted data series under the re-identified ARIMA(p,d,q) model. 
Otherwise, terminate the iteration cycle, and the ultimate estimates of outliers and 
ARIMA model parameters are those obtained in the immediately previous (iii). 

In this analysis, we found that the “masking effect” of outliers is minimal, since the 
ARIMA order of (0,1,0) remains unchanged throughout the above iterative procedures.  
Table 3.1 presents a synopsis of the outliers detected in kt for both sexes. The positive 
outliers may be interpreted as unexpected mortality deteriorations, while the negative 
ones may be interpreted as abrupt mortality improvements. It is noteworthy that no 
outlier is detected at 1944, 1947, 1961, 1966 and 1971 when the coverage of the vital 
statistics was altered. Table 3.1 also suggests that interruptions in the mortality trend of 
Canadians from 1921 – 2001 are infrequent. In all cases, the magnitude and the t-values 
are small, indicating that the effect of the interruptions are relatively mild.  

To learn more about how interruptive events in the early century might affect human 
mortality, we replicate the exercise using the US population mortality, which is available 
back to 1901. Table 3.2 shows all the outliers detected in the kt’s for the US population. 
The positive outlier in 1918 is a consequence of the Spanish flu epidemic, which infected 
about 28% of the US population and killed approximately 500,000 Americans. It is 
interesting to note that the additive nature of the outlier in 1918 might suggest that the 
Spanish flu, often regarded as the most deadly pandemic in the human history, affected 
only temporarily and could not halt the continual improvement of human mortality.  
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Readers interested in the explanation of other detected outliers may refer to Li and 
Chan (2005b). 
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Fig. 3.10. Different types of time-series outlier. 
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Year Magnitude t-value Type 

Male 

1937 5.497 3.69 AO 

Female 

1926 6.729 4.05 LS 

1929 5.271 3.22 TC 

1937 6.420 4.51 AO 

1954 -4.940  -3.02 TC 

 
Table 3.1. Outliers detected in kt, Canadian population, 1921-2001. 

 
 

Year Magnitude t-value Type 

Male 

1918 29.444 11.67 AO 

1921 -12.471 -3.88 TC 

1927 -7.806 -3.09 AO 

1936 9.815 3.05 TC 

Female 

1916 10.117 3.48 LS 

1918 30.374 11.87 AO 

1921 -11.795 -4.07 TC 

1926 7.610 2.94 AO 

1927 10.630 3.62 TC 

1936 11.531 4.00 TC 

1954 -8.059 -2.79 TC 

1975 -10.459 -3.61 LS 

 
Table 3.2. Outliers detected in kt, the US population, 1921-2001. 
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Fig. 3.11. Mean and 95% interval forecast of kt, (a) male and (b) female. Confidence intervals are obtained 

by stkst σk ++ ± ,
^ 96.1 . 
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Figure 3.11 plots the mean forecast and the 95% confidence interval of kt’s under 
both the original and the outlier adjusted model. The adjustment of outliers slightly 
deviates the mean forecasts, but substantially narrowed the width of the interval forecast. 
The reduction in width, however, could not imply higher precision. Li and Chan (2005a) 
suggested that the increased narrowness is in large part related to the optimistic nature in 
the outlier-adjusted forecast – The adjustment of outlier essentially presumes that the 
detected outliers are not to be recurred in the future. As a result, more detected outliers 
would mean more neglected variability in the interval forecast. This explains why the 
outlier adjusted interval for female is so narrow that its upper bound is even lower than 
the mean forecast under the original model.  

The assumption of non-recurrence of outliers is undeniably not legitimate, since, as 
stated at the outset, the extreme stochastic fluctuations are important in the revision of 
mortality improvement scales, particularly in the context of insurance. Rather than using 
the outlier-adjusted forecast, we seek modifications so that the model is sympathetic to 
outliers in the data. Following Li and Chan (2005b), we explicitly allow the detected 
outliers to recur in the future by introducing the following routine in the parametric 
bootstrapping of the interval forecast.  

In each simulation, we sample with replacement from the pool of detected 
outliers. Then, we superimpose the sampled outliers to simulated sample path 
of future kt.  

The pool comprises all outliers in Table 3.1 and those before 1921 in Table 3.2. By 
allowing events like pandemics and wars to recur in the future, the confidence intervals 
could be wider and could include more stochastic uncertainty.  

3.4 Extension of the Lee-Carter (2): MLE with Negative Binomial Likelihood 

The confidence intervals plotted in some of the individual graphs in Figures 3.7 and 3.8 
above appear too narrow compared with the historical experience. In Section 3.2, we 
pointed out that the rigid structure of the Lee-Carter model constrains the behavior of the 
future death rates so that a reasonable age pattern of mortality could be maintained far 
into the future. At the same time, however, the rigidity might too tightly bind the 
movements of future death rates, resulting an overly narrow interval forecast that might 
not reflect the true level of uncertainties. In other words, the narrow confidence intervals 
are more a result of the strong assumptions required of this model than a true feature of 
the data. The less parametric P-spline approach, while unsatisfactory in some ways, did 



 54

indicate huge forecast uncertainty.  

In this section, we first explain how the assumptions made may understate the true 
confidence interval, and then weaken the assumptions slightly. This is done carefully so 
that a wider confidence interval can emerge, without too much distortion in the projected 
age mortality patterns.  

 
The SVD method is a purely mathematical approximation. Values of kt obtained 

from the first right singular vector often require further adjustments through an ad hoc 
procedure. The computation of the interval forecast is rather simple, but needs several 
very strong assumptions. First, even though an analytic formula for the variance of 
forecast error is available, for mathematical tractability, we have assumed independence 
between the model parameter estimates. This assumption could result in a significantly 
smaller variance than we would find if we allowed fully for dependence. Second, as the 
method specifies no probabilistic distribution during the fit, normality has to be assumed 
in the computation of the interval forecast. This is a very strong assumption; the normal 
distribution may well be too thin tailed, and also, of course, the assumption of normality 
completely rules out the possibility of an asymmetric interval forecast. 

The original MLE method assumes that observed number of deaths is a realization 
of a Poisson distribution having the Lee-Carter expected number of deaths as its mean. In 
this setting, interval forecasts as well as parameter uncertainties can be evaluated by 
parametric bootstrapping, which is computationally intensive but allows us to model 
explicitly the statistical dependency between parameters. In addition, as the prediction 
intervals are given by the percentiles in the empirical distribution, they can be 
asymmetric.  

While the MLE method has various competitive advantages, the assumption is very  
restrictive. In assuming Poisson models, we are assuming that the variance is equal to the 
mean; it cannot be separately estimated. If this assumption of mean variance equality is 
untrue (as we suspect),  then we will effectively require the variance to be less than it 
really is, and so overestimate the precision of the forecasted future death rates. In the 
statistical literature, this situation is commonly referred to as overdispersion. McCullagh 
and Nelder (1989) pointed out that this is commonplace in the analysis of data using a 
single parameter family, such as the Poisson distribution. Cox (1983) stated the two major 
adverse effects of overdispersion. One is that the summary statistics have a larger 
variance than anticipated under the simpler model, and the other is a possible loss of 
efficiency in using statistics appropriate for the single parameter family.  
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To correct this undesirable phenomenon, we modify the original Lee-Carter by 
replacing the Poisson distribution by a Negative Binomial distribution as the stochastic 
structure of the number of deaths. This modification has two functions. First, as the 
two-parameter Negative Binomial distribution removes the equality restriction on the 
mean-variance relationship, so measures of uncertainties under this modification could 
capture a large part of the variation that is ignored in the original version. If so, we will 
obtain a wider interval forecast. Second, the assumption of Negative Binomial brings an 
additional parameter vector to the Lee-Carter model without altering the structure 
specified by equation (3.16). The additional parameters could give more flexibility to the 
model, and the unaltered structure could ensure that the nice properties in the original 
version, such as stability of age-pattern over time, are well kept.  

We begin with the properties of the Negative Binomial distribution. Recall that the 
probability density function of a non-negative, integer-valued random variable, Y, taking 
on a Negative Binomial distribution is typically given as 
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for r > 0 and β > 0. Anscombe (1950) noted that there exists a finite probability of 
observing a data set from which the maximum likelihood estimate of r may not be 
calculated. A more useful parameterization may be obtained by letting r = α –1 and β = αμ, 
which gives 
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We denote this as Y ~ NB(α, μ). It can be easily shown that  

E(Y) = μ,  (3.48) 

Var(Y) = μ + αμ2. (3.49) 

α is often known as the dispersion parameter. Notice that the limiting case α → 0 yields a 
Poisson distribution, and α > 0 gives over-dispersion, i.e. Var(Y) ≥ E(Y). 

 In the application, we assume that the number of deaths follows a Negative 
Binomial distribution, and that the mean of the assumed distribution is the expected 
number of deaths under the Lee-Carter model. Mathematically, 
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( )( )txxtxxtx kbaEαNBD +exp,~ ,, ,  (3.50) 

where αx denotes the dispersion parameter for age x. 

 Then, we may estimate the parameters maximizing the likelihood function, which is 
given by 
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where a, b, k and α are vectors of the parameters ax, bx, kt and αx; or equivalently, by the 
maximizing the log likelihood function, given by  
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where c is a constant independent of ax, bx, kt and αx. Again, the maximization may 
be done by the Newton’s method.  At each update, we impose respectively the scaling 

constraint and the location constraint to 
( )v
xb^  and 

( )v
tk^  for parameter uniqueness. For 

faster convergence, the starting values ( )0^
xa , 

( )0^
xb  and 

( )0^
tk  may be taken as the 

estimates obtained from equations (3.24) – (3.26). The iteration stops when the change in 
equation (3.52) is sufficiently small, say 10–6. 

 Figure 3.12 shows that the estimates of αx are non-negative, justifying the presence 
of overdispersion. It is also noteworthy that values of αx are especially high at x > 85. 
This agrees with our observation that the mortality rates at very old ages are highly 
volatile, and implies that previous interval estimations might have disregarded a 
substantial part of actual uncertainties. 

 

 

 

 Table 3.3 evaluates the model performance. We apply the Akaike Information 
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Criterion (AIC), the Schwarz Bayes Criterion (SBC) and the likelihood ratio test (LRT). 
Each of these is a slightly different way of assessing whether the improved fit of the 
negative binomial model is worth the added complexity, which is measured by the 
number of parameters. For the AIC and SBC, we are looking for a higher value of the 
penalized log-likelihood; for the likelihood ratio test, a small p-value (say, less than 1%) 
indicates that the more complicated model is preferred. The formulae for the criteria are 
as follows, where l is the maximum log likelihood, k is the number of parameters, n is the 
size of the data set, d is the difference between the number of parameters of the negative 
binomial model and of the Poisson model. 

 

 

Figures 3.13 and 3.14 reflect the increased goodness of fit on the “best estimate” of 
future death rates. Being more flexible, the Negative Binomial extension seems capable 
of correcting the under-fit manifested in the original version, particularly at the very 
young ages. The improved flexibility has however no discernable harm to the desired 
age-pattern of mortality, as shown in Figure 3.15. Having computed the “best estimate”, 
we obtain the confidence intervals by the usual parametric bootstrap and the additional 
routine that allows recurrence of the detected outliers in the future. The effect of the 
extension on the confidence intervals varies by age – The average increase in width at 
younger ages (0 – 40) is around 6 percent and that at higher ages (75 and over) is more 
than 100 percent. This agrees with our previous assertion that the mean-variance equality 
restriction in the Poisson version has lead us to understating the variations, mostly at the 
higher ages. However, it should be emphasized that the model structure after this 
relaxation is still strong, and hence that the confidence intervals might still be too narrow 
to cater for the possibility of future structural changes.  
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Table 3.3. MSE and AIC of the Lee-Carter fit to ln(mx,t), assuming the number of deaths follows a Poisson / 

Negative Binomial distribution, Canadian population. 

 

Male    

  Model 

  Poisson NB 

Number of Parameters 279 379 

      

Log-likelihood -66021  -43517  

AIC -66300  -43896  

SBC -67276  -45222  

      

Likelihood Ratio Test    

p-value 0.000000    

   

Female   

  Model 

  Poisson NB 

Number of Parameters 279 379 

      

Log-likelihood -52643  -40748  

AIC -52922  -41127  

SBC -53898  -42453  

      

Likelihood Ratio Test    

p-value 0.000000    
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Fig. 3.12. Fitted values of αx, (a) male and (b) female. 
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Fig 3.13. The Lee-Carter fit (1921 – 2001) and projection (2002 – 2051), MLE (Poisson) and MLE 

(Negative Binomial) allowing for recurrence of outliers, male. 
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Fig 3.13 (cont’d). The Lee-Carter fit (1921 – 2001) and projection (2002 – 2051), MLE (Poisson) and MLE 

(Negative Binomial) allowing for recurrence of outliers, male. 
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Fig 3.13 (cont’d). The Lee-Carter fit (1921 – 2001) and projection (2002 – 2051), MLE (Poisson) and MLE 

(Negative Binomial) allowing for recurrence of outliers, male. 
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Fig 3.14. The Lee-Carter fit (1921 – 2001) and projection (2002 – 2051), MLE (Poisson) and MLE 

(Negative Binomial) allowing for recurrence of outliers, female. 
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Fig 3.14 (cont’d). The Lee-Carter fit (1921 – 2001) and projection (2002 – 2051), MLE (Poisson) and MLE 

(Negative Binomial) allowing for recurrence of outliers, female. 
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Fig 3.14 (cont’d). The Lee-Carter fit (1921 – 2001) and projection (2002 – 2051), MLE (Poisson) and MLE 

(Negative Binomial) allowing for recurrence of outliers, female. 
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Fig. 3.15.  The projection of age pattern of mortality by Lee-Carter, MLE (Poisson) and MLE Negative 

Binomial) allowing for recurrence of outliers, (a) male and (b) female, 2051. 



 67

3.5 The Improvement Scales 

In previous sections, we have introduced several stochastic mortality models and applied 
them to the mortality data of the Canadian population. However, the forecasts are in the 
form of vast arrays, which makes retrieval difficult. In this section, we attempt to 
summarize both the “best estimate” and the interval forecast of future death rates by some 
tractable formulae, or mortality improvement scales.  

The improvement scales shall consist of two parts. One is a current period life table, 
also known as “base table”, to which the mathematical formulae are applied. To avoid the 
adverse effect of random fluctuations, we graduate the historical life tables by the 
two-dimensional P-splines regression and take the graduated 2001 experiences as the 
illustrative “base tables”. These “base tables” are included in Appendix A for the reader’s 
reference. The other part is a set of multiplicative factors that specifies the percentage of 
reduction in age-specific death rates during a particular time period. These multiplicative 
factors, along with their associated measure of uncertainties, are to be derived from the 
Lee-Carter model with the two suggested extensions. 

Recall that under the Lee-Carter model, the “best estimate” of future death rates can 
be written as 

( ) sTxxsTx kbam ++ += ^^^
,

^
ln . (3.53) 

Here, we denote T as the “base table” year, which is 2001 in this application; and denote s 
as the number of years after T. Rearranging equation (3.53) gives 
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Furthermore, if kt follows an ARIMA(0,1,0) process, 

sckk TsT
^^^

=−+ , (3.55) 

where ^c  is the estimated drift term in the ARIMA(0,1,0) time-series equation. Define 
the mortality improvement scale as the estimated percentage reduction of death rate at 
age x in a time period of s years, i.e., 
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where the subscript and superscript respectively refers to the “base table” year 2001 and 
the application to the population data. The combination of equations (3.54) – (3.56) gives 
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which means the representation of the forecast can be reduced from a two dimensional 
array of values to a one dimensional vector of parameters (wx). Crude estimates of wx are 
not necessarily smooth, since the Lee-Carter model does not guarantee smoothness age 
by age. We remove the raggedness by a one-dimensional B-splines regression, illustrated 
in Figure 3.16. Note that w0 is not included in the B-splines regression to avoid any 
unwanted inflation / deflation of other wx’s. The graduated values of wx, separately for 
each sex, are included in Appendix B.  

 The parametric bootstrapping method described in Section 3.2 could generate an 
empirical distribution of a particular improvement scale, and the percentiles of this 
distribution could give an estimate of the required confidence interval in terms of 
numerical values. However, to obtain algebraic expressions for the confidence interval, 
we need an additional approximation. Noting that the ARIMA(0,1,0) structure gives 
uncertainties that are increasing linearly with time, and that the interval forecast should 
be close to zero at the origin, we may approximate the variance of the logarithm of the 
improvement scale by a straight line without intercept. Figure 3.17 indicates that the 
linear model gives a good fit. Let vx be the slope parameter of this straight line. Then, the 
approximate 95% point-wise confidence interval of the improvement scale can be 
expressed as 
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Note that the variability measure vx has incorporated both parameter uncertainties 
and stochastic uncertainties (forecast error in the time-series component). The roughness 
in vx is again graduated by a one-dimensional B-splines regression, illustrated in Figure 
3.18. The graduated values of vx are included in Appendix B. 
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The improvement scale allows a simultaneous retrieval of the “best estimate” and 
interval forecast of future death rates. To illustrate, suppose that we want to forecast m90 
(male) in 2021. Appendix A gives m90 = 0.232874 in 2001 and Appendix B gives w90 
= –0.008655 and v90 = 0.000368. Hence, the “best estimate” and confidence interval of 
m90 in 2021 is 0.232874 × exp(−0.008653 × 20) = 0.195867, and 0.232874 × [0.710910, 
0.995101] = [0.165566, 0.231733].  

If a base table of px is given, we may express the forecast of px by 

 (3.59) 

assuming constant force of mortality over each year of age. The corresponding interval 

forecast can be obtained by replacing ( )sxIS ,
population
2001

^  in equation (3.59) by the upper and 

lower limits in expression (3.58).  
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Fig. 3.16. Parameter wx before and after graduation, (a) male and (b) female. 
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Fig. 3.17. Variance of logarithm of improvement scale obtained by parametric bootstrapping and a linear 

approximation, age 65, (a) male and (b) female. 
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Fig. 3.18. Parameter vx before and after graduation, (a) male and (b) female. 
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3.6 Additional Comments 

The implementation of all models requires a crucial subjective judgment on the period 
over which the models parameters are estimated. Some researchers prefer using the 
maximum period for which data is available (e.g. Lee and Nault, 1993; Lee and Carter, 
1992a, 1992b), while others prefer a restricted fitting period, say 50 years, when the age 
pattern of mortality is the most stable (e.g. Renshaw and Haberman, 2003a and 2003b). 
In the statistical literature, this decision is usually made according to the range of the 
forecast. If the range is short, recent trends should be given more emphasis and 
consequently a restricted fitting period may be used; and on the other hand, if the range is 
long, the forecaster should not ignore older data to prevent the long term trend from being 
biased by short term phenomenon. As the improvement scales are to be used in projecting 
mortality far into the future, we prefer not to discard any long-term experience which is 
likely to be informative and relevant. Nevertheless, for the purpose of comparison, we 
replicate the model fitting exercise using data from 1952 to 2001. Figures 3.19 and 3.20 
show that the restricted fitting period yields rather dissimilar projections, but the 
dissimilarities are unsystematic and are captured by the confidence intervals in the 
original fit.  

 In the case of the females at age 30, the original fit is much steeper, and possibly, 
this is because the original fit has taken into account the remarkable improvement of 
maternal risks occurred in the early century2. If this argument is justifiable, then the 
improvement scales we provide could lead us to overestimating future mortality 
improvements, as such an early century phenomenon is unlikely to be repeated. The 
legitimacy, however, is negated in a closer scrutiny of female mortality improvement at 
childbearing ages. Figure 3.21 shows that the peak of female mortality improvement 
occurred in around 1950, which is not the time when the reduction of maternal risks was 
the most remarkable. This suggests that the reduction of risks related to child birth might 
not be the major driving force of female mortality improvement in the early century, and 
that it might not be appropriate to assume heuristically a cessation of female mortality 
improvement at childbearing ages without sufficient knowledge on the genuine driving 
forces, and the possible interactions among them. 

 It is also noteworthy that the stability during the restricted fitting period has led to 

                                                 
2 The reported maternal mortality ratio in Canada has declined from approximately 500 maternal deaths 
per 100,000 live births in the early 1920s to less than 100 per 100,000 live births in the 1950s (Statistics 
Canada, 1994) 
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substantially narrower confidence intervals. These intervals are of course not to be relied 
on since they contain little information on the possible changes in mortality rates.  
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Fig. 3.21. Reduction in female mortality at childbearing ages. 
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Fig. 3.19. The Lee-Carter projection under different fitting periods, male. 
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Fig. 3.19 (cont’d). The Lee-Carter projection under different fitting periods, male. 
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Fig. 3.19 (cont’d). The Lee-Carter projection under different fitting periods, male. 
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Fig. 3.20. The Lee-Carter projection under different fitting periods, female. 
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Fig. 3.20 (cont’d). The Lee-Carter projection under different fitting periods, female. 
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Fig. 3.20 (cont’d). The Lee-Carter projection under different fitting periods, female. 
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3.7 COHORT EFFECTS 

Recall that in all versions of Lee-Carter, future death rates are assumed to be driven 
by a linear stochastic time-series; and in P-splines regression, the penalty order n = 2 
gives a linear forecast. In other words, these models assume that the percentage reduction 
of age-specific death rate is constant over time, and thus in a three dimensional data 
analysis (x: age, y: time, z: percentage reduction of mx), we should expect the pattern to 
be highly vertical. Figure 3.22 shows that, however, the pattern based on the English and 
Welsh mortality is rather diagonal. These diagonals, from bottom left to top right, show 
cells for succeeding ages for the same year of birth, and therefore are clear evidence of 
the cohort, or year of birth, effects in the reduction of mortality rates. CMIB (2002) 
noticed that the pensioner experience also experienced similar cohort effects, which 
might be the reason that male mortality has improved more rapidly than the improvement 
contained in the projected “92” Series tables. 

Dealing with cohort effects is generally difficult. Noting that the cohort effects are 
strongest in the cohort centered on births in 1926, CMIB (2002) revised the projected 
“92” Series tables with three sets of deterministic projections – The “Short Cohort” one 
extends the 1926 cohort period to 2010 while the “Medium Cohort” and “Long Cohort” 
projections extend it to 2020 and 2040 respectively. All of this was done by an ad hoc 
adjustment of annual improvement rates. CMIB (2005) and Richards et al. (2005) pointed 
out that we could choose age and year of birth (cohort) as the dimensions in the two 
dimensional P-splines regression, but fitting in this way might lead us to ignoring the 
period (time) effect, which could be equally, if not more, important. 

Figure 3.23 suggests that cohort effects may also exist in the Canadian population 
mortality, but that the effects are comparatively mild. The only concern might be the 
particularly rapid improvements in the cohorts born in the few years either side of 1967. 
Even so, as these cohorts have been observed for no more than 40 years, any conclusion 
on the persistence of their year of birth effects would be premature. Furthermore, given 
that similar patterns in the English and Welsh mortality ceased in around 1991, we opt 
against introducing any ad hoc adjustment. However, we believe that in the ideal case, 
both period and cohort effect should be modeled simultaneously, and this requires further 
research on modifications of current stochastic mortality models. 
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Fig. 3.22. Percentage improvement in age-specific death rates, (a) males and (b) females, English and 

Welsh population. 
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Fig. 3.23. Percentage improvement in age-specific death rates, (a) males and (b) females, Canadian 

population. 
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4. FORECASTING MORTALITY FOR CANADIAN INSURED LIVES 

Having projected future values of mortality rates at the population level, we now proceed 
to the third fitting stage of the joint model. In this stage, we relate the experience of the 
population to that of the insured lives by means of a parametric equation. As this 
parametric equation has to be reasonably stable over time, it will be mainly based on the 
ultimate experience (smoker status combined) which has the largest exposure base and 
thus should form a more steady fit than any other duration. We believe that this approach 
makes more efficient use of the available data as it allows us to infer the relationship at 
ages and durations where data are sparse by borrowing strengths from the part of data 
where the number of exposure-to-risk is the most abundant. We can then impose further 
structure to reflect the select period information. Although, at this point we do not have 
sufficient data on the smoker/non-smoker data breakdown, as data becomes available 
adjustments can be superimposed on the fundamental parametric relationship for this 
also. 

4.1 GRADUATION OF INSURED LIVES EXPERIENCES  

We apply the two dimensional P-splines regression to the ultimate experience with 
combined smoker status. The graduation allows us to depict the improvements in the 
insured lives experiences, and gives us a smooth insured lives “base table” (shown in 
Appendix C) on which the ultimate improvement scales are to be applied. 

For some insights in the specification of the parametric relationship, we compare 
graphically the graduated experiences of the insured lives and the population. Figures 4.1 
and 4.2 show that both experiences follow closely to each other, although in some rare 
cases, e.g. the males at age 95, the relationship is not definite. It is interesting to note that 
the experience of the insured lives is not always lighter than that of the population. It is 
also noteworthy that the relationships are not necessarily in the form of level shifts -- see 
the males at age 30 for example. This suggests that the mortality of insured lives at 
different ages might be improving at a different speed to the population, and that this 
possibility should be allowed for in the specification of the relational model.  
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Fig. 4.1. Comparison of insured lives and population experience, male. 
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Fig. 4.1 (cont’d). Comparison of insured lives and population experience, male. 
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Fig. 4.1 (cont’d). Comparison of insured lives and population experience, male. 
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Fig. 4.2. Comparison of insured lives and population experience, female. 
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Fig. 4.2 (cont’d). Comparison of insured lives and population experience, female. 
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Fig. 4.2 (cont’d). Comparison of insured lives and population experience, female.  
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4.2 IMPROVEMENT SCALES FOR THE INSURED LIVES 

Having noted the properties of the relationships, we resort here to the Brass-type model 
(Brass, 1975), which has been an important tool for gaining an understanding of mortality 
conditions when the required data is limited, deficient or even non-existent. For example, 
the United Nations (1997) recommended the use of this model in relating death rates of a 
single population to a standard mortality schedule constructed by examining mortality 
rates from various low-mortality countries. Brouhns et al. (2002) also employed this 
model in relating the mortality experience of the Belgian annuitants to that of the whole 
Belgian population.  

Mathematically, the model can be expressed as 

( ) ( ) txtxxxtx εmfhhmf ,,,2,1
*

, ++= , (4.1) 

where *
,txm  denotes the death rate of the population under study (the ultimate insured 

lives experience); mx,t denotes the death rate of the reference population (the general 
population); h1,x and h2,x are age-specific parameters, assumed to be invariant over time; 
εx,t is the error term, assumed to be normally distributed with mean zero and constant 
variance 2

, xεσ ; and f(·) is a function, typically specified by either ln(·) or logit(·). For 
mathematical tractability, we set f(·) = ln(·), which gives 

( ) ( ) txtxxxtx εmhhm ,,,2,1
*

, lnln ++= . (4.2) 

The model allows *
,txm  and mx,t to vary at a different speed and / or direction, 

specified by parameter h2,x, which is a more general approach than that in Currie et al 
(2004). More specifically, the effect of parameter h2,x can be segregated into five cases. 

i. h2,x > 1 
The experience of the insured lives is improving faster than that of the 
population. 

ii. h2,x = 1 
The experiences of the population and the insured lives are moving at the 
same speed. 

iii. –1 > h2,x > 0 
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The experience of the insured lives is improving slower than that of the 
population. 

iv. h2,x = 0 
The insured lives experience shows no improvement / deterioration relative 
to the population experience. 

v. h2,x < 0 
The insured lives experience is deteriorating, relative to the population. 

Parameters in equation (4.2) can be readily estimated by the OLS method. Figure 4.3 
shows the estimates of parameter h2,x. For males, the estimate of h2,x is less than zero for  
x> 93, indicating that the experience of the population and the insured lives are moving in 
opposite directions in that particular age range. To avoid any counter-intuitive projections 
at these ages, where the data is sparse, we replace all of the negative values by zero. 

Using equation (4.2), we estimate ( )*
2001,ln sxm +  and ( )*

2001,ln xm , and by differencing 
the estimates, we obtain 

( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −=− ++ 2001,2001,

^

,2
^*

2001,

^*
2001,

^
lnlnlnln xsxxxsx mmhmm , (4.3) 

which gives 

( ) ( )^ population
2001

^
,2

^ insured
2001 ,exp, sxIShsxIS x ⎟

⎠
⎞

⎜
⎝
⎛= , (4.4) 

where ( )^ insured
2001 , sxIS denotes the estimate of the improvement scale for the insured lives, 

using the graduated 2001 insured lives experience as the “base table”. Note that 
parameter h1,x, which measures the magnitude of parallel shifts, is irrelevant in the 
improvement scales.  

Finally, recall that under Lee-Carter,  

( ) ⎟
⎠
⎞

⎜
⎝
⎛= swsxIS x

^^ population
2001 exp, . (4.5) 

The combination of equations (4.4) and (4.5) yields 

( )

.exp

exp,

^

^^
,2

^ insured
2001

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛=

sz

swhsxIS

x

xx

 (4.6) 
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 In other words, the improvement of the insured lives mortality can again be 
summarized by a single parameter vector. Having smoothed out the bumps in the crude 
estimates of zx by a B-splines regression, we obtain the improvements scales applicable to 
the insured lives experience. The graduation of zx is illustrated in Figure 4.4 and the 
graduated values of zx are provided in Appendix D. 
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Fig. 4.3. Estimates of parameter h2,x. 

 

 We now turn to the measure of variability. Assuming that the model specified by 
equation (4.2) is correct, the true value of ( )sxIS ,insured

2001  can be written as 

( )[ ] ( )[ ] 2001,2001,,
population
2001

^
,2,2

^insured
2001 ,ln,ln xsxsxxx εειsxISηhsxIS −+

⎭
⎬
⎫

⎩
⎨
⎧ +⎟

⎠
⎞

⎜
⎝
⎛ += + , 

 (4.7)   

where η2,x and ιx,s denote the error in estimating h2,x and the logarithm of ( )sxIS ,population
2001  

respectively. Hence, the forecast error of the logarithm of ( )sxIS ,insured
2001  is given by 

( )[ ] 2001,2001,,,2,2
^

,
population
2001

^
,2, ,ln xsxsxxxsxxsx εειηhιsxISηE −+++= + , (4.8) 
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Assuming independence between η2,x and ιx,s, and using the results in Section 3.5, 
the variance of the forecast error can be expressed as  

2
,

^2
,2,

2

,2
^

2
^2

,2,
2

,, 2 xεxxηxxxηsxE σsvσhswσσ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛≈ , (4.9) 

where 2
,2, xησ  denoted the error variance of xh ,2

^
. The estimate of 2

,2, xησ  can be readily 
obtained by the OLS method. The first term in equation (4.9) has negligible effect on the 
overall error variance and hence the equation can be further simplified as 

suuσ xxsxE ,2,1
2

,, += , (4.10) 

where                          2
,,1 2 xεx σu = ,  (4.11) 

and                       svσhu xxηxx
^2

,2,

2

,2
^

,2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= . (4.12) 

 The error variance now consists of two parts. The first part, specified by parameter 
u1,x, measures the uncertainties involved in establishing the relationship between the 
experiences of the insured lives and the population. This part is independent of s as the 
relationship is assumed to be fixed over time. The second part, specified by parameter u2,x, 
measures the variability associated to the forecast of population improvement scales. This 
part tends to be large when the insured live experience is sensitive to the population 
mortality, i.e., when the value of h2,x is high. Following the stochastic structure of the 
population improvement scale, this part is proportional to s. The estimates of u1,x and u2,x 
are smoothed by the B-splines regression, illustrated in Figures 4.5 and 4.6, and the 
graduated values are included in Appendix D. 

Based on the above results, the approximate 95% point-wise confidence interval of 
the insured lives improvement scales is given by 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+− suuszsuusz xxxxxx ,2,1

^^^
,2,1

^^^ 96.1exp,96.1exp . (4.13) 

As the ultimate experience consists of no mortality information for age 0 to 14, we 
are unable to derive precise parametric relationships for these ages. For completeness, we 
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estimate the improvement scales for age 0 to 14 based on the population improvement 
scales for these ages as well as the trend of parameter h2,x. An additional margin is 
included in the parameter u2,x for x = 0, 1, …, 14, to reflect the subjectivity involved in 
estimating the scales. 

To illustrate the use of the insured lives improvement scales, let us consider the 
forecast of m80 (male, ultimate, composite smoker/non-smoker) in 2021. Appendix C 
gives m80 = 0.063156 in 2001 and Appendix D gives z80 = –0.019931, u1,80 = 0.000924 
and u2,80=0.001597. Hence, the “best estimate” and the confidence interval of m80 in 2021 
is 0.063156 × exp(−0.019931 × 20) = 0.042393, and 0.063156 × [0.470510, 0.957621] = 
[0.029716, 0.060480] respectively. Given a base table of px, we may use equation (3.59) 
to obtain the forecast of px.  

To access the performance of the insured lives improvement scales, we conduct an 
ex-post analysis by fitting only to experiences prior to year 1993. Using the graduated 
1993 insured lives experience as the “base table”, we obtain forecasts of future insured 
lives mortality rates up to year 2001. These forecasts are compared with the actual 
experience during the ex post period. The comparison is shown in Figures 4.7 and 4.8.  

In addition, we compare our scales with some previous deterministic improvement 
scales, namely, the AA Scale in the Society of Actuaries 1994 Group Annuity Mortality 
Table, the Improvement Factors in the Society of Actuaries 2001 Valuation Basic 
Experience Table, and the Reduction Factors in the Institute of Actuaries “92” Series 
Base Table. Mathematical formulae for these scales are reviewed in Appendix E. Once 
more, we apply these scales to the 1993 “base table”, and this gives different forecasts of 
future rates, which are shown simultaneously in Figures 4.7 and 4.8. 
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Fig. 4.4. Parameter zx before and after graduation (a) male and (b) female. 
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Fig. 4.5. Parameter u1,x before and after graduation (a) male and (b) female. 
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Fig. 4.6. Parameter u2,x before and after graduation (a) male and (b) female. 
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Fig 4.7. Ex post analysis of insured lives improvement scales, male. 
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Fig 4.7 (cont’d). Ex post analysis of insured lives improvement scales, male. 

 



 101

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1994 1995 1996 1997 1998 1999 2000 2001

Year

m
x

Graduated Data
Improvement Scale, mean forecast
Improvement Scale, 95% CI
VBT
CMIB
1994 Group Annuity Reserving Table

 
Age 80 

 

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

1994 1995 1996 1997 1998 1999 2000 2001

Year

m
x

Graduated Data
Improvement Scale, mean forecast
Improvement Scale, 95% CI
VBT
CMIB
1994 Group Annuity Reserving Table

 
Age 95 

 

Fig 4.7 (cont’d). Ex post analysis of insured lives improvement scales, male. 
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Fig 4.8. Ex post analysis of insured lives improvement scales, female. 
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Fig 4.8 (cont’d). Ex post analysis of insured lives improvement scales, female. 
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Fig 4.8 (cont’d). Ex post analysis of insured lives improvement scales, female. 
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4.3 Projecting Life Expectancy 

To illustrate the effect of the projected mortality improvement, we show in Figures 
4.9(a)-(c) below the mean values of the life expectancy of insured lives, at ages 15, 35 
and 65. It should be noted that these are mean estimates, and that there is of course 
considerable uncertainty around the projections. 
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Fig 4.9(a). Mean life expectancy projection, insured lives age 15 
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Fig 4.9(b). Mean life expectancy projection, insured lives age 35 
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Fig 4.9(c). Mean life expectancy projection, insured lives age 65 
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4.4 The Effect of Duration 

Recall that the Canadian insured lives data is segregated by duration 1, 2, …, 15 and 
ultimate (16+). Let us denote the central death rate, the number of deaths and the number 
of exposure-to-risk at duration d by d

txm , , d
txD ,  and d

txE , respectively. In this section, we 
aim to derive a relationship between +16

,txm  and d
txm , , for all d = 1, 2, …, 15.  

This problem has been considered by various researchers. Currie and Waters (1991) 
considered a graduation of mortality data simultaneously by attained age and duration. 
This simultaneous graduation requires the assumption that all the deaths and all the 
exposure-to-risk for attained age x and duration 16+ are concentrated at an average 
duration *

,txd , which may be estimated by 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ += ∑

=
+

d
tx

dtx
tx Ed

E
d ,

16
16

,

^*
, 2

11 . (4.14) 

As the mortality data available to us gives no information of d
txE ,  for d > 16, the 

methodology is not applicable. 

Panjer and Tan (1995) used a two-stage approach to model the ratio of select to 
ultimate mortality. In the first stage, they related the first policy year mortality to the 
ultimate mortality by a logistic-linear function, and, based on this function, they 
graduated the first year death rates. In the second stage, the rest of the select mortality 
table was determined as a weighted average between the graduated first policy year 
mortality and the ultimate mortality, with weights determined by an appropriate power 
function.  

Renshaw and Haberman (1997) proposed a similar method. Instead of modeling 
directly the select to ultimate mortality ratio, they considered its logarithm, which should 
demonstrate a higher extent of linearity. In addition, rather than treating mortality in the 
first policy year in a preferential manner, they modeled death rates at all duration in a 
consistent way. We shall use Renshaw and Haberman’s method in calibrating the effect of 
selection in the mortality improvement scales. 

In contrast to the Lee-Carter, this method assumes that d
txE ,  is random but d

txD ,  is 
not. Let us define a random variable 
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d
tx

d
txd

tx D
E

Y
,

,
, = , (4.15) 

and assume that  ( ) d
tx

d
tx m

YE
,

,
1

= , (4.16) 

and  ( ) d
tx

d
txd

tx D
mφ

YVar
,

2

,
,

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= . (4.17) 

This gives 
2

,

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
d

txm  as the variance function, d
txD ,  as the prior weight, and ϕ as the 

scale parameter. Using the variance stabilizing transformation 

( )d
tx

d
tx YQ ,, ln= , (4.18)  

then  ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈ d

tx

d
tx m

QE
,

,
1ln , (4.19) 

and  ( ) d
tx

d
tx D

φQVar
,

, ≈ . (4.20) 

Under the variance stabilizing transformation, ( )d
txQVar ,  is free of ( )d

txQE , . This is 
particularly useful in situations when there is a paucity of data, and partly explains the 
motivation of using the logarithmic transformation. Denote the graduated central death 
rates for the ultimate duration by ~ 16

,
+
txm , and let  

 d
txtx

d
tx QQZ ,

16
,, −= + , (4.21) 

which gives 

 ( ) ( ) ( ) d
txtx

d
tx

d
tx υmmZE ,

16
,,, lnln =−≈ + , (4.22) 

and  ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈ +

+

16
,,

16
,,

,
tx

d
tx

tx
d

txd
tx DD

DD
φZVar . (4.23) 
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 For each t and d, we estimate d
txυ ,  by a linear predictor, with prior weights 

+

+

+ 16
,,

16
,,

tx
d

tx

tx
d

tx

DD
DD

. Assuming that the mortality selection process is effective, we anticipate that  

 0... 15
,

1
,

0
, ≤≤≤≤ txtxtx υυυ , (4.24) 

for fixed x and t. 

Exploratory graphical analyses provided by Figures 4.9 indicate that the logarithm 
of the select to ultimate mortality ratio fluctuates around a constant over all ages, for 
fixed t and d. This motivates us to use a linear predictor in the form of  

^^
,

d
t

d
tx θυ = . (4.25) 

Estimate of d
tθ  and its standard error can be readily computed by the principle of 

weighed least squares. Analysis of residuals (not shown) supports the choice of this form 
of linear predictor. 

Next, we carry out the following procedures to diagnose the behavior of d
tθ  over 

different policy years.  

For each d 

i. We sum d
txE ,  and d

txD ,  over t = 1982, 1983, …, 2001. Using the summation 
and the steps mentioned, we arrive at an authoritative value of d

tθ . This 
value is denoted by θ d and is assumed to be invariant over time. 

ii. For each t, we estimate d
tθ  and its standard error. Then, we use the usual 

t-test to test the hypothesis: dd
t θθ = . Rejection of the hypothesis implies 

that d
tθ  may be dependent on time.    
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Fig. 4.10. Trends of d
txυ ,  over age under different values of d, males, policy year 2001 – 2002. The solid 

line represents the linear predictor estimate ^ d
tθ .  
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Fig. 4.10 (cont’d). Trends of ^
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d
txυ  over age under different values of d, males, policy year 2001 – 2002. 

The solid line represents the linear predictor estimate, ^ d
tθ . 
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Fig. 4.11 (cont’d). Trends of ^ d
tθ over time under different values of d, males. The solid line represents the 

estimate of the authoritative value ^ dθ . 
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Fig. 4.12. The trend of ^ dθ over d. The solid line represents the smoothed values of ^ dθ . 
 

 

The above is illustrated graphically in Figures 4.10 to 4.12. For all d, the null 
hypothesis is not rejected, suggesting that we may assume d

tθ  be invariant over time. 
Then, by equation (4.22), we have 

 ( )d
tx

d
tx θmm exp~ 16

,
^

,
+= , (4.26) 

for all x, t, and d. This leads to 

 ( ) ( )sxISsxIS d ,, insured
2001

 insured,
2001 = , (4.27) 

where ( )sxIS d , insured,
2001  and ( )sxIS ,insured

2001  are the insured lives improvement scales for 
duration d = 0, 1, .., 15, and the ultimate duration respectively. Summing up, we have no 
statistical evidence to support the provision of separate mortality improvement scales for 
different durations. 
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4.5 The Effect of Smoker Status 

Parametric models were used in previous graduations of insured lives mortality in both 
the United Kingdom and Canada. CMIB (2001) attempted to quote linear relationships 
linking the observed mortality rates for smokers and non-smokers over 1991 – 1994 and 
1995 – 1998 to those in the CMIB “92” Series base tables. The linkage is based on the 
formula 

( ) *
21 1 xx qλλq −+= , (4.28) 

where qx is the graduated smoker / non-smoker experience, qx
* is the value of probability 

of death from the “92” Series base tables, and λ1 and λ2 are constants, independent of x. 
Separate relationship was derived for experiences at various durations. However, in terms 
of statistical tests of goodness of fit, the performance of this formula on the UK insured 
lives data was unsatisfactory, and therefore the CMIB did not recommend reliance on this 
formula to calculate separate mortality rates for smokers and non-smokers. 

 In the graduation of Canadian individual insurance experience, Panjer and Tan 
(1995) modeled the ratios of smokers / non-smoker to aggregate mortality rates. They 
characterized the ratios by: 

( ) *
xx qxrq = , (4.29) 

where  ( ) ( ) 321051 1
ll xxlxr −+= , (4.30) 

where a, b and k are constants that are free of x. In this specification, r(x) tends to 1 at the 
youngest and highest ages and reaches a maximum at some intermediate ages. The ratios 
are assumed to be the same for all durations. Graphical analysis suggests that the fitting 
of equations (4.29) and (4.30) to the Canadian insured lives data is adequate.  

 Panjer and Tan’s methodology may be introduced to the calibration of improvement 
scales. If the linkage specified by equation (4.29) is persistent, the improvement scales 
for the insured smoker / non-smoker are the same as that for the aggregate, due to the 
cancellation of r(x)3. However, it may be possible that the linkage is dependent on time. 
In this case, we may rewrite equation (4.30) as  

                                                 
3 We assume that equation (4.16) is applicable to both qx and mx. 
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( ) ( ) tt ll
t xxltxr ,3,21051, ,1 −+= . (4.31) 

Then,  ( ) ( )
( ) ( )sxIS
xr

sxrsxIS ,
2001,

2001,, insured
2001

smoker insured,
2001

+
= , (4.32) 

where ( )sxIS ,smoker insured,
2001  and ( )sxIS ,insured

2001  are the improvement scales for the insured 
lives (smoker) and the aggregate insured lives. Hence, the adjustment for the effect of 
smoker status are determined by the dynamics of parameters l1,t, l2,t ,and l3,t. 

 

Smoker Non-smoker Unclassified
Male

1992-1993 12,802 20,300 1,616,410
1996-1997 25,531 23,194 1,538,654
2001-2002 146,829 317,862 1,447,933

Female
1992-1993 1,617 10,057 663,043
1996-1997 21,869 8,482 775,397
2001-2002 111,637 220,350 830,030  

Table 4.1. Number of exposure to risk, ultimate, segregated by smoker status. 

 

Smoker Non-smoker Unclassified
Male

1992-1993 170 156 23,679
1996-1997 173 157 25,499
2001-2002 1,481 1,660 25,154

Female
1992-1993 21 33 5,007
1996-1997 107 27 8,654
2001-2002 738 622 9,952  

Table 4.2. Number of deaths, ultimate, segregated by smoker status. 

 
Tables 4.1 and 4.2 illustrate the challenges in trending parameters l1,t, l2,t ,and l3,t. 

Most of the data collected in the beginning of 1990s are of unknown smoker status, for 
example, in policy year 1992 – 1993, the number of exposure-to-risk with identified 
smoker status accounts for no more than two percent of the aggregate number of 
exposure-to-risk. The situation is not much improved in 2001-2, when 75% of the 
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exposure and 89% of deaths are unclassified for the male lives. The sparse data available 
which is reliably categorized by smoker status renders inappropriate any attempt to 
separate the smokers and non-smokers. 

 
Consequently, we are not able to draw any conclusion on the behavior of parameters 

l1,t, l2,t ,and l3,t over time, and we leave this to the future, when more information on the 
relative mortality of smokers and non-smokers is available. We urge the industry to much 
higher standards of data collection in this area. 

 
 

5. CONCLUSION 

In this first part of this report we examined Canadian population mortality, using 81 years 
of data up to 2001. We compared the semi-parametric approach of Currie et al (2004) 
with a parametric Lee-Carter methodology. We concluded that the Currie approach was 
highly suitable for graduation, but less useful for projection due to a strong influence of 
very recent mortality trends. 
 
However, the Lee –Carter method in its original form is very restrictive. We have adapted 
it to allow for over-dispersion by using the negative binomial distribution in place of the 
Poisson distribution. This was supported by the model diagnostics, and resulted in 
somewhat wider confidence interval. 
 
We used outlier analysis to explore shocks and structural shifts in the Canadian mortality 
experience. The evidence for such shocks is not very strong. However, there is a clear 
highly significant shock in the US data from the 1918 flu pandemic. To allow for the 
possibility of future epidemics, a flu pandemic residual was included in the bootstrap 
procedure for estimating the uncertainty in the mortality projection. It should be noted 
though that the residuals are assumed to be independent, so although the flu pandemic 
residual is included, it has no more weight than any of the other residuals. If the 
pandemic becomes more likely over time (as some experts suggest) and we are ‘due’ 
another outbreak imminently, then the short term uncertainty is greater than that 
emerging from the bootstrap procedure in Section 3.5. 
 
Using the Lee-Carter model, we proposed a mortality improvement formula for 
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population mortality that is multiplicative in the force of mortality, which is equivalent to 
saying it is exponential in the survival probabilities.  
 
We then propose a relatively simple but flexible model for the relationship between 
population and insured lives mortality. The combined effect of this model with the results 
already obtained for the population mortality projection gave the final formula proposed 
for the projection of insured lives mortality: 
 

),( sxIs
xpp(x,s) =              (5.1) 

( )suukszsxIs xxx ,2,1 ˆˆˆexp),( ++=           (5. 2) 

 
where x is the age, s is the projection term, zx , u1,x and u2,x are parameters explained in 
Sections 3 and 4, with estimates tabulated in Appendix D, and k is a standard normal 
deviate to allow for a specified margin for adverse deviation. 
 
In Section 4 we discuss selection, and conclude that there is no evidence to apply 
different improvement factors for different durations. We also consider 
smoker/non-smoker issues, and explain why the data on smoker/non-smoker differential 
mortality is far too sparse for any conclusions.  
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7. APPENDIX A:  ILLUSTRATIVE BASE TABLES, CANADIAN 
POPULATION, 2001 

 

Male Female Male Female
0 0.005945 0.004579 50 0.003566 0.002282
1 0.000647 0.000531 51 0.003895 0.002516
2 0.000211 0.000174 52 0.004257 0.002776
3 0.000142 0.000116 53 0.004665 0.003060
4 0.000143 0.000117 54 0.005131 0.003365
5 0.000161 0.000130 55 0.005675 0.003690
6 0.000161 0.000130 56 0.006307 0.004034
7 0.000146 0.000119 57 0.007028 0.004403
8 0.000128 0.000105 58 0.007832 0.004807
9 0.000116 0.000095 59 0.008709 0.005255
10 0.000115 0.000094 60 0.009640 0.005762
11 0.000128 0.000104 61 0.010623 0.006337
12 0.000159 0.000124 62 0.011676 0.006983
13 0.000209 0.000156 63 0.012826 0.007701
14 0.000284 0.000197 64 0.014110 0.008490
15 0.000384 0.000241 65 0.015575 0.009349
16 0.000505 0.000279 66 0.017246 0.010281
17 0.000637 0.000307 67 0.019127 0.011298
18 0.000766 0.000324 68 0.021213 0.012417
19 0.000872 0.000332 69 0.023488 0.013655
20 0.000931 0.000332 70 0.025926 0.015037
21 0.000935 0.000329 71 0.028534 0.016586
22 0.000899 0.000323 72 0.031353 0.018322
23 0.000847 0.000318 73 0.034438 0.020271
24 0.000797 0.000315 74 0.037862 0.022461
25 0.000766 0.000317 75 0.041714 0.024924
26 0.000761 0.000325 76 0.046054 0.027707
27 0.000775 0.000337 77 0.050914 0.030870
28 0.000802 0.000354 78 0.056321 0.034489
29 0.000838 0.000375 79 0.062295 0.038654
30 0.000875 0.000398 80 0.068858 0.043476
31 0.000911 0.000424 81 0.076171 0.049040
32 0.000946 0.000453 82 0.084537 0.055409
33 0.000983 0.000488 83 0.094363 0.062632
34 0.001024 0.000529 84 0.106201 0.070741
35 0.001072 0.000579 85 0.120742 0.079748
36 0.001130 0.000638 86 0.138300 0.089706
37 0.001199 0.000708 87 0.158823 0.100698
38 0.001279 0.000786 88 0.181978 0.112817
39 0.001372 0.000870 89 0.207025 0.126160
40 0.001479 0.000956 90 0.232874 0.140838
41 0.001601 0.001044 91 0.259193 0.156983
42 0.001741 0.001134 92 0.286246 0.174750
43 0.001897 0.001228 93 0.314547 0.194313
44 0.002073 0.001330 94 0.344886 0.215878
45 0.002269 0.001444 95 0.378133 0.239662
46 0.002485 0.001573 96 0.413836 0.265793
47 0.002722 0.001720 97 0.450628 0.294337
48 0.002981 0.001885 98 0.486638 0.325312
49 0.003263 0.002072 99 0.519494 0.358682  
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8. APPENDIX B: IMPROVEMENT SCALES, CANADIAN POPULATION 

 

Age (x ) w x v x w x v x Age (x ) w x v x w x v x

0 -0.046300 0.007800 -0.040200 0.006900 50 -0.011673 0.000511 -0.016615 0.001203
1 -0.055976 0.011533 -0.049690 0.010649 51 -0.011219 0.000474 -0.016178 0.001138
2 -0.050810 0.009379 -0.045732 0.008950 52 -0.010806 0.000439 -0.015806 0.001082
3 -0.046913 0.007950 -0.042573 0.007733 53 -0.010419 0.000405 -0.015483 0.001032
4 -0.044138 0.007081 -0.040202 0.006920 54 -0.010042 0.000373 -0.015193 0.000988
5 -0.042334 0.006607 -0.038609 0.006433 55 -0.009662 0.000344 -0.014921 0.000948
6 -0.041354 0.006363 -0.037780 0.006193 56 -0.009270 0.000318 -0.014657 0.000911
7 -0.040983 0.006213 -0.037615 0.006122 57 -0.008884 0.000295 -0.014421 0.000880
8 -0.040852 0.006083 -0.037803 0.006136 58 -0.008526 0.000276 -0.014234 0.000857
9 -0.040574 0.005909 -0.038006 0.006150 59 -0.008218 0.000261 -0.014117 0.000842
10 -0.039761 0.005626 -0.037887 0.006083 60 -0.007982 0.000248 -0.014092 0.000839
11 -0.038025 0.005172 -0.037109 0.005850 61 -0.007825 0.000239 -0.014163 0.000847
12 -0.035246 0.004532 -0.035579 0.005430 62 -0.007718 0.000232 -0.014288 0.000861
13 -0.031770 0.003780 -0.033640 0.004910 63 -0.007628 0.000226 -0.014417 0.000876
14 -0.027994 0.003000 -0.031678 0.004387 64 -0.007523 0.000219 -0.014503 0.000886
15 -0.024313 0.002275 -0.030080 0.003960 65 -0.007368 0.000211 -0.014496 0.000886
16 -0.021120 0.001689 -0.029228 0.003725 66 -0.007157 0.000201 -0.014384 0.000874
17 -0.018645 0.001279 -0.029254 0.003717 67 -0.006930 0.000191 -0.014212 0.000856
18 -0.016886 0.001025 -0.029934 0.003881 68 -0.006732 0.000182 -0.014035 0.000837
19 -0.015823 0.000900 -0.031024 0.004157 69 -0.006609 0.000175 -0.013907 0.000825
20 -0.015440 0.000880 -0.032273 0.004483 70 -0.006605 0.000174 -0.013881 0.000825
21 -0.015712 0.000937 -0.033440 0.004800 71 -0.006724 0.000177 -0.013965 0.000838
22 -0.016509 0.001045 -0.034382 0.005069 72 -0.006913 0.000183 -0.014102 0.000856
23 -0.017582 0.001177 -0.035071 0.005277 73 -0.007111 0.000190 -0.014229 0.000873
24 -0.018674 0.001307 -0.035486 0.005411 74 -0.007260 0.000197 -0.014285 0.000879
25 -0.019527 0.001406 -0.035605 0.005459 75 -0.007302 0.000201 -0.014209 0.000867
26 -0.019899 0.001449 -0.035409 0.005408 76 -0.007230 0.000202 -0.013992 0.000837
27 -0.019764 0.001434 -0.034937 0.005268 77 -0.007092 0.000200 -0.013683 0.000796
28 -0.019296 0.001380 -0.034279 0.005070 78 -0.006940 0.000196 -0.013335 0.000751
29 -0.018672 0.001307 -0.033526 0.004841 79 -0.006825 0.000190 -0.012999 0.000709
30 -0.018069 0.001233 -0.032769 0.004613 80 -0.006798 0.000183 -0.012728 0.000678
31 -0.017654 0.001178 -0.032092 0.004412 81 -0.006869 0.000176 -0.012540 0.000660
32 -0.017455 0.001146 -0.031496 0.004240 82 -0.007018 0.000172 -0.012427 0.000653
33 -0.017400 0.001130 -0.030920 0.004082 83 -0.007220 0.000174 -0.012378 0.000654
34 -0.017417 0.001124 -0.030304 0.003919 84 -0.007452 0.000184 -0.012383 0.000662
35 -0.017433 0.001122 -0.029586 0.003738 85 -0.007692 0.000205 -0.012433 0.000673
36 -0.017382 0.001117 -0.028714 0.003522 86 -0.007926 0.000236 -0.012512 0.000686
37 -0.017246 0.001107 -0.027703 0.003276 87 -0.008147 0.000272 -0.012599 0.000698
38 -0.017040 0.001090 -0.026606 0.003015 88 -0.008347 0.000309 -0.012676 0.000708
39 -0.016773 0.001063 -0.025475 0.002755 89 -0.008518 0.000342 -0.012723 0.000713
40 -0.016460 0.001026 -0.024365 0.002510 90 -0.008653 0.000368 -0.012720 0.000712
41 -0.016110 0.000977 -0.023323 0.002293 91 -0.008739 0.000385 -0.012653 0.000703
42 -0.015727 0.000918 -0.022357 0.002105 92 -0.008757 0.000396 -0.012510 0.000688
43 -0.015308 0.000855 -0.021457 0.001942 93 -0.008692 0.000399 -0.012277 0.000667
44 -0.014852 0.000790 -0.020615 0.001800 94 -0.008526 0.000398 -0.011943 0.000641
45 -0.014358 0.000729 -0.019821 0.001673 95 -0.008240 0.000391 -0.011494 0.000609
46 -0.013826 0.000675 -0.019070 0.001558 96 -0.007795 0.000375 -0.010908 0.000566
47 -0.013273 0.000628 -0.018365 0.001454 97 -0.007147 0.000344 -0.010162 0.000504
48 -0.012716 0.000586 -0.017715 0.001361 98 -0.006249 0.000292 -0.009231 0.000416
49 -0.012176 0.000547 -0.017129 0.001277 99 -0.005055 0.000211 -0.008092 0.000293

Male Female Male Female
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9. APPENDIX C:  ILLUSTRATIVE BASE TABLES 

Canadian Insured Lives, Ultimate, Composite Smoker/Non-smoker, 2001 

Male Female Male Female
15 0.000593 0.000242 58 0.006472 0.004580
16 0.000613 0.000249 59 0.007164 0.005068
17 0.000633 0.000257 60 0.007926 0.005607
18 0.000654 0.000265 61 0.008767 0.006200
19 0.000675 0.000273 62 0.009696 0.006855
20 0.000697 0.000282 63 0.010727 0.007576
21 0.000718 0.000292 64 0.011874 0.008370
22 0.000739 0.000302 65 0.013155 0.009243
23 0.000761 0.000312 66 0.014587 0.010203
24 0.000783 0.000324 67 0.016184 0.011261
25 0.000806 0.000336 68 0.017962 0.012429
26 0.000830 0.000350 69 0.019935 0.013720
27 0.000855 0.000365 70 0.022119 0.015152
28 0.000881 0.000381 71 0.024536 0.016742
29 0.000908 0.000399 72 0.027215 0.018515
30 0.000937 0.000420 73 0.030190 0.020497
31 0.000968 0.000443 74 0.033499 0.022719
32 0.001001 0.000468 75 0.037189 0.025220
33 0.001035 0.000497 76 0.041305 0.028040
34 0.001073 0.000529 77 0.045900 0.031219
35 0.001113 0.000565 78 0.051030 0.034808
36 0.001156 0.000606 79 0.056759 0.038860
37 0.001203 0.000651 80 0.063156 0.043435
38 0.001255 0.000702 81 0.070280 0.048592
39 0.001314 0.000759 82 0.078176 0.054382
40 0.001381 0.000822 83 0.086884 0.060856
41 0.001457 0.000892 84 0.096432 0.068060
42 0.001543 0.000970 85 0.106916 0.076021
43 0.001643 0.001057 86 0.118414 0.084806
44 0.001757 0.001154 87 0.131010 0.094486
45 0.001890 0.001263 88 0.144792 0.105137
46 0.002042 0.001384 89 0.159854 0.116841
47 0.002218 0.001520 90 0.176297 0.129683
48 0.002418 0.001672 91 0.194224 0.143755
49 0.002646 0.001842 92 0.213749 0.159152
50 0.002905 0.002033 93 0.234986 0.175974
51 0.003197 0.002247 94 0.258060 0.194329
52 0.003526 0.002486 95 0.283100 0.214326
53 0.003896 0.002753 96 0.310241 0.236081
54 0.004308 0.003049 97 0.339623 0.259715
55 0.004768 0.003376 98 0.371395 0.285354
56 0.005279 0.003739 99 0.405708 0.313126
57 0.005845 0.004139  
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10. APPENDIX D:  IMPROVEMENT SCALES, CANADIAN INSURED LIVES 

Age (x ) z x u 1,x u 2,x z x u 1,x u 2,x

0 -0.048097 0.000050 0.008209 -0.017908 0.000020 0.001410

1 -0.051806 0.000050 0.009488 -0.019879 0.000020 0.001684

2 -0.051508 0.000050 0.009378 -0.020008 0.000020 0.001685

3 -0.048780 0.000050 0.008431 -0.019010 0.000020 0.001522

4 -0.045199 0.000050 0.007200 -0.017602 0.000020 0.001304

5 -0.042325 0.000050 0.006230 -0.016491 0.000020 0.001136

6 -0.040883 0.000050 0.005773 -0.016012 0.000020 0.001068

7 -0.040415 0.000050 0.005666 -0.015971 0.000020 0.001069

8 -0.040374 0.000050 0.005712 -0.016132 0.000020 0.001099

9 -0.040211 0.000050 0.005716 -0.016263 0.000020 0.001121

10 -0.039406 0.000050 0.005494 -0.016144 0.000020 0.001098

11 -0.037802 0.000050 0.005022 -0.015774 0.000020 0.001035

12 -0.035497 0.000050 0.004389 -0.015307 0.000020 0.000960

13 -0.032596 0.000050 0.003687 -0.014897 0.000020 0.000906

14 -0.029202 0.000050 0.003007 -0.014701 0.000020 0.000903

15 -0.029211 0.000005 0.003057 -0.014534 0.000006 0.000938

16 -0.030018 0.000004 0.003364 -0.015623 0.000004 0.001063

17 -0.030819 0.000005 0.003598 -0.016680 0.000003 0.001198

18 -0.031619 0.000007 0.003785 -0.017719 0.000002 0.001345

19 -0.032421 0.000008 0.003949 -0.018757 0.000001 0.001506

20 -0.033229 0.000009 0.004115 -0.019809 0.000000 0.001682

21 -0.034042 0.000010 0.004300 -0.020885 0.000000 0.001874

22 -0.034853 0.000010 0.004502 -0.021982 0.000001 0.002081

23 -0.035653 0.000009 0.004714 -0.023095 0.000002 0.002300

24 -0.036433 0.000009 0.004933 -0.024220 0.000004 0.002532

25 -0.037184 0.000010 0.005151 -0.025351 0.000006 0.002775

26 -0.037894 0.000012 0.005362 -0.026482 0.000009 0.003026

27 -0.038542 0.000015 0.005557 -0.027603 0.000012 0.003285

28 -0.039107 0.000020 0.005727 -0.028706 0.000014 0.003548

29 -0.039569 0.000026 0.005861 -0.029780 0.000015 0.003813

30 -0.039905 0.000034 0.005950 -0.030817 0.000015 0.004078

31 -0.040103 0.000044 0.005990 -0.031806 0.000014 0.004340

32 -0.040161 0.000054 0.005986 -0.032738 0.000011 0.004594

33 -0.040081 0.000064 0.005944 -0.033606 0.000008 0.004836

34 -0.039866 0.000071 0.005872 -0.034399 0.000005 0.005061

35 -0.039516 0.000076 0.005775 -0.035108 0.000003 0.005264

36 -0.039039 0.000077 0.005657 -0.035732 0.000001 0.005443

37 -0.038454 0.000075 0.005515 -0.036279 0.000001 0.005600

38 -0.037780 0.000072 0.005347 -0.036758 0.000002 0.005738

39 -0.037036 0.000068 0.005149 -0.037178 0.000004 0.005861

40 -0.036241 0.000064 0.004918 -0.037550 0.000006 0.005970

41 -0.035409 0.000061 0.004658 -0.037875 0.000009 0.006067

42 -0.034544 0.000060 0.004382 -0.038145 0.000012 0.006152

43 -0.033649 0.000061 0.004101 -0.038353 0.000016 0.006222

44 -0.032729 0.000064 0.003831 -0.038489 0.000020 0.006278

45 -0.031785 0.000070 0.003584 -0.038545 0.000024 0.006318

46 -0.030830 0.000081 0.003367 -0.038502 0.000027 0.006334

47 -0.029884 0.000097 0.003176 -0.038328 0.000031 0.006312

48 -0.028970 0.000123 0.003009 -0.037993 0.000035 0.006236

49 -0.028108 0.000159 0.002861 -0.037463 0.000041 0.006090

Male Female
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APPENDIX D (CONT’D) 

Improvement Scales, Canadian Insured Lives 

Age (x ) z x u 1,x u 2,x z x u 1,x u 2,x

50 -0.027321 0.000208 0.002730 -0.036708 0.000047 0.005859

51 -0.026625 0.000270 0.002614 -0.035731 0.000055 0.005546

52 -0.026033 0.000340 0.002516 -0.034575 0.000063 0.005174

53 -0.025557 0.000414 0.002438 -0.033287 0.000072 0.004766

54 -0.025209 0.000489 0.002381 -0.031912 0.000079 0.004349

55 -0.025000 0.000559 0.002350 -0.030497 0.000085 0.003946

56 -0.024941 0.000622 0.002345 -0.029084 0.000089 0.003571

57 -0.025042 0.000677 0.002369 -0.027707 0.000092 0.003230

58 -0.025312 0.000723 0.002425 -0.026404 0.000094 0.002925

59 -0.025761 0.000758 0.002515 -0.025211 0.000097 0.002660

60 -0.026397 0.000782 0.002641 -0.024163 0.000101 0.002439

61 -0.027179 0.000796 0.002797 -0.023270 0.000105 0.002260

62 -0.028025 0.000806 0.002971 -0.022519 0.000109 0.002118

63 -0.028851 0.000815 0.003148 -0.021896 0.000114 0.002007

64 -0.029571 0.000831 0.003317 -0.021386 0.000118 0.001920

65 -0.030105 0.000856 0.003463 -0.020977 0.000121 0.001851

66 -0.030420 0.000891 0.003575 -0.020644 0.000122 0.001795

67 -0.030524 0.000931 0.003647 -0.020362 0.000124 0.001749

68 -0.030427 0.000971 0.003668 -0.020102 0.000124 0.001708

69 -0.030140 0.001007 0.003630 -0.019835 0.000125 0.001667

70 -0.029671 0.001035 0.003527 -0.019535 0.000126 0.001624

71 -0.029047 0.001052 0.003366 -0.019194 0.000128 0.001575

72 -0.028303 0.001059 0.003167 -0.018820 0.000131 0.001522

73 -0.027473 0.001054 0.002952 -0.018420 0.000138 0.001463

74 -0.026594 0.001038 0.002739 -0.018000 0.000147 0.001398

75 -0.025696 0.001011 0.002548 -0.017567 0.000161 0.001327

76 -0.024768 0.000977 0.002378 -0.017111 0.000181 0.001250

77 -0.023768 0.000944 0.002212 -0.016612 0.000210 0.001169

78 -0.022655 0.000920 0.002037 -0.016052 0.000250 0.001083

79 -0.021388 0.000911 0.001836 -0.015410 0.000304 0.000993

80 -0.019931 0.000924 0.001597 -0.014670 0.000373 0.000901

81 -0.018304 0.000958 0.001330 -0.013836 0.000456 0.000807

82 -0.016558 0.001005 0.001056 -0.012928 0.000550 0.000713

83 -0.014746 0.001058 0.000797 -0.011965 0.000649 0.000621

84 -0.012921 0.001111 0.000577 -0.010966 0.000750 0.000534

85 -0.011131 0.001156 0.000415 -0.009949 0.000850 0.000451

86 -0.009406 0.001191 0.000307 -0.008934 0.000944 0.000375

87 -0.007762 0.001216 0.000239 -0.007941 0.001031 0.000307

88 -0.006216 0.001230 0.000195 -0.006988 0.001107 0.000247

89 -0.004786 0.001234 0.000162 -0.006094 0.001170 0.000196

90 -0.003486 0.001226 0.000126 -0.005276 0.001216 0.000155

91 -0.002313 0.001207 0.000087 -0.004532 0.001245 0.000123

92 -0.001258 0.001177 0.000053 -0.003852 0.001258 0.000098

93 -0.000308 0.001138 0.000028 -0.003223 0.001255 0.000080

94 0.000547 0.001089 0.000020 -0.002636 0.001237 0.000065

95 0.001315 0.001031 0.000033 -0.002082 0.001203 0.000054

96 0.001988 0.000965 0.000060 -0.001567 0.001155 0.000045

97 0.002554 0.000891 0.000090 -0.001106 0.001093 0.000038

98 0.002998 0.000812 0.000113 -0.000710 0.001018 0.000032

99 0.003309 0.000728 0.000118 -0.000393 0.000929 0.000026

Male Female
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11. APPENDIX E : PREVIOUS MORTALITY IMPROVEMENT SCALES 

 

i. The AA Scale in the Society of Actuaries 1994 Group Annuity Mortality Table 

In 1994, the Society of Actuaries Group Annuity Valuation Table Task Force 
developed a table that it recommended as suitable for a Group Annuity Reserve 
Valuation Standard. For projection of mortality reduction beyond 1994, the Task 
Force decided to use the following formula.  

( ) ( )s
xAAsxIS −= 1,AA , (A1) 

where values of AAx can be found in Society of Actuaries Group Annuity 
Valuation Table Task Force (1995, p.892). Separate scales for different durations 
and smoker statuses are not available. 

ii. Improvement Factors in the Society of Actuaries 2001 Valuation Basic Experience 
Table 

In 2002, the Society of Actuaries and the Academy of Actuaries developed the 
2001 CSO tables which was intended to replace the 1980 CSO Table in the 
current statutory valuation structure (American Academy of Actuaries, 2002). The 
2001 CSO tables consists of six tables – for each sex, there are separate tables for 
nonsmoker, smoker, and composite nonsmoker/smoker. Each table has values for 
a 25-year select period and for ultimate ages. 

The entire work was divided into two pieces: the construction of the 2001 
valuation basic experience table (VBT, done by the SoA Task Force), and the 
development of the loads (done by the Academy’s Task Force). A key step in the 
construction of the VBT was to project the mortality experience underlying the 
1990-95 Basic Mortality Tables to year 2001, the projected date at which the 
valuation table would be released. Having examined improvement in insured lives 
mortality from the 1985-90 to the 1990-95 Basic Mortality Tables and considered 
improvement from various non-life insurance sources, the SoA Task Force 
decided the following factors to reflect the improvement in the insured lives 
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mortality. 

For males: 
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 and for females: 
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Separate scales for different durations and smoker statuses are not provided. 

iii. The Reduction Factors in the Institute of Actuaries “92” Series Base Table 

The CMIB of the Institute of Actuaries has periodically been considering future 
improvements in mortality for annuitants and pensioners. In “92” Series CMIB 
tables (CMIB 1999), the projected mortality values are estimated by multiplying 
the probabilities of death by the following reduction factors (improvement scales). 

n
s

n xfxαxαsxIS )](1)][(1[)(),(CMIB −−+= . (A4) 

The value for n is fixed at 20. α(x) and f20(x) are given respectively by 
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The same scale is applied to both sexes. Separate scales for different durations 
and smoker statuses are not available.  

 


