User’s Guide

to the Scenario Collection

Application Programming Interface (API)

Version 1.1.0 – July 2010

2Purpose of the API

2Overview and Class Descriptions

4Client procedures

4Using an existing collection of scenarios

4Retrieving information about the collection

4Using the scenarios in the collection

6Creating a collection of scenarios

8Defining and using a customized YieldCurve Class

10A note on memory management

10Managing scenario memory

11Managing yield curve memory

13Details regarding the various API implementations

13The C# implementation

13The C++ implementation

13The Java implementation

13Standards for certain data fields

13Currencies

14Exchange rates

14Countries

16Equity types

18Miscellaneous rates

18Yield curve types

19BondDataYieldCurve

19LinearInterpYieldCurve

19NelsonSiegelYieldCurve

20NSInterpYieldCurve

20TSScenarioLib IDL

Purpose of the API

Collections of economic scenarios are often needed for actuarial and other financial analysis. Applications of such scenario collections include valuation of financial instruments and analysis of risk using simulation models.

The purpose of this Application Programming Interface (API) is to provide a standardized way to store and use this kind of data so that both software developers and users can spend more time on analysis and less time on data preparation. For persistent data storage, the API is designed to use ESML, the XML-based file format developed by the Technology Section of the Society of Actuaries.

Overview and Class Descriptions

The basic class structure is very simple. The main classes are ScenarioCollection, Scenario, EconEnvironment, and YieldCurve.

The ScenarioCollection class is the container for all the information in a collection of economic scenarios. A ScenarioCollection contains not only a collection of scenarios, but also information about the collection including among other things, the generator used, the name of the person who created it, and free-form text comments describing the collection.

The Scenario class is a single item in a ScenarioCollection, and contains information on the economic environment at various points in time, and for one or more countries. A Scenario is just a collection of EconEnvironment objects, where each EconEnvironment applies to a given country and starts on a given date. Within a scenario, an EconEnvironment is interpreted as being in effect from its start date until the start date of the next EconEnvironment for that country. The EconEnvironment with the latest start date is treated as being in effect forever thereafter.

The EconEnvironment class is a set of economic statistics that describe the economic environment at a point in time for one country. Such statistics include rates of inflation and interest (yield curves), and returns on various types of equity investments. Virtually any statistic that can be given a name can be included in an EconEnvironment as part of its list of miscellaneous rates. The names that are recognized as part of the standard file format are listed in the Appendix to this Users Guide.

Each EconEnvironment contains a collection of YieldCurve objects. From a storage and implementation standpoint, yield curves are complex objects. Any yield curve can be represented by its bond curve, spot curve, or forward curve, and each of these curves has values for every month for at least 30 years. Clients of the API must be able to retrieve any of these values, but normally the stored file will not include all of the values; it will include some values or some parameters that can be used to re-construct the full yield curves. In order to facilitate this, the API provides an abstract class YieldCurve and allows the client to define proprietary implementations of the class. Each implementation interprets the stored values in the file in its own way to re-construct the full yield curves. Several implementations are provided as part of the API. These are the “standard” implementations and are described more fully in the Appendix.

Most client systems will only need to use the classes described above - ScenarioCollection, Scenario, EconEnvironment, and YieldCurve. However, the API includes defined interfaces that allow client systems to implement the interface in their own way if for any reason they wish to do so. The interfaces are named IScenarioCollection, IScenario, IEconEnvironment, and IYieldCurve. Since the classes interact with one another only through these interfaces, alternate implementations of any individual class will work if they implement the corresponding required interface.

Details of the properties and methods of each class and interface are provided in the help file TSScenarioLib Documentation.chm. The next section provides task-oriented instructions for using the API.

Client procedures

Using an existing collection of scenarios

An existing collection of scenarios that has been saved to a file can be used to either obtain information about the collection or to retrieve scenarios or both.

Retrieving information about the collection

To retrieve information about a scenario collection:

1. Create a new ScenarioCollection by calling the constructor.

2. Call the OpenReadXml(pathname) method of the newly constructed object. This not only opens the file but also reads the initial section containing descriptive information about the collection.

3. Query the properties of the ScenarioCollection object. The available properties are used in the sample code below.

4. When the ScenarioCollection is no longer needed, call its CloseReadXml method to close the file.

Sample code (Excel VBA)

Public scenFile As TSScenarioLib.ScenarioCollection

Public fileName as string

Public myInfo as string

Public myInt as integer

Set scenFile = CreateObject("TSScenarioLib.ScenarioCollection")

scenFile.Initialize

filename = “test.xml”

scenFile.OpenReadXml(filename)

myInfo = scenFile.Generator

myInfo = scenFile.CreatorName

myInfo = scenFile.CreationDate

‘Editor’s note – there are many more properties that can be queried. See the help file for complete documentation.

scenfile.CloseReadXml

Using the scenarios in the collection

To use the scenarios in a scenario collection file:

1. Create a new ScenarioCollection by calling the constructor.

2. Call the OpenReadXml(pathname) method of the newly constructed object.

3. Retrieve scenarios as needed using the GetScenario(ID) method of the collection. This will create a new Scenario object, initialize it by reading from the file, and return a reference to it.

4. Once a scenario has been retrieved, obtain economic conditions for any date and country using the scenario’s GetEnvironment() method. This will return a reference to an EconEnvironment.

5. Once an EconEnvironment reference is available, obtain whatever information is desired by accessing its properties and methods.

6. When the ScenarioCollection is no longer needed, call its CloseReadXml method to close the file.

The procedure outlined above assumes the client does not wish to maintain the complete collection of scenarios in memory. If for any reason that is desired, then in step 2 the client can call ReadXml(pathname) instead of OpenReadXml(pathname). This will read the entire collection into memory, and subsequent calls to GetScenario(ID) will return a reference to the scenario in memory. When this is done, the client does not need to call CloseReadXml() because the file is closed immediately after being read into memory by ReadXml().

Sample code (Excel VBA)

Public scenFile As TSScenarioLib.ScenarioCollection

Public thisScenario as TSScenarioLib.Scenario

Public env as TSScenarioLib.EconEnvironment

Public fileName as string

Public scenID as string

Public month as integer, year as integer

Public modelMonth as integer

Public bondRate as double

Set scenFile = CreateObject("TSScenarioLib.ScenarioCollection")

scenFile.Initialize

filename = “test.xml”

scenFile.OpenReadXml(filename)

For Each scenID in scenFile.ScenarioIDs

 Set thisScenario = scenFile.GetScenario(scenID)

 month = thisScenario.StartMonth

 year = thisScenario.StartYear

 For modelMonth = 1 To 120

 ‘Get the economic environment for a country

 Set econEnvironment = thisScenario.GetEnvironment(month, year, "US")

 ‘Get the 20-year bond coupon rate from the BBB yield curve

 bondRate = econEnvironment.GetIntRate("BBB", YieldCurveType_bondCurve, 240, 2)

 month = month+1

 if (month>12)

 year = year+1

 month = 1

 endif

 Next month

Next scenID

scenfile.CloseReadXml

Creating a collection of scenarios

To create a new collection of scenarios and save it to a file:

1. Create a new ScenarioCollection by calling the constructor.

2. Call the Initialize method to set all internal lists to an empty state.

3. Set the descriptive properties of the collection, including the generator, startdate, months per period, etc.

4. Call the OpenWriteXml method with the output filename as a parameter. This opens the file and writes the first section with the descriptive properties.

5. Generate scenarios, one at a time, in a loop. To generate a scenario:

a. Create a new Scenario by calling the constructor with one parameter, an ID string, which is normally just the scenario number converted to a string.

b. Call the Scenario’s Initialize method to set all internal lists to an empty state.

c. Enter a loop inside which new EconEvironment objects are created and added to the scenario.

i. Create a new EconEnvironment by calling the constructor with parameters for month, year, and country key string.

ii. Call the EconEnvironment’s Initialize method to set all internal lists to an empty state.

iii. Put the values created by the generator into the properties of the EconEnvironment to define the EconEnvironment for the date and country.

iv. Add the EconEnvironment to the Scenario using the Scenario’s AddEnvironment method.

d. Add the Scenario to the collection by using the ScenarioCollection’s AddScenario method. This appends the scenario to the end of the file being created.

6. Close the file by calling the CloseWriteXml method. This not only closes the data file, it writes a separate index file containing data that enables random access to any scenario in the data file without reading the file from its beginning.

Note that when this procedure is used, the scenarios need not be maintained in memory. They can be deleted from memory after being added to the collection.

The API does not provide a means to add scenarios to an existing scenario collection file after it has been closed with CloseWriteXml(). However, the same can be accomplished by creating a new scenario collection file and adding all the scenarios from the existing file plus some new ones. When this is done, the user (or client program) is responsible for updating the documentation including the creation date and the free-form text comments that describe the scenario collection.

Sample code (Excel VBA)

Private Sub CreateScenarios(fileName as string)

Dim i As Integer

Dim j As Integer

Dim newScenario As TSScenarioLib.Scenario

Dim initialEnvironment As TSScenarioLib.EconEnvironment

 'Get the parameters and starting conditions of the generator

 initialShortRate = Cells(20, 2).value

 initialLongRate = Cells(21, 2).value

 'Create a new scenario collection

 Set scenFile = CreateObject("TSScenarioLib.ScenarioCollection")

 'Initialize the collection to an empty state.

 scenFile.Initialize

 'Set various parameters of the scenario collection

 scenFile.startMonth = startDate

 scenFile.monthsPerPeriod = 1

 Call scenFile.Curves.Add("Govt", "Government")

 scenFile.Comments = creatorComments

 scenFile.creatorName = creatorName

 scenFile.generator = "VBA sample generator."

 'Create the initial economic environment

 Set initialEnvironment = CreateObject("TSScenarioLib.EconEnvironment")

 Call initialEnvironment.Initialize(startDate, "US")

 'Create the initial yield curve and put it in the initial environment

 Set initialYieldCurve = CreateObject("TSScenarioLib.NSInterpYieldCurve")

 Call initialYieldCurve.StoredValues.Add("d12", initialShortRate)

 Call initialYieldCurve.StoredValues.Add("d240", initialLongRate)

 Call initialEnvironment.AddCurve("Govt", initialYieldCurve)

 'Add the initial economic environment to the scenario collection

 'It will be shared by all scenarios in the collection.

 Call scenFile.AddInitialConditions(initialEnvironment)

 scenFile.OpenWriteXml (FileName)

 'Enter a loop to generate scenarios.

 For i = 1 To numScenarios

 Set newScenario = makeNewScenario(Str(i), startDate, numMonths)

 Call scenFile.AddScenario(newScenario)

 Next i

 'Save the scenario collection to a file.

 scenFile.CloseWriteXml

End Sub

Function makeNewScenario(aID As String, startDate As Long, _

 numPeriods As Integer) As TSScenarioLib.Scenario

Dim newYldCurve As TSScenarioLib.YieldCurve 'the next yield curve

Dim newEnvironment As TSScenarioLib.EconEnvironment 'the next environment

Dim newScenario As TSScenarioLib.Scenario 'the scenario being generated

Dim newLongRate As Double 'next long term rate

Dim newShortRate As Double 'next short term rate

Dim i As Integer 'a counter

 'Create an empty new scenario

 Set newScenario = CreateObject("TSScenarioLib.Scenario")

 Call newScenario.Initialize(aID)

 'Loop by month to generate future yield curves

 For i = 1 To numPeriods

 Set newEnvironment = CreateObject("TSScenarioLib.EconEnvironment")

 Call newEnvironment.Initialize(startDate + i, "US")

 Set newYieldCurve = _

 CreateObject("TSScenarioLib.NSInterpYieldCurve")

 'Generate new interest rates and equity returns

 ‘(Formulas are not given in this sample code

 newShortRate = x

 newLongRate = y

 newEquityReturn = z

 'Put the newShortRate and newLongRate into the new yield curve

 Call newYieldCurve.SetStoredValue("d12", newShortRate)

 Call newYieldCurve.SetStoredValue("d240", newLongRate)

 'Add the yield curve to the economic environment

 Call newEnvironment.AddCurve("Govt", newYieldCurve)

 ‘Add the equity return to the economic environment

 Call newEnvironment.AddEquityReturn(“Stock”,z,0)

 'Add the economic environment to the scenario

 Call newScenario.AddEnvironment(newEnvironment)

 Next i

 'Return the newly created scenario

 Set makeNewScenario = newScenario

End Function

Defining and using a customized YieldCurve Class

The YieldCurve class is a virtual base class that allows alternate ways of storing and reconstructing yield curves. Any yield curve can be represented by a few values or formulaic parameters, and only these values or parameters need be stored in a file. However, a simulation model needs access to values from the full bond, spot, and forward curves. Therefore the software must, behind the scenes, use the stored values to re-create the full bond, spot, and forward curves. This is done through the use of a pure virtual method called calcValues().

The calcValues() method must take one argument, the value of which must be from the YieldCurveType enumeration, whose members are bondCurve, spotCurve, and fwdCurve. The method must create and initialize an array of 361 monthly values for the corresponding yield curve. Three array names are included in the base YieldCurve class for this purpose. The names of the arrays are bondRates[], spotRates[], and fwdRates[].

Each implementation of the YieldCurve class must provide its own version of calcValues(). In addition, it must provide a value for the property StorageType, which is a string used to identify each implementation of YieldCurve.

The sample code below shows how the NelsonSiegelYieldCurve class is derived from YieldCurve in C#. A Nelson-Siegel curve can be used to represent the full spot rate curve using just four parameters.

public class NelsonSiegelYieldCurve:YieldCurve

{

public NelsonSiegelYieldCurve()

{ storageType = "Nelson-Siegel"; }

protected override void calcValues(YieldCurveType which)

{

 int i;

 // the four parameters of Nelson-Siegel:

 double b0;

 double b1;

 double b2;

 double k;

 switch(which)

 {

case YieldCurveType.spotCurve:

b0 = (double)storedValues["b0"];

b1 = (double)storedValues["b1"];

b2 = (double)storedValues["b2"];

k = (double)storedValues["k"];

spotRates = new double[361];

for (i=0; i<361; i++)

{

 double t=i/12.0;

 spotRates[i] = b0 + (b1 + b2 / k) * ((1 - Math.Exp(-k * t)) / (k * t)) - (b2 / k) * Math.Exp(-k * t);

}

break;

case YieldCurveType.fwdCurve:

if (!spotRatesAvail)

calcValues(YieldCurveType.spotCurve);

calcForwardFromSpot();

break;

case YieldCurveType.bondCurve:

if (!spotRatesAvail)

calcValues(YieldCurveType.spotCurve);

calcBondFromSpot();

break;

 }

}

}

In order to use the customized class, two things must be done.

1. A Factory class must also be defined. This is a class derived from YieldCurveFactory that implements the makeInstance() method in a manner that returns a newly created object of the customized derivative of YieldCurveClass. Here is the C# code used to define a NelsonSiegelYieldCurveFactory class.

public class NelsonSiegelYieldCurveFactory:YieldCurveFactory

{

public override IYieldCurve makeInstance()

{

return new NelsonSiegelYieldCurve();

}

}

2. Whenever a new ScenarioCollection object is instantiated, its AddYieldCurveFactory() method must be called so that the customized YieldCurve objects can be created when needed in the process of reading a file. This must be done before calling OpenReadXml(). Note that each factory is associated with a string ID that appears in any input file at the beginning of the data for any yield curve. Here is the C# code used to add the NelsonSiegelYieldCurveFactory to a ScenarioCollection named sColl.
sColl.curveFactories.Add("Nelson-Siegel", new NelsonSiegelYieldCurveFactory());

A note on memory management

Scenario collections contain large volumes of data, so memory management is an issue. The API provides memory management functionality with regard to both scenarios and yield curves.

Managing scenario memory

The API is designed so that scenarios are dealt with one at a time. When creating a scenario collection, scenarios are added to the collection one at a time, and are written to disk when they are added. They can be deleted from memory after they are written to disk. When retrieving scenarios from a collection, one scenario is retrieved at a time, using random file access. As a result, only one scenario need be maintained in memory at any one time. The rest of the scenarios can remain on disk.

This is accomplished through the use of an index file that is separate from the scenario file. The index contains the offset in bytes from the beginning of the scenario collection file where each scenario’s data begins. With this information, scenarios can be retrieved from disk one at a time and in any order.

The object representing the index is a private member of the ScenarioCollection class. A client or user of the API never needs to refer to it.

The index is automatically created when a scenario collection file is created, and the index file is actually written to disk within the ScenarioCollection.CloseWriteXml() method. The name given to the index file is the same as the scenario collection, except that the filename suffix “.offsets” is added between the filename and file extension. For example, the scenario file “MyScenarios.xml” will be accompanied by an index file named “MyScenarios.offsets.xml”. It is important that the two files be shared or copied together.

There may be situations in which a collection of scenarios needs to be created on the fly, used, and then deleted without ever being written to disk. To facilitate this, there is an InMemory property of the ScenarioCollection class. By default, InMemory is False. To create a scenario collection entirely in memory, set InMemory to True before adding any scenarios to the collection. When this is done, the scenarios will not be written to disk, and you never need to call OpenWriteXml(). Once added to the collection, the scenarios can be retrieved from the collection in the usual way, using GetScenario(). The InMemory property is used by GetScenario() to determine whether to retrieve scenarios from memory or from disk.

Managing yield curve memory

The API allows yield curves to be stored compactly in a file by storing just certain points or parameters. However, when a YieldCurve object is used, the full bond, spot, and forward curves may be re-created in memory based on the stored data. The fully re-created curves include values for every monthly maturity from 0 to 360. The API keeps the re-created full yield curves in memory in order to speed retrieval of values on repeated calls for values from the same yield curve. This is more efficient than performing the calculations for each call.

If all three representations of the yield curve are re-created, they consume over 8k of memory. That’s for each yield curve within each EconEnvironment within a scenario. If you have just two yield curves on each date in a scenario that has monthly data for 30 years, the total memory used by reconstructed full yield curves can be on the order of six megabytes per scenario.

To give the client some control over when this memory is to be released, a ReleaseCurveMemory method is available in several classes. YieldCurve.ReleaseCurveMemory releases the memory for one yield curve. EconEnvironment.ReleaseCurveMemory releases the memory for all yield curves in that environment. Scenario.ReleaseCurveMemory releases the memory for all yield curves in all environments in the scenario. Releasing the memory does not prevent later use of the yield curves; it simply means that any later requests for yield rates will take a little longer because the calculations involved in re-constructing the full yield curve from the stored data may need to be re-done.

The most efficient way to use this facility is to call EconEnvironment.ReleaseCurveMemory when a client program has completed all processing that depends on a particular economic environment. Note that this is not equivalent to deleting the EconEnvironment object from memory. All that is released is the extra memory used by reconstructed full yield curves, not the data that defined the yield curves themselves or any other data in the EconEnvironment.

If memory management at this level is not an issue, note that Scenario.ReleaseCurveMemory is called automatically by the Scenario class destructor.

Details regarding the various API implementations

The C# implementation

The C# implementation is designed for use under Windows and .NET. Two files are required: TSScenarioLib.dll and TSScenarioLib.tlb. The library must be registered as part of the .NET Global Assembly Cache (GAC). The installation program does this automatically. However, if you wish to do this manually, you can use the following commands at the command line prompt. These commands will both un-install a previous version and install a new version.

regasm /unregister tsscenariolib.dll

regasm /tlb tsscenariolib.dll

gacutil -u tsscenariolib

gacutil -i tsscenariolib.dll

As with any .NET implementation, TSScenarioLib.dll uses the Common Language Runtime Library. When using the C# implementation from Exel/VBA or other applications, both TSScenarioLib and the Common Language Runtime Library must be added to the list of References.

The C++ implementation

As of this writing, there is only an early test version of a C++ implementation. It was developed using Microsoft Visual Studio 2008 and is compiled as a static library (a *.lib file) for use in native Windows (not .NET). A command-line program illustrating use of the library to write and then read a scenario file has also been developed.
The XML parser used in this test version is xmllite from Microsoft. That parser is freely downloadable and provides the same functionality as the parser included in .NET. It is being included in more recent versions of Windows.
The Java implementation

As of this writing, there is no Java implementation. One may be prepared in the future if sufficient client demand is expressed.
Standards for certain data fields

Many data items in a scenario collection are stored as strings. In order to provide portability of this data between systems, the string values that are used must be standardized. This appendix lists the standards that have been suggested by the Technology Section of the Society of Actuaries. The API does not limit or control these data items, but adherence to these standards is strongly suggested.

Currencies

Currencies are stored using a three-letter ID. The standard set of IDs comes from ISO 4217. A sampling of these IDs is listed below.

	Australian Dollar
	AUD

	Bahamian Dollar
	BSD

	Bermuda Dollar
	BMD

	Brazilian Real
	BRL

	Canadian Dollar
	CAD

	Czech Koruna
	CZK

	Danish Krone
	DKK

	Egyptian Pound
	EGP

	Euro
	EUR

	Hong Kong Dollar
	HKD

	Indian Rupee
	INR

	Iranian Rial
	IRR

	Iraqi Dinar
	IQD

	Jordanian Dinar
	JOD

	Kuwaiti Dinar
	KWD

	Mexican Peso
	MXN

	New Israeli Sheqel
	ILS

	New Taiwan Dollar
	TWD

	New Zealand Dollar
	NZD

	Norwegian Krone
	NOK

	Pakistan Rupee
	PKR

	Qatari Rial
	QAR

	Russian Ruble
	RUB

	Saudi Riyal
	SAR

	Swedish Krona
	SEK

	Swiss Franc
	CHF

	US Dollar
	USD

	Yen
	JPY

	Zloty
	PLN

Exchange rates

Exchange rates are stored using currency codes. The base currency for all exchange rates is stored as part of the descriptive data for the collection, and is available as the BaseCurrency property.

Exchange rates can be quoted directly (units of quoted currency per unit of base currency) or indirectly (units of base currency per unit of quoted currency). The quotation method in use is stored as part of the descriptive data for the collection and is available as the ExchangeRateQuotationMethod property.

Countries

Countries are stored using a three-letter ID. The standard set of IDs comes from ISO 3166. A sampling of these IDs is listed below.

	ARG
	Argentina, Argentine Republic

	AUS
	Australia, Commonwealth of

	AUT
	Austria, Republic of

	BEL
	Belgium, Kingdom of

	BMU
	Bermuda

	BRA
	Brazil, Federative Republic of

	CAN
	Canada

	CHL
	Chile, Republic of

	CHN
	China, People's Republic of

	COL
	Colombia, Republic of

	CZE
	Czech Republic

	DNK
	Denmark, Kingdom of

	EGY
	Egypt, Arab Republic of

	ETH
	Ethiopia

	FIN
	Finland, Republic of

	FRA
	France, French Republic

	GEO
	Georgia

	DEU
	Germany

	GRC
	Greece, Hellenic Republic

	HKG
	Hong Kong, Special Administrative Region of China

	HUN
	Hungary, Hungarian People's Republic

	IND
	India, Republic of

	IDN
	Indonesia, Republic of

	IRN
	Iran, Islamic Republic of

	IRQ
	Iraq, Republic of

	IRL
	Ireland

	ISR
	Israel, State of

	ITA
	Italy, Italian Republic

	JPN
	Japan

	JOR
	Jordan, Hashemite Kingdom of

	PRK
	Korea, Democratic People's Republic of

	KOR
	Korea, Republic of

	KWT
	Kuwait, State of

	LBN
	Lebanon, Lebanese Republic

	MEX
	Mexico, United Mexican States

	NLD
	Netherlands, Kingdom of the

	NZL
	New Zealand

	NOR
	Norway, Kingdom of

	PAK
	Pakistan, Islamic Republic of

	PSE
	Palestinian Territory, Occupied

	PHL
	Philippines, Republic of the

	POL
	Poland, Polish People's Republic

	PRT
	Portugal, Portuguese Republic

	QAT
	Qatar, State of

	RUS
	Russian Federation

	ZAF
	South Africa, Republic of

	ESP
	Spain, Spanish State

	SWE
	Sweden, Kingdom of

	CHE
	Switzerland, Swiss Confederation

	ARE
	United Arab Emirates (was Trucial States)

	GBR
	United Kingdom of Great Britain & N. Ireland

	USA
	United States of America

Equity types

There is as yet no independent standard for types of equity investments or for mutual funds. Therefore, when equity returns are included in a scenario file, the comments stored with the file should include a description of the equity categorization method in use.

Two options are offered here for consideration by users. The first is based on the categories defined in the equity return generator developed by the American Academy of Actuaries. The second is based on the proprietary category definitions developed and maintained by Morningstar, Inc.

Equity types in the AAA equity generator

The equity return generator developed by the American Academy of Actuaries for use in calculating risk-based capital (C-3 phase II) produces types of returns enumerated in the following table. The IDs listed in the table are suggested for use in ESML.

	ID
	Name

	Moneymkt
	Money Market / Short Term

	usMedGovtBond
	U.S. Intermediate Term Government Bonds

	usLongCorpBond
	U.S. Long Term Corporate Bonds

	divFixed
	Diversified Fixed Income

	divBalanced
	Diversified Balanced Allocation

	divLargeCapEq
	Diversified Large Capitalized U.S. Equity

	divInternatEq
	Diversified International Equity

	intermedRiskEq
	Intermediate Risk Equity

	aggressiveEq
	Aggressive or Specialized Equity

Fund types defined by Morningstar

A list of fund types defined by Morningstar, Inc. is provided below. If there is interest, the Technology Section might define a short ID for use with each of these fund types, but until then we suggest using the full name as the ID.

Domestic (USA) Stock Funds

Specialty-Real Estate

Specialty-Utilities

Large Value

Small Value

Specialty-Communications

Specialty-Financial

Mid-Cap Value

Small Blend

Large Blend

Mid-Cap Blend

Small Growth

Long-Short

Specialty-Natural Res

Mid-Cap Growth

Specialty-Health

Large Growth

Specialty-Technology

Bear Market

Balanced Funds

World Allocation

Target-Date 2030+

Target-Date 2015-2029

Moderate Allocation

Convertibles

Target-Date 2000-2014

Conservative Allocation

International Stock Funds

Latin America Stock

Pacific/Asia ex-Japan Stk

Europe Stock

Foreign Large Value

Diversified Emerging Mkts

Specialty-Precious Metals

Foreign Large Blend

Foreign Small/Mid Value

Foreign Large Growth

Foreign Small/Mid Growth

World Stock

Diversified Pacific/Asia

Japan Stock

Fixed-Income Funds

Emerging Markets Bond

High Yield Bond

Bank Loan

Multisector Bond

Ultrashort Bond

Short-Term Bond

World Bond

Short Government

Intermediate-Term Bond

Long-Term Bond

Intermediate Government

Inflation-Protected Bond

Long Government

Municipal Bond Funds

High Yield Muni

Muni New York Long

Muni New Jersey

Muni National Long

Muni Single State Long

Muni California Long

Muni Pennsylvania

Muni Florida

Muni Minnesota

Muni Massachusetts

Muni California Interm/Short

Muni Single State Interm

Muni National Interm

Muni New York Interm/Short

Muni Ohio

Muni Single State Short

Muni National Short

Miscellaneous rates

There is as yet no independent standard for labeling miscellaneous rates that can help describe an economic environment. The following identifying labels are suggested for use in the <MiscRates> section when such miscellaneous information is to be included in a scenario.

	ID
	Name
	Description

	wageinfl
	Wage Inflation
	Annual rate of increase in a wage index

	priceinfl
	Price Inflation
	Annual rate of increase in a price index

	gnpgrowth
	GNP Growth
	Annual rate of increase in gross national product

	unempl
	Unemployment Rate
	The current portion of the workforce that is unemployed

	intvol
	Interest Rate Volatility
	Annualized volatility of interest rates. Intended for use in a generator that uses stochastic volatility.

	eqvol
	Equity Price Volatility
	Annualized volatility of equity prices. Intended for use in a generator that uses stochastic volatility. If different volatilities are used for different classes of equity, then custom IDs will need to be used.

	portfyield
	Portfolio Yield
	Book yield on some sort of investment portfolio, as produced by a specialized generator

	defaultlevel
	Default Level
	A scalar used to prorate a set of “normal” default rates. The normal value would be 1.0, with higher values indicating higher default rates and lower values indicating lower default rates.

Yield curve types

Several implementations of the YieldCurve class are included as part of the standard API. Each implementation is characterized by the stored values that are used to represent the yield curve, and the manner in which those store values are interpreted. A string ID is associated with each implementation.

Note that a dictionary of yield curve types is included in the metadata for each scenario collection. The Curves property is a reference to that dictionary. Normally, each item in the dictionary corresponds to an investment grade or credit rating. Each item in that dictionary has a short string ID (normally indicating credit rating) associated with a data structure of descriptive information. That descriptive information is of type YieldCurveDescriptor and it includes the ID indicating which implementation of YieldCurve is used for every yield curve of this type (i.e. this credit rating) in the scenario collection.

The following is a list of the class names with a description of each.

BondDataYieldCurve

In this class the stored values are yields to maturity for bonds of 0 to 360 months to maturity. A total of 361 values are stored – a complete representation of the bond yield curve.

The string associated with each stored value is “dxxx” where the xxx represents the number of months to maturity (from 000 to 360). The “d” is for duration to maturity in months.

The string ID for this kind of yield curve is “BondData”.

LinearInterpYieldCurve

In this class the stored values are a small number of points on the bond curve. Each point represents a different number of months to maturity. The remaining points on the bond curve are interpolated or extrapolated linearly. This can lead to a somewhat saw-toothed pattern of spot rates and forward rates, but often that is not viewed as a material problem.

The string associated with each stored value is “dxxx” where the xxx represents the number of months to maturity (a few values from 000 to 360). The “d” is for duration to maturity in months.

The string ID for this kind of yield curve is “LinearInterp”.

CubicInterpYieldCurve

In this class the stored values are a small number of points on the bond curve. Each point represents a different number of months to maturity. The remaining points on the bond curve are interpolated or extrapolated using a monotone cubic spline methodology. Compared to linear interpolation, this methodology can lead to a smoother patter of spot rates and forward rates.

The interpolation method in use is the Fritsch and Carlson Monotone Piecewise Cubic Spline. A full discussion of the method is available at http://en.wikipedia.org/wiki/Monotone_cubic_interpolation.
The string associated with each stored value is “dxxx” where the xxx represents the number of months to maturity (a few values from 000 to 360). The “d” is for duration to maturity in months.

The string ID for this kind of yield curve is “CubicInterp”.

NelsonSiegelYieldCurve

In this class the stored values are the parameters for a Nelson-Siegel curve that represents the spot rate curve by time to maturity. Each stored value represents a parameter of the curve. The parameters are:

b0 = the ultimate long term rate

b1 = the excess of the instantaneous short rate over the long term rate (normally negative)

b2 = a parameter governing the size of hump in the yield curve

k = a parameter governing the location of hump in the yield curve

The spot rate for t years to maturity is calculated as follows. Of course t can be fractional when calculating yields for a number of months that is not a whole number of years.

spotRate(t) = b0 + (b1+b2/k)*((1-Exp(-k*t))/(k*t)) – (b2/k)*Exp(-k*t)

The string associated with each stored value is the name of the parameter as given above.

The string ID for this kind of yield curve is “Nelson-Siegel”.

NSInterpYieldCurve

In this class the stored values are a small number of points on the spot curve. Each point represents the spot rate for a different number of months to maturity. The remaining points on the spot curve are interpolated by fitting a Nelson-Siegel curve to the points that are provided.

The number of stored values must be 1, 2 or 3.

If the number of stored values is 1, then the yield curve is flat, with b0 equal to the specified value, b1=0, b2=0, and k=0.5.

If the number of stored values is 2, then the yield curve has a typical curved shape. The values of b0 and b1 are solved for with the assumption that b2 = 0 and k = 0.5.

If the number of stored values is 3, then the values of b1, b2, and b3 are solved for with the assumption that k = 0.5.

The string associated with each stored value is “dxxx” where the xxx represents the number of months to maturity (a few values from 000 to 360). The “d” is for duration to maturity in months.

The string ID for this kind of yield curve is “NSInterp”.
TSScenarioLib IDL

Below is a definition of the interface to TSScenarioLib as expressed using IDL (Interface Definition Language).

(This material has not yet been developed.)

PAGE
1

