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GENERALIZED RISK PROCESSES

Abstract

In this paper we give new general criteria for the weak convergence of one-
dimensional distributions of generalized risk processes and describe the class of pos-
sible limit laws under an infinite growth of (stochastic) portfolio size and (stochastic)
intensity of insurance payments. This makes it possible to construct asymptotic ap-
proximations to the distributions of generalized risk processes. We also present the
convergence rate estimates which make it possible to evaluate the accuracy of asymp-
totic approximations, give exponential estimates for the probabilities of negative val-
ues of generalized risk processes which can be also interpreted as ruin probabilities
in the so-called static model of functioning of an insurance company, formulate some
statements concerning the asymptotic expansions for the distributions of general-
ized risk processes and their quantiles. The latter results can be used to improve
the asymptotic approximations mentioned above. Finally, we present the statistical
estimators (both point and interval) of the ruin probabilities for a generalized risk
process, given the pre-history of such a process.

KEY WORDS AND PHRASES: Poisson process, Coz process, classical risk process,
generalized risk process, weak convergence, miztures of distributions, heavy tails, con-
vergence rate, asymptotic ezpansions, exponential bounds, ruin probability, nonpara-
metric estimation, consistent estimators, unbiased estimators, confidence intervals.
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1 Introduction.

In this paper we give an account of the research we started in (Bening and Korolev, 1998a)
and (Bening and Korolev, 1999a) and present new results on the asymptotic behavior

of generalized risk processes and the statistical estimation of ruin probabilities for these
processes.

The base for our generalizations is the classical risk process

Nl(t)

Ro(t)=ct— > X;, t>0, (1.1)
j=1

where ¢ > 0 is the premium rate, {X;};>1 are insurance claims (payments) which are
assumed to be independent identically distributed random variables (r.v.’s) with mean
value EX; = a, Ni(t) is the number of claims up to time ¢ which is assumed to be the
standard Poisson process (a homogeneous Poisson process with unit intensity) independent
of {X;};>1. We consider the classical risk process in the form which slightly differs from
the traditional one. Usually it is assumed that the counting process which is equal to
the number of claims is a homogeneous Poisson process with some intensity A > 0. Here
we assume that A = 1. This assumption by no means restricts the general character of
our reasoning. This means only that the time unit is chosen so that, on the average, one
payment occurs per unit time interval. As this is so, ¢ has the meaning of the increment
of the capital of the insurance company on the unit time interval chosen in this way.

Let A(t), t > 0, be a random process independent of Ni(t), with infinitely icreasing
almost surely finite continuous trajectories starting from the origin. A Cox process (also
called a doubly stochastic Poisson process controlled by the process A(t) is defined as

N(t) = Mi(A(?)), t >0, (1.2)
see, €. 'g., (Grandell, 1976). Consider the process
N(t)

R(t) =cA(t) - > X;, t>0, (1.3)
i=1

This process is a natural generalization of the classical risk process (1.1) and is a more
flexible mathematical model for the surplus of an insurance company since it takes into
account both risk and portfolio fluctuations. It can be shown that under risk fluctuations
(non-constant intensity of insurance payments), in reasonable strategies of the insurer the
premium rate or, which is in some sense the same, the current size of the portfolio must
not be constant (Bilmann, 1989), (Embrechts and Kliippelberg, 1993). On the other
hand, the intensity of payments should be proportional to the current number of insurance
contracts in the portfolio resulting in that the cumulated intensity A(#) of payments should
be proportional to the total number of contracts in the portfolio or, which is in some sense
the same, to the cumulated premiums. Following (Bening and Korolev, 1998a), we will
call R(t) a generalized risk process.

In this paper we will give new general criteria for the weak convergence of one-dimensional
distributions of generalized risk processes R(t) and describe the class of possible limit laws
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as A(t) infinitely grows which makes it possible to construct asymptotic approximations
to the distributions of generalized risk processes (Section 2), present the convergence rate
estimates which make it possible to evaluate the accuracy of asymptotic approximations
(Section 3), give exponential estimates for the probabilities of negative values of general-
ized risk processes which can be also interpreted as ruin probabilities in the so-called static
model of functioning of an insurance company (Section 4), formulate some statements
concerning the asymptotic expansions for the distributions of generalized risk processes
(Section 5) and their quantiles (Section 6). The latter results can be used to improve
the asymptotic approximations mentioned above. Finally, in Section 7 we will present the
statistical estimators (both point and interval) of the ruin probabilities for a generalized
risk process, given the pre-history of such a process. ‘

The symbols B and £ will denote convergence in probability and the coincidence of
distributions, respectively. The standard normal distribution function will be denoted
&(z). Throughout the paper we will assume that there exists DXy = o > 0.

2 Convergence criteria for generalized risk processes.
Limit laws.

In our paper (Bening and Korolev, 1998a) we considered the case where EA(t) is finite
and equals t. The aim of the present section is to present new results which are free
from this rather restrictive assumption. As we will see below, the finiteness of EA(?)
makes the situation considerably much simpler as compared to that where no moment-
type assumptions are made concerning A(?).

We will consider the asymptotic behavior of the generalized risk process as 1= 00. As
this is so, t will not necessarily have the meaning of time. For example, we can assume that
¢ is some location parameter of the controlling process, say, its median. This interpretation
will enable us to consider the asymptotic behavior of generalized risk process at a fixed
time, but under infinitely increasing (say, in the sense of convergence in probability) size of
the portfolio, or, which is the same within the considered model, under infinitely increasing
cumulated intensity of insurance payments.

From the reasoning of “expected nonruin” it follows that we should assume that ¢ > a.
However, for the sake of generality we will assume that c # a, thus formally admitting the
unfavourable case ¢ < a. The investigation of the “critical” case ¢ = a requires another

technique. This case will be considered in one of our following papers.

2.1 Auxiliary results.

Recall some notions which will be intensively exploited in what follows. Assume that all
the r.v.’s, random vectors and random processes are defined on the same probability space
(2, A,P).

A sequence of distribution functions (d.f.’s) Fi, Fz,... 18 said to converge weakly to a
df. F (which will be denoted as F, = F)asn — oo, if Fu(z) = F(z)as n — oo at every
point z, atn which the limit d.f. is continuous. If X, X1, Xa,... are r.v.'s with the d.f.’s
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F,Fy, F,..., respectively, then we shall say that the sequence {X,} weakly converges to
X (denoting this as X,, = X), if F, = F.

A family of r.v.’s { X, } is called weakly compact if each sequence of its elements contains
a weakly convergent subsequence. As is known, a family of r.v.’s {X,,} is weakly compact
if and only if

}%i_r)gos%p P(|Xa| >R)=0

(see, e.g., (Gnedenko and Kolmogorov, 1954), Chapter 2, Section 9).
The Lévy distance (metric) between d.f.’s F; and F; is defined as

Li(Fy, F;) =inf{h > 0: Fi(z — h) — h < Fy(z) < Fi(z + h) + h for all z € R}.

If X; and X, are r.v.’s with d.f’s F; and F,, respectively, then we will assume that
Li(X1, Xa) = Li(F1, F;3). The L;-convergence is equivalent to the weak convergence (see,
e.g., (Gnedenko and Kolmogorov, 1954), Chapter 2, Section 9).

Let (E,E&,p) be a metric space and P(FE) be the set of probability measures on the
measurable space (E,£). Let A C E. Put p(z,A) = inf{p(z,y) : y € A}. Let ¢ > 0.

Denote A®* = {z € E: p(z,A) <€}, A € & Let P; and P; be arbitrary probability
measures from P(F). Put

o(P1,P2) =inf{e > 0: P1(A) < Py(A®) + ¢ for any closed A € £}.
The Lévy-Prokhorov distance between distributions P, and P; is defined as
L2(P1, Pz) = max{a(Pl, Pz), O'(Pz, Pl)}

We will assume that the Lévy-Prokhorov distance between random vectors X and Y is
defined as the Lévy-Prokhorov distance between the induced probability distributions:
Lo(X,Y) = Ly(Px, Py). Asis known, the weak convergence of random vectors is equivalent
to their L,-convergence (see, e.g., (Shiryaev, 1984))

LEMMA 2.1. N(t) 5 (t — 00) if and only if A(t) 5 (t = o00).
For the PROOF see (Gnedenko and Korolev, 1996), Section A2.3.

We shall say that a family of r.v.’s {Z(t)}:50 is weakly compact at infinity if each
sequence {¢;}k>1 such that ¢y — oo (k — 00) contains a subsequence {tx,, }m>1 such that
the sequence of r.v.’s {Z(tx, )} weakly converges as m — oo. Let A(t), B(t) and D(¢)
be functions such that A(t) and B(t) are measurable, B(t) > 0 and D(t) > 0. Let X(t)
and M(t), t > 0, be independent stochastic processes such that X(¢) is measurable (by
measurability of a random process we mean its measurability with respect to the Cartesian
product of the o-algebra A of the initial probability space and the Borel o-algebra of
subsets of the real line) and the trajectories of M(t) start from the origin and do not
decrease. ,

The following statement describing necessary and sufficient conditions for the weak
convergence of superpositions of independent stocastic processes will play the main role in
the proof of our main theorem. It can be regarded as a generalization and sharpening of
the famous Dobrushin’s lemma (Dobrushin, 1955).
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LEMMA 2.2. Assume that B(t) — oo and D(t) — oo as t — oo and the families of

oS {g_(%_zt_),q_(t_)}»o and {E%w(t()i)}»o

are weakly compact at infinity. Then one-dimensional distributions of appropriately cen-

tered and normalized superposition of the processes X (t) and M(t) weakly converge to the
distribution of some r.v. Z ast — oo:

X(M(t)) - C(1)
D(t)

= 7, t— oo,

with some real function C(t) if and only if there exists a weakly compact at infinity family
of triples of r.v.’s {(W(t),U(t), V(¢)) }spo such that

1) for each t > 0, Z £ W(t)U(t) + V(¢) with the r.v. W(t) and pair (U(t), V(1)
independent;

2) L, <—)—(—%4£Q,W(t)) —0 ast— oo;

3) L, ((B%(;)), A(M(g()t)“ C(t)) ,(U(t),V(t))) 0 ast — co.

This statement was proved in (Korolev, 1996) and then presented in (Gnedenko and
Korolev, 1996), Section A2.2.

REMARK 2.1. In general, the requirement that the family of triples {(W(t), U(¢), V(t))}
should be weakly compact at infinity is unnecessary, that is, it is automatically fulfilled
under the conditions of the lemma. To prove this we need not introduce any changes
into the proof of the “only if” part as compared with (Korolev, 1996) or (Gnedenko and
Korolev, 1996). Some slight changes should be made in the “if” part. Namely, the weak
compactness at infinity of the families {Y'(¢)}i»0 and {U(t)}1»0 directly follows from that
of the families {(X(t) — A(t))/B(t)}:>0 and {B(M(t))/D(¢)}s»0 by virtue of conditions 2
and 3. So, all we have to do is to make sure that the family {V/(¢)}:>0 is weakly compact
at infinity. But by virtue of the inequality

R R
Pmrma>msme>§j+P@a>5) 21)

which is valid for any r.v.’s Y; and Y; and any R > 0, due to condition 1, for an arbitrary
R > 0 we have

P(IV(t)l > R) = P(W()U(t) + V() = WR)U(t)| > R) <

<P (IW(t)U(t) + V()| > —?—) +P (|W(t)U(t)| > g) =
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=P (]ZI > g) + P (]W(t)U(t)l > g) .

The first summand on the right-hand side does not depend on ¢. The family of products
{W()U(t)}s20 of independent factors is weakly compact at infinity, since as we have estab-
lished above, each factor family is weakly compact at infinity. Therefore R can be chosen
large enough to provide arbitrary smallness of the right-hand side of (2.1) irrespective of

t. Now the reference to (Korolev, 1996) or (Gnedenko and Korolev, 1996) completes the
proof.

2.2 Main results.

The main result of this paper is the following Theorem 2.1. It can be regarded as a
generalization and modification of one well-known result due to Rootzén (Rootzén, 1975)
(Rootzén, 1976) (also see (Grandell, 1976)) who considered simple Cox processes.

THEOREM 2.1. Assume that EX; = a # ¢ and A(2) 5 0 ast — co. Let D(t) >0
be a function such that D(t) — oo as t — co. Then one-dimensional distributions of an
appropriately centered and normalized generalized risk process R(t) weakly converge to the
distribution of some r.v. Z ast — oo, that is,

—R(t) - C(t)

I

0 =7 (t— ) (2.2)
with some real function C(t) if and only if

- ICOI _ ;2

hrgixp D) = k* < o0 (2.3)

and there exists a r.v. V such that

ZLk.

W +V (2.4)

where W is the r.v. with the standard normal distribution, independent of V and

(e —c)A(t) - C(¥)
2.
L, ( : D) V(@) =0 (t— o00), (2.5)
with the distribution of the r.v. V(t) defined by the characteristic function
, sfa®+ oY) [., |C@)] :
= — - R. 2.6
Eexp{isV(t)} exp{ e = d] k D2 (1) Eexp{isV}, se¢€ (2.6)

PROOF. We will derive this theorem as a consequence of Lemma 2.2.
The “only if” part. We oviously have R(t) = Ro(A(t)). It is well known that the
classical risk process Ro(t) is asymptotically normal, that is,

R == s o @
t(a®+o?)
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where the r.v. W has the standard normal distribution (see, e.g., Theorem 3.4.1 in (Gne-
denko and Korolev, 1996)). Therefore in Lemma 2.2 it is reasonable to set X (1) = —Ro(2),
M(t) = A(t), A(t) = (a — c)t, B(t) = /t(a? + 02). Then the weak compactness at infinity
of the sequence {(X(t) — A(t))/D(t)} required in Lemma 2.2 is a direct consequence of
(2.7). To provide the possibility of the direct use of Lemma 2 we should prove that the

family of r.v.’s ,
{ B(M(t)) _ /(a? + a?)A(2) }
20

D) D(t)

is weakly compact at infinity. For this purpose we first prove that the family {N(t)/D%*(t)}
is weakly compact at infinity. Let X!, X’ ... be identically distributed r.v.’s such that

X, £ X] and the r.v.’s X1, X,..., X}, X},... are independent. Denote XJ(S) = X; - X},
Jj21,

We obviously have

Z

> 5) dP(A(t) < \) =

1 Ni(A)
l—)m( Xj——c)\——C(t))

N

Hence it follows that for any infinitely increasing sequence {tx}x>1 we have

2> g) =0,
that is, the family {T'(¢)} is weakly compact at infinity.
Let {tc}x»>1 be an arbitrary infinitely increasing sequence. Almost word-for-word re-
peating the corresponding part of the proof of Theorem 3.2.1 from (Gnedenko and Korolev,

—R(tx) = C(tk)
' D(tk)

Jim sup P(IT ()] 2 ) < 2 lim sup P (1

8
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1996) we show that the sequence { N1(A(tk))/D?(t)}k»1 contains a weakly convergent sub-
sequence. This means that the family {N(¢)/D?(¢)} is weakly compact at infinity.

After we established the weak compactness at infinity of the family {N(t)/D?(t)}, the
weak compactness at infinity of the family {A(t)/D?(t)} is proved in exactly the same way
we used to prove Lemma 2 in (Korolev, 1998).

Now we have everything we need to apply Lemma 2.2. Due to the weak compactness
at infinity of the family of r.v.’s {V/(¢)} and condition 3 of Lemma 2.2 the family of r.v.’s
{((a—c)A(t)—=C(t))/ D(t) }:50 is also weakly compact at infinity. Let {x}x>1 be an arbitrary
infinitely increasing sequence. Let lx(g) be the left g-quantile of the r.v. A(t;). The weak
compactness at infinity of the family {A(¢)/D?(¢)}:>o implies

- l(q)

I(q)= sup D2(2,) < o0 (2.8)
for each ¢ € (0,1). The weak compactness at infinity of the family {((a — c)A(t) —
C(t))/D(t)} implies the boundedness of the sequence {((a — ¢)lx(q) — C(tx))/D(tk) }rp1
for each ¢ € (0,1). But

(= (@)= Clh) . (la=oisl) Ot
D() Dm% D2(t0) zmmy

(2.9)

so to provide the boundedness of the right-hand side of (2.9) in & for each ¢ € (0,1),
the difference (a — ¢)lk(g)/D?*(tx) — C(tx)/D?*(tx) must tend to zero as k — oo for each
q € (0,1), since D(tx) — oo as k — oco. But with account of (2.8) this is possible only
when (2.3) holds.

Let vi(q) be the left g-quantile of the r.v.

B(M(t)) _ y/(a> +0%)A(t)
D(ty) D(tx) '

For each g € (0,1) we obviously have

@+
vk(q) - D(tk) 9
whence ) )

But as we have seen above,

. Ha=c)le(g) C(t)
_—— = 0.
S% DR D)
Therefore
lim (a’ - C)’U,%(q) _ C(tk) =0
k—co | a2+ o2 D2(t) ’
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which means that

lim
k=00

=0

o [@roicw)
k(q) \j !a _ ClDz(tk)

irrespective of the value of ¢ € (0,1). Therefore by virtue of (2.2) and the arbitrariness
)

of the sequence {ti}x>1, the triples of r.v.’s (W(t),U(t), V(t)) from Lemma 2 in the case
under consideration should be sought in the form

(W (o), U, Vi) = (W, G l'f(g)',wt))

|la —c|

where W is the standard normal r.v. independent of V() for each ¢ > 0. Recall that
in accordance with condition 1 of Lemma 2.2 each of these triples must gurantee the
representation ’

d a2+a2
Ve

for each t > 0. For convenience denote k%(t) = |C(t)|/D?(t). Consider the r.v.’s satisfying
(2.10) in more detail. The boundedness of k(t) established above together with the weak
compactness at infinity of the family {V/(t)}:5o implied by Lemma 2.2 allow to extract
from an arbitrary infinitely increasing sequence T = {#,1,,...} a subsequence 7T} so that
k(t) = ko and V/(t) == Vp as t — oo, t € T}, where kq is some number and V; is some r.v..
But then, repeating the reasoning we used to prove the transfer theorem (see Theorem 3.1.2
in (Gnedenko and Korolev, 1996)) based on the definition of weak convergence through
the convergence of integrals of continuous bounded functions, for any real s we obtain

. _ 21,2 2, 2 . 21202 4 42
Eest — Eest(t) exp __3 k (t)(a to ) - Eesto exp ___S kO(a t+o )
2la — | 2|a — ¢

as t — 00, t € T1, whence it follows that the limit pair (ko, Vo) also satisfies (2.10). In
other words, the set of pairs (k(t), V(¢)) which satisfy (2.10) is closed with respect to the
passage to the limit as ¢ — co. Let V be a r.v. corresponding to the value k(t) = k (see
(2.3)) in representation (2.10). Then for any ¢ > 0 we have

0l W4+ V(t 2.10

W+ V(1) (2.11)

where the summands on both sides are independent. Rewriting (2.11) in terms of charac-
teristic functions we obtain

S22 (a4 0% . v s’k*(t)(a® + o?) sV
LSRN MO )iV _ _ EeitV(®) 2.12
exp { Ja—d Ee exp %0 —d e (2.12)

for all real s and ¢ > 0. For the characteristic function of the r.v. V(t) from (2.12) we
obtain the representation

st(a? + o)

EexpisV (1)) = exp{~S1E 22 (- w) e, cem i20
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Finally, relation (2.4) with the r.v. V/(t) just described follows from condition 3 of Lemma
2.2.

The “if” part. The assertion of Theorem 2.1 is an almost direct consequence of Lemma,
2.2 with X(t) = ~Ro(t), M(t) = A(t), A(t) = (a —)t, B(t) = \/t(a® + 0?). Here the weak
compactness at infinity of the family

{B(M(t)) (a? + a2)A(t)}

DE) D@

required in Lemma 2 follows from (2.3), (2.4), (2.5) and (2.6). Indeed, (2.3) and (2.6) yield
the weak compactness an infinity of the family {V(t)}. Together with (2.5) this means
that the family {((a — c)A(t) — C(t))/D(t)} is weakly compact at infinity. This, in its
turn, by virtue of representation (2.9) and condition (2.3) yields (2.8) for each ¢ € (0,1)
and hence, the weak compactness at infinity of the family {\/(a? + 6?)A(t)/D(t)}. The
theorem is proved.

Theorem 1 gives the following criterion of the asymptotic normality of generalized risk
processes.

COROLLARY 2.1. Under the conditions of Theorem 1 a nonrandomly centered and
normalized generalized risk process R(t) is asympiotically normal with some asymptotic

variance 6% > 0: P (M < fc) = @ (iv“) (t = o0)
D(?) 5 |

msup 1O  Ja = clé?
<
VRSP TR S @ o2

if and only if

and -

| (e = AW - C(1) __ ja - clD(¥)z )=
R (P< ZONEE >’(D(\/la_cl5202(t)—(a2+02)|0(t)|) "

PROOF. This statement follows from Theorem 2.1 and the famous Cramér-Lévy the-
orem on the decomposability of a normal law only into normal components, according to
which any r.v. V satisfying (2.4) should be normal with zero mean and variance

B k?(a2 + 0.2)
|a — ¢

52

and hence, any r.v. V/(t) satisfying (2.6) should inevitably be normal with zero mean and

variance
2 (d®+a%)C@)
[a— D7)

The corollary is proved.

11
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In other words, an appropriately centered and normalized generalized risk process R(t)
is asymptotically normal if and only if so is its controlling process A(t).

REMARK 2.2. Theorem 2.1 and Corollary 2.1 are actually valid for a more general
situation where the generalized risk process (1.3) is generated not necessarily by a stan-
dard Poisson process N, but by any asymptotically degenerate and asymptotically normal
counting process Ny, that is, by any counting process N; possessing the properties

Ny(t
—ltL)— =5 (t— )
p (Nl(t) — rt
pVi
with some v > 0,7 € R and p > 0. 4
- To illustrate to what extent the situation simplifies when we assume that EA(t) exists
and equals ¢ we present here the following theorem proved in (Bening and Korolev, 1998a).

THEOREM 2.2. Assume that ¢ > a, EA(t) = t and A(t) 5 oo ast = oo, Then
one-dimensional distributions of an appropriately centered and normalized generalized risk
process weakly converge to the distribution of some r.v. Z ast — oo, that is,

R(t) — (¢ —a)t
(a? + o?)t
if and only if there exists a r.v. V such that

1) P(Z<$)=E®($—7ﬂ—?§‘/),

=V (t > o0).

and

<:r) = ®(z) (t = o0)

= 7 (t— o0),

A(t)—t
Vi
This statement is actually a particular case of Theorem 2.1.

REMARK 2.3. Note that in Theorem 2.2 we normalize the process R(t) not by its vari-

ance, but by 1/(a? + 02)¢ thus not assuming the existence of the variance of the controlling
process A(?).

COROLLARY 2.2. Under the conditions of Theorem 2, the generalized risk process R(t)
ia asymptotically normal

p (R(t) ~(c—a)t
(a2 + o)t

with some asymptotic variance 6° if and only if 62 > 1 and

A(t) —t . z|c— al co.
P( VAR ):>®(\/(52—1)(a2+02))’ -

This statement easily follows from Theorem 2.2 and the Cramér-Lévy theorem on the
decomposability of the normal law only into normal components, according to which the
r.v. V acting in Theorem 2.2 should be normal itself.

2)

< :r:) = ®(z/8) (t— o)

12
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3 Convergence rate estimates for generalized risk pro-
cesses.

For simplicity of presentation, in Sections 3 — 6 we will assume that EA = ¢. From Theorem
2.2 it follows that the distribution of the r.v. (R(t) — (¢ — a)t)/1/(a? + 02)t is close to the

limiting one if and only if the distributions of the r.v.’s (A(t) —¢)/+/f and V are close, or,
which is in a certain sense the same, the distributions of the r.v.’s A(t) and V%V +t are
close. However, in general, the latter r.v. may take negative values as well, whereas the
controlling process of a Cox process must be positive. Therefore, instead of vV +t we will
consider the “accompanying” process A*(t) = |\/tV + t|, which, as t — oo, becomes more

and more close to vtV + ¢ and hence to A(t). Let N*(¢) be the Cox process controlled by
A*(t) and
N¥()
R*(t) = cA*(t Z X;. (3.1)

The d.f.’s of 1.v.’s (R(t) — (c — a)t)/y/(a? + o2)t and (R*(t) — (c— a)t)/\/(a? + o)t will be

denoted Fy(z) and Fi* ( ), respectively. Then from the 1dent1ty
Fy(z) = (Fi(z) - F*(z)) + F(2) (3:2)

it follows that an appropriate convergence rate estimate for the generalized risk process
R(t) can be constructed from an appropriate estimate of the accuracy of approximation
of the distribution of R(t) by that of R*(t) and the convergence rate estimate for R*(t).
Consider an estimate of

Ay = Sup |Fi(z) — F(z)|.

Let Sy(t) = cAy(t) — S ®) X, and S,(t) = cha(t) — M A2®) X be two generalized
risk processes generated by one and the same sequence {X;}i>o0, but controlled by (in
general, different) processes A(t) and As(t), respectively. Denote

Ji(3) = P(A1(t) < \) = P(Aq(t) < ).

In what follows, the k-fold convolution of a distribution density (or a d.f.) h(z) will be
denoted h**(z).

LEMMA 3.1. Assume that the claims X; have a finite third moment and a density p(z)
satisfying the condition p(z) < A < co. Then

sup [P(S(t) < ) = P(Sa(t) < 2)] < sup e J(N)+

+2(cK +1) 7min (1, %)IJ,:(A)Id/\,

K = sup Vksup p*(z) < co.
k T

where
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The proof of this lemma can be found in (Bening and Korolev, 1998a)
From Lemma 3.1 it follows that

Ar < sup e *|P(A(t) < A) = P(IVEV + 1| < A)|+

A0

+2(cK + 1)/min(1,—\}—x) IP(A(t) < A)—P(IVEV +t] < \)] dA <

< sup e MP(A(t) < A) = P(VAV +1 < N)| + sup e *P(VIV +t < =\)+
>0

A>0

+2(cK + 1) [/mm(l \/_) IP(A(t) < A)—P(VtV + t <)) dA+

+/rn1n(1 ) PV +t<~ /\)Id/\]

= ~(Viy+1) |p (A(t) t ) _ ‘ - ( _éﬂ)
= sup e < P(V<y)+supe™P [V < +
2-Vi vi oY V<y) 350 Vi
+2(cK + 1) /min (\/{, ul ) 'P (A(t\)/._t < u) —P(V <u)| du +
_ 7 +1 t
T . (.1 A+t
I,—=|P|V <= dA 3.3
+ fin(1g5) e (v <-27) o) 63

Consider the third summand on the right-hand side of (3.3). It represents the mean metric
with the weight w(t,u) = min{v/%, (/v +1)""/2}1(u > —+/1) characterizing the distance
between the limit and pre-limit d.f.’s of the controlling process. It is easy to see that
at u < 0, the derivative with respect to ¢ of the function (u/v/t + 1)~Y/2 is negative.
Therefore, for these u the function w(¢, u) does not exceed its value at the point ¢ at which
Vvt = (u/v/t + 1)"Y/2. This value is equal to %(Iul + v/u? +4) < |ul + 1. Obviously,
for negative u the inequality w(t,u) < 1 holds so that w(¢,u) < |u| + 1. Therefore, the
properties of the third summand on the right-hand side of (3.3) appear to be similar to

those of the well-investigated difference pseudomoments (see, e. g., (Zolotarev, 1997)).
Thus, continuing (3.3), we obtain

A(t) -t ~
Atsyzlil\)ﬁp< i <y>—P(V<y)’+P(V< Vi)+
+2(cK +1) _éz(lu|+1)|P< i <u)—P(V<u) du +
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Jri(gg) o (v <25 o] =eto @9

Note that the second and the fourth summands in w(t) do not depend on the pre-limit
controlling process. For instance, if V is the standard normal r.v., then

o(vt) 1 [t
P(V < —v1) < BV mexp{—i},

Zmin (1, %) P (V < - )‘T;L_t—t> dr < Zomin (1,—\/17) /\—%qs (i;_zt.) dr <

<ex{——-t—} 1-+E-7E
=P T e TV E )

that is, as ¢ grows, the summands in w(t) mentioned above decrease at least as slow as
exponentially.

Denote 5 = E| X, |3,
%

3
o3’

L3=Co

where Co is the absolute constant in the Berry-Esseen inequality. It is known that Cy <
0.7655 (see (Shiganov, 1986) or (Zolotarev, 1997)).

LEMMA 3.2. Assume that B3 < co. Then

Ni(%)
P(ﬁ(; X; - a/\> < w) — &(z)

For the proof of this lemma see (Michel, 1986) or (Korolev and Shorgin, 1997).

THEOREM 3.1. Let B3 < 00, E|V| < co. Then for all t > 1 such that PV=-V%)=0
we have

cC—da ]. . L3

with w(t) defined in (3.4) and

1 1
Q(s)_m’“{? Wum—-a}'

The proof of this theorem based on Lemmas 3.1 and 3.2 was published in (Bening and
Korolev, 1998a).

<1s

ve)

sup
x

sup
x
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COROLLARY 3.1. Under the conditions of Theorem 3.1 we have

- 1.32
sup Fi(z) - E® (:L' - % . V) < 7 ((a2 +ﬂ;2)3/2 + E|V}) + w(?).

To prove this result it suffices to evaluate the right-hand side of (3.5) with ¢ being the
root of the equation @(g)y/1 — € = 0.7655.

- As an illustration, consider the discrete time case t = 0, 1, 2,... and define the con-
trolling process A(t) as

t
A0) =0, A(t)=>_A, (3.6)
i=1
where A, As,... are independent identically distributed nonnegative r.v.’s with EA; = 1,
¢ > 1. This representation is typical for the situations where the controlling processes are
homogeneous and have independent increments.
In addition, assume that 6% = EJA; — 1] < co and denote 42 = DA;. In this case,
obviously, we have P(V < v) = ®(v/v). Consider the first and the third summands in w(t)
(see (3.4)). By the Berry-Esseen inequality we have

(M0t <u) -pw < < 2 (3.7

Using the nonuniform estimate of the rate of convergence in the central limit theorem (see
(Nagaev, 1965) and (Paditz, 1989)) we obtain

7(|u| +1) 'P (A(t\)ﬂ‘t < u) —P(V <u)
)

sup
y2-V?

du <

-\t

645° Fut1 , _ 286r &° (3.5)
ToAVE] LT 3VE PVE '

With the account of the estimates for the second and fourth summands in w(t), from (3.7)
and (3.8) by Theorem 3.1 we finally obtain that in the situation under consideration

Fy(z) - E® (m - (i?—‘-‘ly—) Fy(z)- & (—:f—ﬂ) =0 (%) .

o? + a?
| o2 ta?
4 Exponential bounds for the probabilities of negat-
ive values of generalized risk processes.

sup = sup
x xr

Let u be the initial capital of the insurance company. Within the framework of the dynamic
insurance model, a ruin is understood as the event consisting in that there exists somet > 0
at which the surplus of the company becomes negative. We will consider the calculation
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and statistical estimation of the probability of this event (ruin prbbability) for a generalized
risk process in the concluding section of this paper.

At the same time, when the surplus becomes negative, actually there may be no ruin
since there is a possibity for the insurer to take a credit. Therefore, it may be of considerable
interest to know the probability of the surplus to be negative at some fired time. It is
quite resonable to identify these probabilities with ruin probabilities within the so-called
static insurance models which concern the insurance activities within an unchanged (fixed)
portfolio (see, e. g., (Rotar’ and Bening, 1994)). Indeed, the number of insurance payments
N(t) = Ny(A(t)) within a certain portfolio should be in some sense proportional to A(t)
which is interpreted as the “size” of the insurance porfolio. In this situation it is reasonable
not to consider ¢t as a “physical” time, but to assume simply that the process A(2) is
parametrized by its location characteristic, say, expectation, and, hence, to investigate the
behavior of the probabilities of negative values of a generalized risk process (which are
ruin probabilities in the static model) depending on the mean value of A(t), that is, on the
mean size of the portfolio under the condition that this size (infinitely) increases.

We will look for the bounds for the ruin probability in the static model, that is, for
P(u + Ry(t) < 0), which characterize the decrease rate of this probability as u and ¢ grow.

Whatever z € R is, we have

N(A)
P(ut Ro(t) <z) = P ( > Xi> u-l-cA(t)—x) =

i=1

0 Ni())

In the paper (Rotar’, 1972) the following analog of the Bernstein inequality for Poisson
random sums.
LEMMA 4.1. Let |Xi| < M < 0o with probability one, 1 > 1. Then for any y > 0

( y? Aa? + o?)
M) eXp{_I}’ ecin y < By
1 * —
P(Z\;“1 Xi (;/\>y) < 4
AMa? + o2 /Aa? + o2 Ma? + o2
exp {—y—%ﬂ—:‘—)}, ecin y > ——%4————)

Assuming henceforth that the claims are uniformly bounded, that is, 0 < X; < M < 00,
1 > 1, and continuing (4.1) with regard to the requirement of positiveness of y in Lemma
4.1, we obtain

Plu+ Ry(t) <z) < P (A(t) <3 w) *

cC—a

+

oo (zfi‘f”x,.—ax J(e=altu—2

dP(A(t) < X) <
\//\(a2 + 02?) Ma? + o?) )

(z-u)/(c—a)
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(m‘—u)/(c—-a—f—i't!"—?) ,
< P(A) < =) 4 / exP{_((c*“)““*“") }dP(A(t)</\)+

_ 2 1 o2

c—a e (oa) 4X(a? + o2)

T (c—a)d+u—=z
+ / exp{—— - dP(A(t) <)) <

(z—u)/ (c—a—%"—%)
' zT—u 7 (c—a)d+u—z
< PlA@) g 228 - :
< OS]+ R bap(an <

(z—u)/ (c—a—- ﬁff—z)

~ | (4.2)
Put z = 0 in (4.2) and denote ¢(t,u) = P(u + Ry(t) < 0). Then from (4.2) we obtain
the following result

THEOREM 4.1. If 0 < X; < M < ¢ a. 8,121, then

u T (c—a)X
< —— e . .
YP(t,u) < exp{ 4M}0/exp{ YY; }dP(A(t) <) (4.3)
For illustration, consider the discrete time case t = n = 1,2,... and assume that
the controlling process A(n) is representable in the form (3.6) in which Ay, A,,... are

independent identically distributed nonnegative r.v.’s. With the account of the abovesaid,
¥(n,u) can be interpreted as the ruin probability of an insurance company working with n
homogeneous portfolios with the total initial capital u. From Theorem 4.1 we easily obtain
the following estimate

COROLLARY 4.1. In the discrete time case t = n, = 1,2,..., if the controlling process
A(n) is representable in the form (3.6), then under the conditions of Theorem 4.1 we have

p(n,u) < exp {—ﬁ} A",

where

0<A= Eexp{—%l_ﬁal\l} <L

From the discrete time case return to the general situation.
COROLLARY 4.1. Under the conditions of Theorem 3, for anyt > 0

P(t,u) < eXP{-ﬁj}-

To emphasize the character of the dependence of the right-hand side of (4.3) on ¢, recall
that according to Theorem 2.2, the distribution of the risk process R(t) is close to limiting
as t — oo if and only if the distribution of the r.v. (A(t) —¢)/v/% is close to that of the r.v.
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V or, which is in some sense the same, if the distribution of the r.v. A(t) is close to that
of v/tV +t. Continuing (4.3) with the help of the identity

P(A(t) < A) = P(VtV +t < A) + [P(A(t) < A) = P(VEV + t < \)]

and integrating by parts, we obtain the following statement.
COROLLARY 4.2. Under the conditions of Theorem 4.1 we have

b(t,u) < exp {_%ﬂ} (Z: exp{ (e ‘4‘]’&\[”} dP(V < v)+ Q¢ u)) ,

where

Qt,v) < P(.V< —\/Z)éxp{(c_a)t} .

4M
i c_a\[/exp{ c__;v)[\/fv} P(A(t\)ﬂ_t<v)—P(V<v)

For more details see (Bening and Korolev, 1998a). It is clear that if A(t) = ViV +1t,
roe P(V > —/t) = 1, then Q(¢,u) = 0.

dv

5 Asymptotic expansions for distributions of general-
ized risk processes.

We shall say that a r.v. Y satisfies the Cramér (C) condition if

limsup |Eexp{isY}| < 1. (5.1)
lsl

8—)00

The following statement is well known (see, e. g., (Petrov, 1975)). Denote S, = X;+--- +
Xn. The standard normal density will be denoted ¢(z). The characteristic function (ch.f.)
of a r.v. X will be denoted fx(s), s € R.

PROPOSITION 5.1. Let, in addition to the conditions introduced in Sect. 1, the r.v.’s
{X;}j>1 satisfy the Cramér condition (5.1) and E|X;|¥ < co for some integer k > 3. Then

Sp = an ~(k=2)/2
P( o\/n < ) 2 n1/2 (n )’

where the functions Q;(z) are defined by the formulas

sup
x

J km
Qi(2) = —$(2) ¥ Hysaia (<) Hki,,,:((—%”‘t“‘“) Ci=l..k-2  (52)

m + 2)lgm+?
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Here the summation is carried out by all integer nonnegative solutions (ki,...,k;) of the
equation ky +2ky + ...+ jkj =3, I = ki + ...+ kj; Yms2 is the (m + 2)th semiinvariant of
the r.v. Xy and Hy(z) are the Chebyshev-Hermite polynomials of power m, that is,

Hn(2)$(z) = (=1)"¢™)(2).

In particular, if we denote oy = EX!, 1 =1,2,..., then -

Qi(e) = ~4(2)@" - s, (53)
Qa(2) = —4(z) (x3~3w)%725‘1i+(m ~ 10 + 152)2 (5.4)

Now we will present some analogs of this statement for generalized risk processes.
Without essential restriction of the applicability of our results, we will assume that A(t) =
V1V +t where V is a r.v. with EV = 0.

THEOREM 5.1. Assume that the r.v. V is representable as V = Vo — EVp with Vg being
a nonnegative r.v. satisfying the condition: there satisfies a v > 0 such that for any h>0

Eeh%e < e, (5.5)

Let E|X;|* < oo for some integer k >3 and the r.v. X, satisfies the Cramér condition
(5.1). Then for any t > (EVy)?

Ra(t) = (c —a)t B p__C—a _k'zwj(x)
P( e+ ) <””) fo (- i v) - 2

sup
x

where

(cz—xﬁ?)/a

w;(e) = ‘E; ;} 5_;0 / / Pi(=D,)Prn(—D,)¢ (”i‘i/'(;_:z) dyz"dP(V < 2),

1,m>0 =0

7=0,...,k—2

D, is the operator of formal differentiation with respect to y. The polynomials Py(-) are
defined by the relation

Y20 10 b
Zﬂk,{m} , J=1,...,k=2,

where the summation is carried out by all nonnegative solutions ki,...,k; of the equation
ky+2ky +...+Jjkj = 7, amsa = EXT'Y?, Po(z) = 1, the polynomials Pra(-) are defined by
the formal equality

A1 ,-1/2 -m[2 d :
exp{Zv(H_ 1)'0"“ } Zt Zv P4 (5.6)
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The proof of Theorem 5.1 is similar to that of Theorem 3 from the paper (Bening and
Korolev, 1998a).

REMARK 5.1. It is easy to see that

Poo(:l?)El, PjoEO, j=1,,k—2,

2 3 ) 4.2
Pu(w) = x_o-?‘__Z_ Pgl(.’t) = mj‘gé' P22(x) = z 012

202’ 603’ 8a4’

rtoy 2lonas 2803

Pale) = oe Pule) = =557 Pule) = 25,
das — rtoy 2802
Pi(z) = —=, Py(z) = 3,
1(2) 603’ 2(2) 2404 + 7205

REMARK 5.2. The first two functions w1. and ws have the form

/¢ c—a Qg Holz— » c—a _
Vaito?) |6oay va? + g2

z c—a
_.§H1 ((IJ - 27\/—+—_———0—_5>l dP(V < Z),

w(a:)-——-/qb or —az Qy Holz— 2 c—a n
0= Va fo?) |240ta, ° Va2 + o2

a3 cC—a Qs c—a
iy 10 (m "Z,/‘—auraz) T (12a3H“ (x'z\/aura?) *

c—a 2203 c—a
+60'O.’2H2 (:E—Z\/m)) + 852 Hs (:I:—Z*m)" dP(V<Z),
where H,,(-) are the Chebyshev-Hermite polynomials.

REMARK 5.3. Condition (5.5) holds, e. g., if V5 = || with £ being a bounded r.v.. It
also holds for the normal r.v. {&. However, this condition does not hold if V} is a Poisson
or exponential r.v.. The r.v. V5 must have all moments.

Now consider the discrete-time case t = n = 1,2,... and assume that the controlling
process A(n) has the form (3.6) where {A;} are independent identically distributed r.v.’s,
A1 20,7 > 1. As we have noted above, this representation corresponds, for instance, to the
case where A(t) is a homogeneous process with independent increments and the generalized
risk process is observed at equidistant time instants so that A; are the increments of the

controlling process A(t) on (unit) intervals between observations. Assume that EA; = 1 so
that EA(n) = n. Denote

w=EA -1, 1=12,...

Define the formal “semiinvariants” @; by the equality
: o &
log Eexp{(A1 — 1)(fx,(s) =1 —isc)} = T"(zs J
J=2
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In particular,
& = 1y — ¢)?, aeg = 3vz0n(ay —c) + v3(ag — ¢)?,

&4 = 3va0] + vy — 0)* + 6(a1 — ¢)’aus — 302 (e — ).

‘THEOREM 5.2. Assume that there exists a Y > 0 such that for any h >0 the r.v. A,
satisfies the inequality

EeM < e, | (5.7)
Let E|X|¥ < oo for some integer k> 3. Assume that Xy satisfies the Cramér condition
(5.1). Then
S(n) —(a—c)n Qg A2 0,(x) k=2
P ~ L I
sgp ( s _ Oz —— E T o(n™7 ),
where

(8% — axr N
() = — - =1,...,k—2
’UJ(J:) 28y +a2QJ ( \/M) y ] ) 9 )
and the functions @j are defined by the formulas (5.2) with the semiinvariants Ym+2 replaced
by Cmy2 + ®mya.
REMARK 5.4. We do not assume that the r.v.’s A, satisfy the Cramér condition (5.1).
Therefore they may be lattice.

REMARK 5.5. Condition (5.7) is stronger than (5.5). This condition is satisfied by any
bounded r.v. Ay, for example, by a binomial r.v., whereas Poisson or exponential r.v.’s do
not satisfy this condition. Also note that the r.v. A; must have all moments.

REMARK 5.6. The first two functions v;(z) have the following forms:

_ __®tag Qs ) ( oy )
v(e) = 60 (ee, +a2H2(x &g+ 4% ey +aq /)’
___ &ytoy ( Qg ) ( Qz > =
v(z) = 2402 (eey +042)H3 e ®; +oy o2 &g+

(23 +03)? ( g ) ( as )
7204(832+042)H5 ’ &y tog o &y +az/’

where Hy,(-) are Chebyshev-Hermite polynomials.

6 Asymptotic expansions for the quantiles of gene-
ralized risk processes.
In this section we will give the asymptotic expansions up to the terms of order o(t=1/?) for

the quantiles of generalized risk processes. The following statement will play the main role
in our constructions. Let {Z(t)}:»0 be a random process. Assume that for each t > 0 the
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distribution of the r.v. Z(t) is continuous. For 8 € (0,1) and t > 0, the quantile of order
B of the r.v. Z(t) will be denoted ug(t):

P(Z(t) < up(t)) = 8.

LEMMA 6.1. Assume that for the one-dimensional distribution function of the random
process Z(t) the asymptotic ezpansion of the form

P(Z(t) < z) = Go(z) + t7 /%Gy (2) + t71Go(z) + o(t™)

is valid with the functions Gj(z), G(z) and G3(z) being continuous and Gh(z) > 0. Then
for any B € (0,1) the quantiles ug(t) of Z(t) can be expanded as

Gl(uﬁ) -1/2
ug(t) = ug — ——1 +
) = 8 G
Gio(u) G1(ug) Gy (up) — (Go(up))’Ga(ug) — 5GH(us) Go(up)
+ - 3
(Go(us))

where ug is the B-quantile of Gy, Go(ug) = B.

This statement was proved in (Bening and Korolev, 1998b).

REMARK 6.1. If we denote

7+ o(t™h),

* G1(ug) -1/2
uglt) = - =+t +
o) = ue Go(ug)
4 Golup)Gr(ug)Gi(up) ~ (Gﬁ(uﬁ))2§2(uﬁ) — 5G1(up)Go(up)
(Ga(up))
where Go(ug) = 8, then it can be shown that

P(Z(t) < uj(t)) = B+ o(t™).

t~t,

Assume that the controlling process has the form A(t) = vtV + ¢, t > 0, where
V =V — EW, and V} is a nonnegative r.v.. For g € (0,1), the S-quantile of the r.v. R(t)
with this controlling process will be denoted vg(¢).

THEOREM 6.1. Let the r.v. Vg satisfy condition (5.5). Assume that E|X;|* < 0o and
X1 satisfies the Cramér condition (5.1). Then, as t — oo, we have

wlt) =~y s+ (o= ot +
wo(vgp) »
1 [wh(ea)ua(va)wl (o) — (wp(v5)Pun(ve) = B (up)uglon)] . o
v (w5 A
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where vg is the B-quantile of the d.f.

c—a
=EQ |z - .
wo(z) (a: 7o V) ,
and the form of the functions wi(z) and wa(x) was presented in Remark 5.2.

This statement directly follows from Lemma 6.1 and Theorem 5.1 with the account of
thé obvious relation vg(t) = Taa0s(t) + (c — a)t, where 94(t) is the #-quantile of the r.v.
(R(t) - (c — a)t)/v/Faua.

REMARK 6.2. In practice, Theorem 6.1 is applicable for ¢ > (EV;)2.

Now consider the discrete-time case t = n = 1,2,... and assume that the controlling
process is represented as (3.6) where A; > 0, are independent and identically distributed

and EA; = 1. For 8 € (0,1) the S-quantile of the r.v. R(n) with this controlling process
will be denoted Tg(n).

THEOREM 6.2. Assume that for any h >0 the r.v. A; satisfies the inequality (5.7). Let
E|X1|* < co. Assume that X, satisfies the Cramér condition (5.1). Then, as n — oo,

&3+ a3

us(n) = _60'\/&2 + as
1 (3 + as)?(u} — 6uj + 5up)

+ (24 + ug)(u5 — 3ug) —
2402\ /n(aq + 02) [ o+ ea)lip 2 3(ee2 + 02)

(3 + az)?
302

where ug is the B-quantile of the standard normal distribution and the form of the “semi-
invariants” ®; was presented just before Theorem 5.2.

(uf — 1) + y/n(e: +o2)up + n(c—a) +

(uj — 10u5 + 15u5)} + o(n”?),

Theorem 6.2 directly follows from Lemma 6.1 and Theorem 5.2.
Theorems 6.1 and 6.2 make it possible to construct asymptotic approximations for the

minimum admissible surplus of an insurance company within the model of a generalized

risk process. Namely, if u is the initial capital of the insurance company, then its surplus

at time t is R(t) 4+ u. If the confidence level is v € (0,1), then the minimum admissible

bound is the function m.(t,u) such that P(R(t) + u > m,(t,u)) = 7. This means that
my(t,u) = v1-4(t) +u

within the assumptions of Theorem 6.1 or

my(n,u) = T1—y(n) + u

within the assumptions of Theorem 6.2.
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7 Statistical estimation of ruin probabilities for gene-
ralized risk processes.

7.1 Nonparametric estimator for ruin probability.

Let « > 0 be the initial capital of an insurance company. It is easy to see that the ruin
probability for the generalized risk process

P(u) = P(u + glg R(t) < 0)
coincides with ruin probability for the classical risk process
’(bo(’u) = P(U + ?;g Ro(t) < 0),

since R(t) differs from Ro(t) only by a random (in general, inhomogeneous) compression
of time which does not change the amplitudes of trajectories. We will essentially use this
fact.

There are many analytical methods of calculating the bounds of ruin probabilities. All
of them essentially use the information on the behavior of the tails of the distributions of
claims. However, in real practice, this behavior is unknown since the statistical inference
concerning the distribution of claims is made on the basis of a finite sample of observed pay-
ments resulting in that it is impossible to obtain the complete information on the behavior
of the tails of their distribution at those values of arguments which exceed the greatest
observation and are less than the smallest observation. Therefore, it is very important to
have a possibility to directly estimate the ruin probability statistically.

The problem of statistical estimation of ruin probability for a generalized risk process
(as well as for a classical risk process) from its pre-history up to some time ¢, has an
important peculiarity. Namely, the number N(to) of insurance payments up to this time is
random. Therefore, in practice, the ruin probability should be estimated from the sample
X1, X2, ...y XN(to) of random size. As this is so, the class of possible distributions of the r.v.
N(to) is very wide even under the restrictions introduced above and by no means reduces
to Poisson laws. For example, if A(tp) has the gamma-distribution, then the distribution
of N(to) is negative binomial.

A very important step in the direction of statistical estimation of ruin probability was
made by Croux and Veraverbecke (Croux and Veraverbecke, 1990). However, their nice
results seem to be hardly applicable in practice, since, first, they are based on samples
with nonrandom sizes and, second, they cannot be used for the construction of (asymptot-
ic) confidence intervals because the asymptotic distribution (more precisely, its variance)
of the estimator proposed in (Croux and Veraverbecke, 1990) depends on the unknown
distribution of claims.

Our aim is to construct practically applicable point and interval estimators of ruin
probability for generalized risk processess.

Based on the principle of expected nonruin, assume that ¢ > a. As we have seen above,
(u) = tho(u). Therefore, we can use the well-known representation of the ruin probability
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for the classical risk process

wiw=(1-9 % (4) (1 -6*w), ()

k=1

% 0/ (v))dy,

F(y) = P(Xy ), and the symbol G**, as above, denotes the k-fold convolution of the d.f.
G with 1tself G’* (z) = (G**F-V % G)(z), k > 1, and G*° is the d.f. with a single unit jump
at zero. Relation (7.1) is called the Pollaczek-Khinchin formula or Beekman’s convolution
formula (see, e. g., (Beekman, 1968), (Asmussen, 1987), (Croux and Veraverbecke, 1990)).

Assume that the parameters ¢ and a are known. At first we formally assume that at our
disposal we have a sample X, ..., X,, where n > 1 is some nonrandom integer number. For
this situation, in (Croux and Veraverbecke, 1990) the following nonparametric estimator
for to(u) was proposed. Since

where

olw) = = = (1= 2) Tolw), (1.2
where

— ot a k *
Tl =3 (5) @, (7.9

it suffices to construct an estimator for ¥y(w).

Let A C R!. The symbol 14(z) will denote the indicator function of a set A: 14(z) =1,
if £ € A, and 14(z) =0, if z ¢ A. Let Y1,Y3,... be independent identically distributed
r.v.’s with the d.f. G(z). Then

G*k(u)=P(§’1+...+Y}c<u):

1 7 7 k
s / . .'/1(‘“’“)(3/1 oot yk)j];];(l — F(y;))dys - - - dyx. (7.4)
o 0 =
Let F,,(z) be the empirical distribution function constructed from the sample Xj,..., Xy,

that is,
1 n
:E) = ;Z 1(_°o,z)(X5).
i=1
Then, replacing F' in (7.4) by F,, we obtain an estimator for G**(u) in the form of the

U-statistic -
Un,k = (07,:) Z hk(Xila R Xik)

1< << <n
with the symmetric kernel

Leoow (91 + -+ Uk) Hl[y; (z;)dy - - - dys.

j=1

1 x0
hk(xx---,ka)=g;/"‘
0
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Let m(n) be some integer, 1 < m(n) < n. By virtue of (7.2) and (7.3), as an estimator for
o(u) under a nonrandom sample size n we formally take '

a a\ —
() = 2= (1= 2) B, () (75)
where ,
_ ™) a\k
Ipn(u) = Z (_) Un,k- (76)
k=1 ¢
Nowhit ilsdcleir that, based on the sample X1, ..., Xn(), as an estimator for 1 (u) = ()
we should take . o |
YN(o) (1) = i (1 - Z) Vi (to)(4)s (7.7)
where
_ m (N (t0)) k
¢N(to)(u) = :L: (E) Un (to) k- (7.8)
=1

7.2 The asymptotic properties of the estimator of ruin probabi-

lity.
Denote 2 o oo i
o? = (1 - ﬁ) >y (E> kmo m, (7.9)
¢ k=1m=1 c
where
Okm = ERp(X1)hm(X1) — G*k(u)G*m(u), (7.10)
1T
h_,(:z:) = Z/G*(J_l)(u — y)l[y,oo)(w)d?/- (7.11)
0

The following statement plays the main role in this subsection.

THEOREM 7.1. Let the estimator Pny(u) be defined by the relations (7.7) and (7.8)
with the function m(n) infinitely increasing as n — oo so that

lim logn
n—oo m(n)

= 0. (7.12)

Assume that A(t) B oo ast = co. Let d(t) > 0 be a function infinitely increasing as
t — 00. Then the r.v. o™1/d(t)(Yny(u) — ¥(u)) has a limit distribution as t — oco:

o d(t)(¥ne(u) - P(u) = Z (¢t = ), (7.13)
if and only if there exists a nonnegative r.v. Y such that
A(t)
— . 7.14
a0 =Y (I ) (7.14)
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As this is so,
P(Z < ) = E®(zVY), zeR. (7.15)
The limit distribution (7.15) is the same for any s > 0.
The proof of Theorem 7.1 will be forestalled by some lemmas.

LEMMA 7.1. Let N(t) be a Cox process controlled by a process A(t). Let d(t) > 0
be a function such that d(t) — oo (t = o0). Then one-dimensional distributions of the
normalized Cox process weakly converge to the distribution of some r.v. Y :

-];\l[—(%)-=>Y(t-—)oo),

if and only if one-dimensional distributions of the normalized controlling process A(t) weak-
ly converge to the same distribution: ‘

A()
o) =Y (t = ).
For the proof see (Gnedenko and Korolev, 1996) and (Korolev, 1998).

LEMMA 7.2. Let the estimator ¥,(u) be defined by relations (7.5) and (7.6) with the
function m(n) < n infinitely increasing so that (7.12) holds. Then the r.v. o™ /n(,(u) —
Yo(u)) is asymptotically normal:

P (a*lx/r_t(z/)n(u) — Po(u)) < x) = ®(z) (n — o0).

For the proof see (Croux and Veraverbecke, 1990).

Consider ther.v.’s Ny, Na, ..., X1, Xs,. .., defined on the same measurable space (£2,.4).
Assume that for each n > 1 the r.v.’s N,,, X1, X2,... are independent and N,, takes only
natural values. Consider a family of probability measures {Py, 8§ € O}, each of which
is defined on A. Let T,, = T,(Xi,...,Xs) be some statistic. For each n > 1 define the

r.v. Tn, by putting Tn,(w) = Tn,(w) (Xl(w), ey XNu(w) (w)) for each elementary outcome

w € . We shall say that the statistic T, is asymptotically normal if there exist functions
§(0) and (6) such that for each § € © we have

Po (SO)VA(T —1(8)) <) = @(a) (n > c0). (7.16)

LEMMA 7.3. Let {ds}n>1 be an infinitely increasing sequence of positive numbers.

Assume that N, 2 0o asn — co. Let a statistic T, be asymptotically normal (7.16).
Then for each 0 € © there exists a d.f. F(z,0) such that

Py (5(0)\/2,:(TN,, —4(0)) < :c) — F(e,0) (n— o),
if and only if there exists a family of d.f.’s H = {H(z,0) : 6 € O} satisfying the conditions
H(z,0)=0, 2<0, 0€0;
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F(z,0) = f@(z\/@)dyﬂ(y, 8), ceRl, c0,
0

Ps(N, < dpz) => H(z,0), n—o00, 0€0.
Moreover, if the d.f.’s of the r.v.’s N, do not depend on 0 then so do the d.f.’s H(z,0),
that is, the family H consists of a single element.
This lemma is a slight generalization of Theorem 3 from (Korolev, 1995).
The PROOF of Theorem 7.1. Let {t1,%2,...} be an arbitrary infinitely increasing se-

quence. Put N, = N(t,), n > 1. By Lemma 2.1 the conditions A(t) % oo and N(?) 5o
are equivalent as ¢ — co. Therefore, since by Lemma 7.2, the estimator 1, (u) is asymp-
totically normal, then by Lemma 7.3, for convergence (7.13) in which ¢ runs along the
sequence {t1,%s,...}, it is necessary and sufficient that there exists a r.v. ¥ > 0 such that

N

i) =Y (n — 00). (7.17)
But by Lemma 7.1, convergence (7.17) takes place if and only if

Atn)

at) =Y (n—o0) (7.18)

Since the family of scale mixtures of normal laws (7.15) is identifiable, the distribution of
the r.v. Y does not depend on the choice of the sequence {t1,t2,...}. The arbitrariness of
the sequence {t,}.>1 implies that (7.18) is equivalent to (7.14). The theorem is proved.

COROLLARY 7.1. Under the conditions of Theorem 7.1, the estimator Yn(u) is
asymptotically normal as t — oo:

Plo"Jd(t)(ny () — $(w)) < 2) => B(z) (t = o)

if and only if
Alt)
——Z 51 (t— ). 7.19
i 51 ) (7.19)
This statement is a direct consequence of Theorem 7.1 with the account of the inedti-
fiability of scale mixtures of normal laws.
From Theorem 7.1 we can derive some conclusions concerning the consistency and
asymptotic unbiasedness of the estimator ) (s(u).

COROLLARY 7.2. Let the conditions of Theorem 7.1 hold and let there exist an infinitely
icreasing function d(t) and a r.v. Y such that convergence (7.14) takes place. Then the
estimator Py (u) is consistent.

PROOF. The d.f. of the r.v. o=1/d(t)(¥w(y(w) — (u)) will be denoted ¥,(z). For an

arbitrary ¢ > 0 we have

P (jonco) — #w)| > &) = P (o7 /d(t) oo (w) 9] > o™ a) =
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_ <—ea—1\/c_1®) +1-1, <eo——1 d(t)) . (7.20)

But in accordance with Theorem 7.1, under the conditions of Corollary 7.2, the family of

d.f’s {¥4(z)}i>0 is weakly compact due to convergence (7.13). This means that for any
6 > 0 there exists an Rs > 0 such that, whatever ¢ > 0 is, for any R > Rj the inequality

U,(~R) + 1 ~ U,(R) < § holds. This also holds for t > ¢, = inf {t: eoc™*\/d(t) > R}.

Thus, from (7.20) it follows that for arbitrary € > 0 and § > 0 there exists a to = to(e, 8)
such that for all £ > ¢; we have

P (|¢N(t)(u) - ¢(U)| >€) <4,

which means the consistency of the estimator ¢y (u). The corollary is proved.

A distinguishing feature of the situation under consideration is that in the case of non-
degenerate mixing r.v. Y the asymptotic distribution of the estimator Yn(1)(u) has heavier
tails than the normal law.

As an illustration, consider the case where A(t) has either geometric distribution with
parameter 1/t or the exponential distribution with the same expectation. In both these
cases the distribution of the r.v. Y in (7.14) is standard exponential, and hence, the
distribution of the limit r.v. Z in (7.13) has the form

P(Z <z)= 7@(\/§x)e_ydy = % (1 + \/—2%—————;—2) . (7.21)

This distribution does not possess moments of any positive order! It is easy to see that
for 7 < B < 1, the B-quantile of this distribution is equal to v/2(26 — 1)/4/1 — (28 — 1)2.
Therefore, say, the difference between the quantiles of orders 0.975 and 0.025 of this dis-
tribution appears to be almost 2.2 times greater than the corresponding characteristic of
the normal distribution with the same scale parameter. This example clearly illustrates
how imortant it is to take account of the randomness of the size of the sample from which
the ruin probability is estimated. Otherwise a considerable error is possible in the deter-
mination of the real accuracy of the estimators or in their reliability (it is easy to see that
the confidence probability of the “95% normal” interval calculated by distribution (7.21)
turns out to be less than 0.82).

At the same time, if N(t) = Ny(¢), that is, if A(¢) = ¢ which corresponds to the
classical risk process, then, as it follows from Corollary 7.1 with d(t) = t, the statistic
Yn)(u) is asymptotically normal. In other words, in this situation the estimator for
the ruin probability constructed from the sample (Xj,..., Xn,(n)) is asymptotically (as
n — 00) equivalent to the estimator ¢,(u) defined by the relations (7.5) and (7.6).

Due to the peculiarity of the limit laws mentioned above (the heavy tails which may
result in the absence of moments, in particular, of the expectation) it is not quite reasonable
to consider the asymptotic unbiasedness of the estimator ¥n(;)(u) in terms of moments.

Nevertheless, the following statement is valid. As usual, medX denotes the median of a
r.v. X.

COROLLARY 7.3. Let the conditions of Theorem 7.1 hold and let there exist an infinitely
increasing function d(t) and a r.v. Y such that convergence (7.14) takes place. Then the
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estimator Yy (u) is asymptotically unbiased in the sense that

tli)rglo medn ) (u) = ¥(u). (7.22)
Moreover,
medy (s () — (u) = o ((d(t))72). (7.23)

PROOF. Under the conditions of Corollary 7.3, according to Theorem 7.1 convergence
(7.13) takes place, whence it easily follows that

t]i)rtl;lo med (g‘l\/z(t_) (sz(t)(u) - z/)(u))) =medZ = 0,

implying 4 ‘
a0 (medipv(u) = p(u)) = 0, (7.24)

which is possible only if (7.22) holds, since the function d(t) infinitely increases. Further,
relation actually (7.24) means the validity of (7.23). The corollary is proved.

7.3 Nonparametric estimation of the asymptotic variance.

Unfortunately, Theorem 7.1 cannot be used directly for the construction of asymptotic
confidence intervals for the ruin probability since in relation (7.15) the asymptotic variance
o? defined by relations (7.9) - (7.11) is unknown being dependent on the unknown d.f.
F(z) (moreover, as a rule, the mixing distribution of the r.v. Y is unknown as well).
So, to construct a confidence interval for 1(u) we should find a consistent estimator of the
asymptotic variance 2. In this subsection we concentrate our attention on the construction
of a nonparametric estimator of 0% and the investigation of its asymptotic properties.
As-in Subsection 7.2, at first we formally assume that at our disposal is a sample
Xi,..., X, of independent identically distributed claims. Let {k(n)}.>1 be a sequence of
natural numbers satisfying the conditions 1 < k(n) < n, k(n) — oo as n — co and

. (k(n)*? (u)k(’ﬂ
—_— = =0, 2
A= 3 0 (7.25)
As an estimator of 0%, consider the statistic
2K k() |l
b (1 - 2) > (ﬁ) rle,., (7.26)
€/ r=1i=1 €
where |
a'-f‘,l = _’I’-l_ Zﬁr(xz)-ﬁl(xz) - Un,r : Un,l, (727)
i=1
_ 17
Bi(2) = = [ Ungoa(e = 4)Lyee)(2)dy, (7.28)
0
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Un,k = Un,k(u) Ck Z hk(Xil PRI 7Xik), . (729)

n 1< <...<ix<n

1 T k
hi(zy,...,2k) = ——E/ /1 o)y + .. 4 Yk) H 11y, 00)(Z;5)dy1 - . . dys. (7.30)
0

J=1

LEMMA 7.4. Let the sequence {k(n)}.>1 of natural numbers satisfy the conditions
1 < k(n) <n, k(n) = oo and (7.25). Then the estimator o2 is consistent:

2552 (n— ) (7.31)

The proof of this statement essentially uses the properties of U-statistics and is rather
cumbersome. For the sake of brevity we omit this proof. In full detail, it will be published
in our forthcoming paper (Bening and Korolev, 1999b).

REMARK 7.1. Condition (7.25) means that if s < ¢, then k(n) can increase rather
rapidly, say, k(n) can equal n. If s = ¢, then k(n) = o(n!/®). And if s > ¢, which is
typical, then k(n) can increase rather slowly, say, as loglogn. Furthermore, if we assume

that there exists the second moment a; = EX?Z, then condition (7.25) can be replaced by
a more accurate condition

n—00 \/ﬁ c

LEMMA 7.5. Let {&n}n>1 and {nn}np1 be sequences of r.v.’s such that & = € and
T > b as n — 0o, where b € R! and ¢ is a r.v.. Then &, -, = b+ € (n = o).
For the proof see, e. g., (Cramér, 1974), Sect. 20.6.

Although the following statement is auxiliar, due to its importance we formulate it as
a theorem.

THEOREM 7.2. Let the estimator 1bn(u) be defined by relations (7.5) and (7.9) with
the function m(n) < n infinitely increasing as n — oo so that (7.12) holds. Let the
estimator o2 be defined by relations (7.26) - (7.30) with the sequence {k(n)}ns1 of natural
numbers satzsfyzng the conditions 1 < k(n) < n, k(n) — oo and (7.25). Then the r.v.
o7 v/n(a(u) — Yo(u)) is asymptotically normal:

P (07! v/r(thn(u) — ¢o(u)) < ) => 8(3) (n — o).

NGO (min{u,az})’“‘"’ o

Proof. Set
n = a_l\/ﬁ(¢n(u) —%o(u)), M= U;IG'
By Lemma 7.2, P({, < z) => ®(z) and by Lemma 7.4, 7, £ 1asn — oco. Now the
desired result follows from Lemma 7.5. The theorem is proved.

Now turn to the construction of an estimator of the ruin probability of the generalized
risk process given a trajectory of this process up to some time to. From the above reasoning
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it is clear that, as an estimator of the asymptotic variance o2 we should take the statistic

OX () PY putting
) 2 k(N (2)) k(N(2)) r+l
UN(t) = (1 - Z) E Z (z) ’l"lﬁ,-,l, (732)

r=1 =1
where .
;N

Ty = — O he(X)Pi(X:) — Ungeyr - Uniys (7.33)

N(t) =1

_ 17
Fi(@) = = [ Ungios (6 = 1) Loy (@), (7.34)

0

1
UN(t),k = UN(t),k(u) = Ok ' Z hk(Xil AR ’Xik)’ (7'35)
N(t) 1< <. < SN(1)
1 [e.o]
ha(@ns. k) = = / / 10w (¥1 + - + i) ]] 1y, 00)(23)dy1 ... dys.  (7.36)
0 j=

To formulate a statement concerning the consistency of the estimator afv(t) as t — oo,
we will require one more auxiliary statement.

LEMMA 7.6. Let {{;};>1 be a sequence of r.v.’s weakly convergent to some r.v. £ as
J — 0. Let {Ny}n>1 be a sequence of integer positive r.v.’s such that for each n > 1, the

r.v. N, is independent of the sequence {{;}j>1 u Ny 5 00 asn — co. Then
En, = € (n = o0).

The PROOF of this result can be found, e. g., in (Kruglov and Korolev, 1990) (see
Theorem 5.1.1 there).

Now we can formulate the following statement on the consistency of the estimator o).

LEMMA 7.7. Let the estimator a3, be defined by relations (7.22) - (7.26) in which the
sequence {k(n)}ax1 satisfies the conditions 1 < k(n) < n, k(n) — co and (7.25). Assume
that A(t) 5 o0 ast — 0o, Then

oj(,tt)-agl (t = o0).

PROOF. By Lemma 2.1, from the condition A(t) 5 oo it follows that N(t) £ 0. Now
the desired result follows from Lemmas 7.4 and 7.6. The lemma is proved.

7.4 Confidence intervals for the ruin probability for generalized
risk process.

In this subsection, the main role is played by the following statement.
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THEOREM 7.3. Let the estimator 1ny(u) be defined by relations (7.7) and (7.8) with
the function m(n) infinitely increasing as n — oo so that condition (7.18) holds. Let the
estimator o3y, be defined by the relations (7.22) - (7.26) with the sequence {k(n)}n>1 of
natural numbers satisfying the conditions 1 < k(n) < n, k(n) — oo and (7.25). Assume
that A(t) 4 o0 ast = co. Then

P (aitgy N Wno () — b)) <) = B(z) (- o0). (7.37)

This statement is a direct consequence of Theorem 7.2 and Lemma 7.6.

For 6 € (0,1), the é-quantile of the standard normal distribution will be denoted us.
For large ¢, from (7.37) it follows that

p (o;,tt)\/N(t)(;bN(t)(u) — () < :c) ~ 8(z). (7.38)

Therefore, for ¥ € (0,1), an approximate 1007% confidence interval for the ruin probability
¥(u) will have the form

P (u) — u—(”i\/%v—“(—gﬂ < (u) < Png(u) + ﬁ(lﬂ;f(‘:—)"’(ﬂ (7.39)

Along with Theorem ,7-3’ we can formulate one more asymptotic result.

THEOREM 7.4. Let the conditions of Theorem 7.3 hold and let there exist an infinitely
increasing function d(t) and a r.v. Y such that convergence (7.14) takes place. Then

P (ot A (neg(w) — () <) = EB@VF) (t=o0).  (1.40)
ProoF. By Theorem 7.1 we have
P <a"l\/ZiE(¢N(t)(u) — () < w) — E&(aVY) (t = o). (7.41)

Set

n = a}(‘,_(:), & = 04\/@(¢N(t)(”) = (u)).

o
Now the desired result follows from Lemma 7.5 with the account of (7.41) and Lemma 7.7.
The theorem is proved.
If the §-quantile of the d.f. ¥(z) = E®(zvY) is denoted ws, then along with (7.39),
when the distribution of the r.v. Y is known, from (7.40) for v € (0,1) we can construct
one more approximate 1009% confidence interval for the ruin probability ¥ (u):

. _ Wr+1)/29N(1) , w(’v+1)/20N(t). 7492

In particular, if N(t) is the standard Poisson process which corresponds to A(t) = ¢, then
it is quite reasonable to set d(t) = t. In this case, as is easily seen, P(Y = 1) = 1 so that
¥(z) = ®(z), and the approximate 1007% confidence interval (7.42) takes the form

U (v} u oN
Yy (u) — —ELETE < () < () + 2o41)/27NE)

vt Vvt
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