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Summary: Stochastic testing has become an integral part of much of what 
valuation actuaries do. But can the appointed actuary be sure that they are making 
the correct inferences when looking at the results of a large number of equally 
likely trials or scenarios? In this session, the instructor provides some simple tools 
and guidelines to ensure that correct conclusions are in fact drawn. This material is 
presented in an easy-to-follow manner without using complex mathematical 
formulas. Topics include: applying the assumption of a normal distribution—when it 
is appropriate and (sometimes more importantly) when it is not; drawing inferences 
about, and creating confidence intervals around, a population mean; drawing 
inferences about, and creating confidence intervals around, tail percentiles; and 
certifying anticipated mortality under XXX in a mathematically concise way. 
 
MR. DOUGLAS L. ROBBINS: I've decided to try to seriously work out a 
presentation that I could do straight out of my head. I have not gone to any 
textbooks at all for this. There are not very many formulas that you're going to 
have to worry about. I want to give you some basics of things. If you can 
remember these techniques and tips, they will help you to draw statistical 
inferences when you've been given a body of data, and especially as valuation 
actuaries working more and more with large sets of scenarios. I think it's a good 
idea for people to have those concepts.  
 
I'm going to start out with two sections drawn from the title of the presentation, 
"How normal is normal?" and "What if it's not?" Then I'm going to go into statistical 
applications parts one and two. I guess you'll see what that means when I get 
there. I'll close with miscellaneous issues and a summary.  
 
How was the normal distribution taught when you were in school? I'm not really 
talking about actuarial exams here. I'm talking about college, like cookbook 
statistics. There are anecdotal arguments that many things in life kind of have a 
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bell shape, at least this is how I was taught. You take a quick look at the probability 
density function in tabular form, and then you're introduced to the table from which 
you can quickly draw stochastic inferences about anything with roughly a bell 
shape. You get questions on your exam like, "If the amount of rainfall in 
Washington State over a given month is normal distribution, then what's the 95 
percent confidence interval?" There is no evidence that it is so. Well, consider the 
following. For how many of these distributions would you feel confident estimating 
the 99th percentile using a normal approximation with a mu and sigma? First, for 
the number of accidents on a typical freeway into a large city, in morning rush 
hour, I assume the mean is two. Second, consider the result of a single randomly 
rolled fair die. Third, consider the number of days late a given Valuation Actuary 
Symposium session will be filled with speakers.  
 
Well, maybe normal isn't so normal after all. Here's how you might do. If the true 
average number of accidents on the freeway is two, then you might, and I'll explain 
why later, use normal tables and estimate a bit over five. The true 99th percentile is 
in fact just over six, so that's an undershot on your part of about 20 percent of the 
amount of your guess. The mean of a roll of a single die is 3.5; the standard 
deviation is about 1.7. Using the normal approximation, we would use 2.33 sigmas 
to shoot for the 99th percentile and we would guess 7.5. We've overshot a bit 
wildly. On the other hand, it turns out that although the average lateness of these 
sessions to be filled might be a week, the 99th percentile is an estimation you 
wouldn't want to make based on the whole body of data. Sessions are usually 
either on time or may not get filled until the week before the symposium, as I know 
well. Researching the past records of given sessions could make your guess a shoo-
in. That's a little lesson in bipolar data.  
 
Generally, when is a normal approximation a bad idea? Well, it is almost always a 
bad idea when your data is somewhat scarce or bipolar in nature. Much of the time 
it is a bad idea when making tail inferences on an underlying distribution, given a 
distribution in trying to make an inference on, say, the 99th percentile or the 95th, in 
other words. Sometimes the non-normality of a body of data is clear from the 
sample data's shape. If you think about exponential distributions like the life of a 
light bulb, you can look at that and say you don't want to do that using a normal 
approximation, but how about one like the Cauchy distribution—one that's really 
bell-shaped? This distribution represents something like if you had sitting in space a 
big spinning circular paintbrush and paint was flying off it in all directions. In one 
direction there's a wall not far from the brush, so a lot of the paint goes right in the 
middle, but every once in a while (this is in zero gravity, by the way) a bit of paint 
flicks off almost parallel but not quite parallel to the wall and goes almost forever 
before it hits. If you start sampling from this distribution, you're going to find that 
your sample mean never gets very close to zero for long. You'll get samples from 
the distribution that are three, minus one, 10,000, minus two, something like that. 
In fact, what you have is a distribution with no mean. It is pretty weird to think 
about something that looks like this not having a mean. It does have a median 
right in the middle. The probability is equal on either side, but there is no mean. I 
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think the denominator of the PDF has pi in it, which relates well to this circular 
phenomenon that I was talking about. I only talked about that that much because 
that distribution violates one of the key criteria to use normality at all, even to try 
to work on the mean of it. I'll get to that in a second.  
 
When is it okay to assume normality in a distribution? First, it is correct to assume 
normality under typically sound conditions—those conditions are a finite mean and 
variance, which Cauchy does not have. You need to have a sum of a large number 
of independent identically distributed (IID) random variables. Any time you sample 
a bunch of times from a distribution and the samples are all independent and 
distributed identically, and you either sum them or take the mean (which is the 
same thing), it's the sum divided by n. When you sample more and more of these, 
you quickly get a situation where the sum or the mean converges to normality.  
 
For instance, if we're rolling two dice instead of one, our 99th percentile estimate 
becomes 12.6. That's not a mean; that's a sum. If you sum a whole bunch of dice, 
like six or seven dice, you're going to find that it's extremely well fitted to a normal 
distribution because each die has a mean and a standard deviation. They're all 
identical. Your error there is only 5 percent. The more dice you roll, the less error 
you would get.  
 
For certain kinds of defined distributions, if one or more parameters are large 
enough, common examples exist. Take the example I gave earlier of car accidents. 
I guess I should go back and say the reason I guessed a little bit over five with a 
mean of two is because I was assuming the number of car wrecks on the freeway is 
Poisson. If we look at the whole State of California instead of just the freeway—if 
you sum up the whole state and the mean is 300—then the normal approximation 
for the 99th percentile would be about dead-on at 340.  
 
In the valuation actuary world, when is it absolutely correct to assume normality? 
One time is when you're looking at the mean of a sample of scenarios, as long as 
you have a reasonably large amount of scenarios—over 40. Usually 30 or 40 is the 
number you're given in statistics. Perhaps you should use a bit more if the 
underlying distribution is quite skewed. We'll actually see an example of that a bit 
later. Add to that the requirement that the mean and the standard deviation of your 
distribution of possible results are finite, and sometimes you can't look at a body of 
data and say, "Obviously my mean and variance are finite." It does turn out to be 
true most of the time, however.  
 
When looking at such a mean of your sample, it's somewhat irrelevant whether the 
scenario results themselves look to be normally distributed. That's really important. 
There's a difference between trying to get to a tail of a distribution like the 
distribution of your results versus the distribution of the mean of the results. When 
I'm talking about a mean, that's when I'm saying it's somewhat irrelevant anyway 
about the shape of the distribution that you're sampling from.  
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An example would be the stochastically derived cost of a guaranteed minimum 
accumulation benefit (GMAB) after 10 years. Many of you probably sell a benefit 
just like this at your company. The policyholder buys a variable annuity, pays 
$10,000 or so for the premium in year one. At the end of year 10, you guarantee 
they're going to get $10,000 back, and you sample this over say 100 scenarios. 
After 10 years you're going to get a cost distribution where most of your results are 
zero, but in your tail you have some fairly significant costs. The funny thing about 
that example is the shape of the data makes it obvious that the underlying 
distribution is not normal—it looks pretty darn skewed. However, I know beyond a 
shadow of a doubt that that distribution meets the criteria for the mean to be 
distributed normally if there are enough scenarios. Why? It meets the criteria 
because my cost is bounded between $0 and the premium that was paid—$10,000 
if they paid $10,000 of premium. I'm trying to say that if they paid $10,000 of 
premium, your cost can't be greater than $10,000. Although that's a lot of money, 
it can't be more than that. Because of that, the distribution has to have all finite 
moments. The only way you can have a non-defined mean or standard deviation is 
if the distribution itself is infinite, and this one is not.  
 
My practical conclusion is that you can probably assume in most testing that you do 
as valuation actuaries that your scenario mean is distributed normally if you have 
enough scenarios. What does that mean I can do? It does not mean that for my 
GMAB, I can take my scenario mean plus two standard deviations and get the 
97.5 th percentile of the underlying distribution. That won't work. It does mean that I 
can take whatever my mean is and draw symmetric or non-symmetric confidence 
intervals around that mean. That is my confidence interval then for the true mean 
of the benefit. The standard error of the mean, by the way, which I would use to do 
that, is the standard deviation divided by the square root of the number of 
scenarios. I think for this to be unbiased, there's supposed to be an "n-1" in there 
somewhere, but I'm not going to look in a textbook. I promised you I wouldn't do 
that. It's either in the derivation of the standard deviation, which is where I think it 
is, or in the number of scenarios. I think it's the first. 
 
Let's look at our GMAB example. Let's say that I ran 100 equity scenarios to cost 
out this GMAB and I have 90 that produce no cost; five that produce $5 apiece; 
three that were $20 apiece; one that was $41. There is a final big one that cost me 
$74 per $1,000—7.4 percent, which is quite a large cost, as I noted. The mean cost 
is clearly $2. You can work it out for yourself if you like. The sample variance is 
$81; therefore, the standard deviation is $9. I'd get a slightly different answer if I 
did add minus one, I guess. Dividing by 10, I get a standard error of the mean of 
90 cents. What I can say then is that I'm 95 percent confident given the normality 
that my population mean is between 20 cents and $3.80—plus or minus two 
standard errors. I'm getting really close to zero on the bottom end. There's not 
much room there for 2.5 percent of confidence. For this distribution, because it's 
skewed, it may be true that even 100 scenarios aren't quite enough for the 
conversion to normality to be perfect. It's probably a little bit off, but it's probably 
not off that much. This confidence interval is probably pretty decent. Actually the 
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problem is that the true confidence interval would still not be symmetric. So given 
that we've moved both ends of it a little to the left on my distribution, it's probably 
adequate to say that close to 95 percent of the probability is in that range.  
 
Does what we just did imply that if I run 100 new scenarios under the same 
conditions, but with a new random seed, I should be within 20 cents and $3.80 95 
percent of the time? No, it doesn't quite imply that, because that new sample will 
have its own error and that error could compound the error in my first sample. The 
inference isn't on a new sample; it's on the actual population mean. The two 
confidence intervals that I get though will probably overlap pretty well. They'll 
probably be real close, and the new confidence interval that you would get from 
looking at all 200 scenarios together is obviously better than either sample by itself.  
 
Also note that the mean plus three standard deviations, which would be that 
percentile if it were normal, only gets you almost $29. Fully 2 percent of my sample 
that I developed is well above that point estimate, so you can see that the 
underlying distribution is very non-normal. We should not try to estimate the 
99.87th percentile this way.  
 
What can I do if I want to make inferences on the tail instead of on the mean? That 
gets me to the second subpoint of the presentation—what if it's not? What if I can't 
make inferences on the tail based on a normal approximation, what can I do? The 
answer to that lies on the realm of non-parametric statistics, and we'll explore that 
shortly. First, I want to tell you about an idea I came up with back in the late 1990s 
during the Web craze called the e-lottery. In this idea, I get together a huge crowd 
of one billion people and each one of them gives me $1. They get to each pick and 
record a number between one and one billion. They can't conspire with each other. 
I get a trusted firm to certify and record the number that I pick, and it's a lottery at 
that point. Each of the people puts in $1. If there are a bunch of winners, they split 
the pot. If there's one winner, he or she gets the whole $1 billion. If there are no 
winners, I get to keep the $1 billion. What are my odds of keeping it? Does anyone 
have a guess? It looks like there are no guesses. To keep the money and retire, I 
need everyone to guess wrong. The odds of one person guessing wrong are [(n-
1)/n]=[1-1/n] (where in this case n is one billion). If they're all independent, which 
we said they are, because none of them are conspiring with each other, the odds of 
all of them guessing wrong are [1/1/n]^n. As n gets very large, this approaches 
1/e. That's a pretty decent shot for me; it's almost one in three. So now you know 
why this is called the e-lottery. What's the point? It turns out that roughly the same 
odds apply to the underlying 99th percentile in my 100-scenario GMAB example. 
Remember, the chance of any individual scenario being less than the true (where 
true is the unknown thing that we're trying to sample) 99th percentile is clearly 99 
percent—the odds of any one scenario coming in below that. Therefore, the odds of 
all 100 of them being less than the 99th percentile is 0.99 to the 100. The 100 is not 
that large an "n," but the approach to 1/e is from the underside, which is good from 
the perspective of trying to limit my probability, so it's actually less than 1/e. So in 
100 scenarios, there's only about a 37 percent chance that all my scenarios are less 



Drawing Appropriate Statistical Inferences 6 
    
than the actual 99th percentile of the underlying distribution. Looking at it from the 
other side, that means that I have a 63 percent chance that my worst scenario 
limits the 99th percentile of the underlying distribution. Out of my 100 scenarios, 
remember I had one where I lost $74 out of my $1,000 of premium. There's a 63 
percent chance that the true distribution—the 99th percentile—is no worse than 
that.  
 
Better yet, if I'm doing the sort of testing where I only care about the 95th 
percentile, my odds go from 1/e to (1/e) ^5. So that makes me about 99.5 percent 
confident that my worst scenario limits the 95th percentile of the underlying 
distribution. Now I'm getting somewhere. I mean 99.5 percent confidence is a 
really good confidence. If it turns out that I'm willing to lose $74 per $1,000 95 
percent of the time, then I'm 99.5 percent confident that that is, in fact, going to 
work out with my sampling. If you only care about the 90th percentile, it's 
(1/e)^10, and the worse scenario is almost absolutely certain to be a rock-solid 
boundary.  
 
What if I do care about the 99th percentile? In that case, 63 percent confidence is 
pretty poor. No one wants to be only 63 percent confident. The answer is yes, it is, 
but then what you probably need to do is just run more scenarios. If you run 1,000 
scenarios to make an inference on the 99th percentile, that puts the odds of your 
worst scenario being worst back at (1/e) ^10. Again, it's almost rock solid at that 
point.  
 
Do you always have to use the worst scenario? The answer is no; it's just the 
simplest case. Remember, I'm trying to give you something simple enough so you 
can take this home and a year from now remember oh yeah, there's something 
about if I lost $74 in my worst scenario and as a company we're okay with that 
being our somewhat worst case, then there's a way I could think about how many 
scenarios I'd run. Maybe you can look back at this presentation and get an idea just 
how confident you are that that scenario limits what your worst case actually is.  
 
Any time you're looking at a percentile though and running a scenario, the idea is 
that you're really just setting up a Bernoulli trial every time you run a single 
scenario. At the 95th percentile, either a scenario is bigger, 5 percent chance, or it's 
not, 95 percent chance. For any percentile of the underlying distribution that you're 
sampling on and any ranked scenario, you can work out the odds using binomial 
theory. I'm not going to go into it, but you can. That methodology can be used to 
construct any size confidence interval you want based on any percentile, or with 
completed scenario results you can test a stochastic hypothesis and how that would 
work.  
 
So you've run 1,000 scenarios to make an inference on the total surplus of your 
company, and you want your surplus level to pass 99 percent of all possible 
scenarios. You do not want it to pass 99 percent of the scenarios you ran, but 99 
percent of all possible scenarios that could be run using your set of assumptions.  
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Five of your 1,000 scenarios fail (negative ending surplus). The question is if your 
null hypothesis is that your true 99th percentile result—not, again, the percentile of 
the sample, but the true 99th—would fail, then can you reject that? The way you 
test it is this. If the null hypothesis is true, the chance of a success can be no more 
than 99 percent. The chance of a failure can be no less than 1 percent. Here's a 
one-sided hypothesis test. Under the null hypothesis, the highest possible 
probability of zero failures then would be precisely four in 100,000. For one failure, 
the figure would be about four in 10,000. The highest possible chance of two 
failures would be about 22 in 10,000 and so on. So you can get a cumulative 
probability of five or fewer failures, and remember five failures is the result you got. 
Most conservatively that cumulative probability is 6.61 percent. If the significance 
of your test was 5 percent, you could not reject a null hypothesis based on this, 
because the chance of you're having five or fewer failures is bigger than your 
willingness to be wrong, or 5 percent. If that's true, even though your point 
estimate of the 99th percentile is a success by a wide margin, remember we're 
sampling on the 99th percentile. The 99th percentile of the sample is 10 failures and 
we only had five. Doesn't that indicate a problem with your testing, that you didn't 
reject, even though you were so far on the correct side of the parameter that you 
were trying to sample for? The answer is no. It's really a corollary to the situation 
where you're testing for a mean. Everybody remembers how to do that using the 
normal table. You get a mean; you get an estimated variance; and if you're not on 
the correct side of the value you're sampling for by more than the right number of 
standard deviations, you can be on the side you want to be, but not by enough and 
still end up not being able to reject. This is the same situation.  
 
If we had only had four or fewer failures in this case, then we could have rejected 
at the 5 percent significance level. Does that mean then that we need to increase 
our surplus? No, that's probably not the right thing to do. The right thing to do is 
probably to run more scenarios, because remember we did only fail 0.5 percent, 
which is much better than the 1 percent that we want to fail at a global universal 
level. We can always refine our estimate by running more scenarios. If we ran 
10,000 scenarios and our failure rate even went up a little bit, but we got 60 
failures, we'd reject easily.  
 
I'll make some final comments on confidence statements, and then I'm going to 
editorialize just a little bit. In this section we've made several statements of 
probability or confidence levels. Remember that these statements that we're 
making are only based on scenarios. We've run 100, 1,000 and 10,000 scenarios, 
and we're saying that we are 99 percent confident that if you ran a zillion scenarios 
that 95 percent, say, would pass whatever testing we're doing. We assume all your 
other model assumptions are correct. For many actuaries, that might not be a 
problem because you're willing to live with some fluctuation in lapses and mortality 
and other assumptions like that, but in the long run you feel like they're more 
predictable. You can rely on them more than economic conditions, but you still need 
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to be aware of the basis for your confidence statement, and you may want to 
sensitivity test other assumptions.  
 
Editorially, all I want to say is this. There is a tendency, I think, in written work by 
actuaries to state that 95 percent of their scenarios passed the testing they were 
doing, maybe 95 out of 100 or something like that. Sometimes we state that we 
feel like this is the 95th percentile of our sample, therefore it's an estimate of the 
95th percentile of the universe. What I'm trying to give you is a methodology of 
quantifying how much potential error there is in that. I think this was mentioned 
last week at the stochastic modeling symposium on a different topic. I think if a 
point estimate is given to a senior actuary, or worse yet, management, and it's not 
quantified, they're going to think that it's more reliable than it is. They're going to 
say this is the number, this is our 95th scenario, therefore, this is the 95th percentile 
and they're going to rely on that. The truth is, if your distribution is very skewed, 
your worst scenario—the one we talked about, which limits the 95th almost all the 
time—could be like five times as big as the 95th. How many of you have seen that 
when you're testing with a variable annuity benefit? If the distribution is that 
skewed, they just might not realize how bad that error is. I think we need to get 
better about providing confidence limits or confidence intervals around estimates 
that we give.  
 
The other editorial comment is that I think that the lack of people doing that up 
until this point has led to some silly things being said in official guidance that 
actuaries are given. The C3, phase two guidance for instance, kind of tells you that 
you need to run 1,000 scenarios. It just says that; that's just a number. It doesn't 
say why; it just says you need to run 1,000. For some things that you might do, it's 
clear that that could be too many. We've seen that that might be the case. If you 
have a benefit that easily passes in all of 100 scenarios, you might be quite happy 
with leaving it alone at that point and not need to spend the run-time to do the 
other 900. The other dangerous thing is you could be in a situation where you really 
ought to be running 10,000 scenarios, and that might be true even not just to pass 
C3 phase two, but for some purposes of your own. The C3 phase two is kind of 
designed to prevent your company from going insolvent, and for that a CTE 90 
standard might be what you want to shoot for, and 1,000 scenarios could be 
enough. On the other hand, you could be designing a new benefit where your 
personal bonus is going to be dependent on it, in which case you might want a 
much higher standard than just the solvency of the company. 
 
I'm going to go into some statistical applications now. The first part deals more with 
generation of scenarios, now that we've talked about utilizing scenarios. There are 
a few key issues I think everyone should think about when they're going into 
generating stochastic scenario sets. The first one is the mean return. I think most 
of you have an idea what I'm talking about when I say the mean return of a 
stochastic scenario set, but there's still a lot that can go into understanding exactly 
what's meant. Volatility of returns is another key one. The benefit of diversification 
is another. I just want to go into what's tricky about each one.  
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First I'm going to talk about the mean return of a stochastic scenario set. Often you 
might hear a quote like this. "We studied the S&P. From 1970 to 2001, the S&P 500 
index (net of dividends) had an average return of almost 10 percent." What can we 
make of that? I actually did this, so I'm not making this part up, but if you look at 
the actual annual returns—January 1 to January 1—the arithmetic average was 
9.75 percent. In other words, I'm taking each year's return, summing them, 
dividing by n and getting the average. However, the S&P's value at year-end 1970 
was about 92. At year-end 2001, the value was 1,148. If I take the return on the 
index to the 1/ 31st power, I get a geometric average annual return of only 8.5 
percent. So that's different by 1.25 percent from the figure I gave you the first 
time. What causes that difference? Annual volatility in the index creates that 
phenomenon. Many of you have thought about this countless times, and this is 
nothing new to you. However, in case there's anybody who really hasn't given this 
any thought, clearly if you think about just two years, a 0 percent return on an 
index that, say, keys your annuity product, followed by a 20 percent return or vice 
versa, only gets you to a total return of 20 percent, whereas two 10 percent returns 
running gets you to 21 percent (1.1 times 1.1 minus one) return. The effect is more 
pronounced the higher the volatility, as is the rate of the change.  
 
Try it yourself with negative 10 or negative 20 or 40 or whatever. You'll see that 
even though the average continues to be 20, the compounding effect produces a 
situation that's much worse. I think I should have said 10. In fact, a decent 
approximation for the difference between an arithmetic and geometric average for a 
scenario set will be sigma squared over 2, where sigma is the annualized volatility. 
Going back to the S&P 500, I had a difference there of 1.25 percent, and actually I 
can't work out in my head what that equates to. I think it's about a 16 percent 
volatility that would tend to produce that much difference, between an annual 
average or an arithmetic average and a geometric average, which is the long-term 
one.  
 
What are some important things to realize? Well, first of all you're going to 
generate a stochastic scenario set. You sit down to do it; you study your data. The 
mean return that you build into your stochastic scenario set, if you want it to 
replicate history—be a realistic set of scenarios—you want it to shoot for a mean in 
your scenario set that's based on the same statistic as the mean that you 
generated from your historical data. So if you did the 9.75 because you did it 
arithmetic on the S&P, then you should be shooting for an arithmetic average 
return of 9.75 on your scenario set, not a geometric average of 9.75, which would 
inflate results quite a bit.  
 
The return in a levelized-separate-account environment represents the geometric 
return with regard to fund growth, but generally equates to an arithmetic average 
with regard to profitability. If you think about this for a second, you can see why. If 
the distribution of returns each year is lognormal, the possibilities, if you sum all of 
them for where your M&E charges, say on a variable product, end up, is what gives 
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you the average profitability over that year. If you work it out using the lognormal 
distribution, you can see, at least in that case, that it comes out to the average 
scenario return producing the same as a level scenario rather than the geometric 
combination of all those. If you do that over an entire scenario set, say for 30 or 50 
years, the effect actually is the same. It's the arithmetic average that produces the 
same profitability as a level scenario.  
 
Next I'll discuss volatility of returns. Generally people talking about volatility in 
economic scenarios are referring to the standard deviation of the annual returns. 
That's certainly important for valuing return of premium in ratchet benefits, where 
big sudden drops cause a lot of the cost. It's less important for roll-ups or benefits 
with a substantial waiting period. Why is that? Because if you have a substantial 
waiting period, the effect of volatility tends to mute itself over time, especially if 
there is mean reversion in the scenario set.  
 
For the latter benefits, some measure of long-term volatility, like the C3 phase two 
guidance for calibration, may be needed rather than just looking at your annual 
volatility. The C3 phase two is just a measure of what the Academy considers 
reasonable tail results for various durations. What are the correlations of returns 
between successive years? You can have 20 percent volatility on one scenario set 
and get costs for a GMAB that are much higher than a different scenario set over 
here with the same volatility and mean if, in this scenario set, you have mean 
reversion built in. Mean reversion creates a negative correlation of returns between 
successive years. In other words, the scenario that starts out good will tend to turn 
bad over time; but more importantly, if a scenario starts out bad, it will have a 
tendency to recover over time, which means for something like a GMAB, the results 
will tend to be better than they would be in the first scenario set.  
 
I'm not going to get into theoretical basis for mean reversion, but there was a 
paper presented recently at the stochastic modeling symposium that tends to 
indicate that most models don't do well in the long term, even if they do well in the 
short term, unless there is some mean reversion built into the model. That's as far 
as replicating historical S&P results. That's kind of interesting.  
 
The third tricky issue is benefits of diversification. Let me give you an example of 
the basic concept of diversification and what it does for you. Let's say you have a 
return-of-premium guaranteed minimum death benefit (GMDB). In other words, it's 
a benefit where, if a person paid $10,000 of premium, they're guaranteed to get 
that much money back if they die, and this is on a variable annuity. Of the fund 
value the company has sold, 50 percent has been invested in bonds and 50 percent 
has been invested in equities, and that's all you know. After a year, equities have 
gone down 10 percent and bonds have increased 15 percent, net of M&Es and other 
fees. Are you in trouble on your return-of-premium GMDB? The answer is that it 
depends. If all of your policyholders are invested 50/50 in bonds and equities, then 
each one of them has a total return on their fund of 2.5 percent, so your GMDB is 
okay so far; you're not in the red. However, if half of your policyholders are 
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invested in 100 percent bonds and half in 100 percent equities, then the bond 
policyholders are 15 percent to the good on their money, but the equity 
policyholders are down 10 percent on their 50 percent of your total fund value. In 
total you're at risk for almost 5 percent of your total fund value. In other words, if 
the equityholders die, you're going to be paying out money.  
 
That was a pretty simple example, but it just illustrates the point that, in theory, 
diversification helps you. The more of your policyholders that are mixed between 
two or more funds, the better off you are. It depends on the mix of funds you offer, 
though, and how they're held. In the long run you can say that the mean return of 
a mix of funds, say you have a mix of bonds and equities, will be the weighted 
average of the funds' mean returns. In the long run the volatility will depend 
heavily on how the funds are related to each other. Statistically this is the key issue 
for diversification.  
 
Let me give you the following simple guidance that will at least allow you to get a 
feel for the volatility of a mix of funds like equities and bonds. If you mix two funds 
given certain initia l weights, in the short run you can say this. If they're 
uncorrelated, the total variance will be the weighted average of the variances, and 
the volatility is just the square root of the variance. For funds that are 100 percent 
positively correlated, the total volatility will be the weighted average of the 
volatilities. That illustrates the futility of mixing highly correlated funds for variance 
reduction, which many people do by modeling, say, large cap, small cap and 
international equities. In good markets, there is some degree to which those are 
not 100 percent positively correlated. However, studies have shown that in big bear 
markets, the world tends to all go in the same direction; and large and small cap 
tend to go in the same direction, in which case you're getting much closer to 100 
percent positive correlation. You may find that you haven't reduced your combined 
variance at all even if people are diversified.  
 
For funds that are 100 percent negatively correlated, the volatility will be the 
difference in the two volatilities, and that is a very useful result indeed if you can 
find it. You have two funds both with a mean return of 8 percent. The volatility of 
the first is 20, and the volatility of the second is 10. If they're 100 percent 
positively correlated, the volatility of a 50/50 mix will be 15 percent, just as a 
weighted average. That's not very good. If they're independent or uncorrelated, the 
volatility will be the sum of the weighted variances to 0.5, or take the square root 
in other words, which gives you 11.2 percent—a pretty nice savings in volatility. If 
they're 100 percent negatively correlated, the volatility of a 50/50 mix will be only 
5 percent, because whenever one moves one way, the other's automatically going 
to move the other way. Anybody would love to have that if they could get it. In 
reality, you don't find that very often in variable annuity funds. I've seen negative 
correlations as high on an absolute basis as 0.2 and that's about it. Still, even when 
you can get a negative 0.2, that's a great result if people are diversified between 
those funds. Short-term volatility will affect long-term considerations if other 
conditions allow—things like mean reversion and whatnot.  



Drawing Appropriate Statistical Inferences 12 
    
 
Earlier I said that based on a mix of funds, like 50/50 equities and bonds, you could 
calculate the weighted average volatility in the short run. When I said that, I didn't 
mean that the theory changes in the long run, just the weights, because unless 
you're assuming your policyholders constantly rebalance back to 50/50, your 
projected fund weights will tend to drift over time, and that may be something your 
scenarios should be taking into account.  
 
To sum up diversification, there can be substantial savings from including a mix of 
funds in valuing certain blocks of business, especially variable annuities with 
guarantees. The value of diversification is highly dependent on your funds actually 
being diversified within individual policies, not just across the company by a bunch 
of people with all their eggs in one basket, even if their baskets are all different 
sizes and shapes. The value of diversification is also dependent on funds being 
relatively poorly correlated, so testing two similar large-cap-fund styles may 
provide little value. In other words, to put it in a way that could actually happen, if 
you somehow develop a scenario set for an indexed fund versus a managed fund, 
there is some difference that may unfold. If the two are modeled correctly, they'd 
be very highly correlated, and diversification wouldn't provide you much value.  
 
Statistical applications are part two of my presentation. I'm going to veer a little bit 
from scenarios, and I'm going to talk about another subject—the use of general 
linear regression. I think this is probably the statistical tool used and sometimes 
misused by more actuaries than any other. Why is that? Well, it's common in 
spreadsheet packages. I know Excel has a really powerful one. It's also easy to 
remember how it works and what the solution set of parameters means. However, 
it's fraught with pitfalls. Maybe that sounds a little too scary, but there are pitfalls 
and they need to be avoided if you're going to get truly meaningful results from a 
regression. The goal of linear regression, you might remember, is to demonstrate a 
linear relationship between two or more bodies of data. You want to minimize 
square differences, estimate co-efficients and generally use the relationship to 
predict other data points, often ones that lie somewhere out in the future.  
 
I've done a regression example. This is a body of data that dates back to some time 
in the 1980s, maybe 1983, to show the attendees and the locations of symposiums. 
It covers the places they've held it on the X-axis and then attendees on the Y-axis. 
I did a regression. I'll discuss the actual results. The regression line shows a 
relationship that I want, so that's good. I got an X co-efficient of minus 17. The X 
co-efficient is important, but you don't know what it means without the t-statistic. 
The t-statistic was –2.16, with a probability value of 4.57. In other words, at a 
significance level of .05, I can reject the null hypothesis that there's no relationship 
and determine that I believe there is a relationship and it's a negative relationship. 
The lower the degree of latitude goes, the higher the number of attendees gets. It's 
demonstratively true.  
The R-squared statistic is 21.5 percent. The R-squared is how much of the variance 
in the data is explained by the regression. At first, we had just data points all over 
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the place. If I shove them all to the left hand side and didn't have latitude and all I 
had was attendees, there would be this distribution of dots kind of bunched up 
around 600 and then spread out. What I'm explaining is how much variance there 
is between those dots that I can explain by knowing latitude. Almost 80 percent of 
the variance is not explained, but still that's not too terrible of a result. I can quit 
for the day.  
 
But I thought about it some more. What do I need to chart? I need the data for 
attendance by calendar year. I think we can detect a stronger relationship there. 
What happens if I add calendar year to my regression as a second independent 
variable? Well, I get a co-efficient on calendar year of 33.85 with a t-statistic of 
6.13, so that's a probability value on the order of 10 -̂5, so that's really good. My 
co-efficient on latitude goes to 0.82 with a t-statistic of 0.15—it's -0.15 standard 
deviations, in other words. That's very, very poor. That's not the significance level. 
The significance level would be almost a half. It's so close to zero, it's almost 
indistinguishable. It's no longer a useful variable.  
 
The R-squared value goes up to 76.5 percent, which is a big jump. I'm explaining 
over three-quarters of the variance now between the dots just by knowing calendar 
year and latitude. In fact, this value goes up any time I add a new variable to my 
regression, but not nearly as much for a poor one. If I had started with calendar 
year alone, I would have gotten an R-squared that was a little smaller than this but 
rounded to the same number, if I just looked at one digit past the decimal point. 
Then I would add latitude, and you wouldn't even notice a difference even though 
you would have one.  
 
I've given you a regression example where I have a couple of independent variables 
under my deep-end at very low attendance. What mathematical pitfalls are actually 
within my example? First of all, it's not the issue already raised—selection of 
inferior predictive data—in other words, latitude. That's not a mathematical 
problem; that's just a judgmental/selection problem. In fact, if latitude was all I 
had to go on, it would still obviously be much better than nothing. If I knew latitude 
and I didn't know anything else and I needed to predict attendance, I would do 
better by using latitude than by just guessing 600, because it's about the average. 
Sometimes you don't have perfect predictive data. Sometimes you have to make do 
with the best you have, but there are two important flaws that many of you may 
recall from looking at this stuff. The first is non-constant variance or the outlier 
effect. The second is extrapolation beyond the range of the data.  
 
Don't forget the outlier effect. The 2001 data point dips way below the line and 
then in 2002 it's the last data point calendar-year-wise. Who remembers what 
happened in 2001? We had to reschedule the meeting. Nobody wanted to travel. 
It's fairly easy to determine the largest squared error is the 2001 data point. Only 
the 1994 data point is really in the ballpark of how big that squared error was. But 
is that point truly indicative? As a statistician you have to make that call. This could 
be biasing your regression, and if you have any other year that you're trying to 
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predict and there is no huge calamity caused by terrorists, then you might be better 
served not using that data point to set up your regression. You need to consider 
that in drawing conclusions, but it's just minor interest. With latitude, that point 
was pretty close to the regression line. It had relatively small squared error. 
 
The second flaw would be extrapolation beyond the range of data. If you wanted to 
use a linear formula to predict the attendance of a past symposium between 1984 
and 2002 (because you don't know it), you'd clearly prefer to use calendar year. In 
other words, I ask you what the attendance was in 1990 and you have no access to 
the data, but you know the regression formulas that I gave you—one for calendar 
year, one for latitude. The calendar year's clearly going to be the better one to use. 
Almost every data point was very close to the line, but interestingly despite how 
things look there, you might or might not find that if you use something for 
predicting attendance in 2010 or so, it's less useful than latitude. The estimate that 
you would get from using calendar year is about 1,214. If you think about it, even 
in 2010, warm temperatures and nice climates are going to be then what they are 
now; there's going to be no change in what latitude means. Latitude is still going to 
be within the body of data, but for calendar year we're going to be extrapolating. 
We're taking data that stops in 2002 and trying to project it eight more years, but 
future attendance could flatten out. In fact, we know from other symposiums and 
meetings that that does happen. You get to a point where, unless the amount of 
actuaries grows, you hit a critical mass and that's about how big the meeting gets. 
In fact, if we start to get more and more meetings that draw people off, and their 
company only pays for them to go to two a year, attendance could go down. A 
parabolic regression—in other words, quadratic—fits the data for calendar year 
even better. 
  
Starting in 1985, if you think of a bow that levels off around the last few years, you 
could see how that could fit the data better. I think I got an R-squared of almost 90 
percent by using a parabola instead of a line. You don't want to extrapolate and 
say, "Well, that proves that we're going to lose attendees over the next few years." 
It's just one possible shape the data could have. On the other hand, if I use latitude 
to predict that if we have the next one in Quito, Ecuador, I'm likely going to fare 
worse. That would be extrapolating too, and we want to use this regression to 
predict attendance somewhere in the continental United States. Even Hawaii may 
be a bad idea, or maybe everybody would then go.  
 
There is one more often missed mathematical pitfall concerning multiple regression. 
I've seen many people use regression and just add independent variables rather 
indiscriminately. Co-linearity of the data is the problem. When you add variables to 
a regression, it always provides more explanatory power of the data you have as 
measured by R-squared, but the exception is when you add a variable that's a 
multiple of a previous variable plus a constant. In other words, for every data point, 
multiply a previous set that you had by two and add 15 or something like that. If 
you add a variable like that, it doesn't actually provide anything. It makes the 
matrix that is used for the multiple regression non-singular, and it means that you 
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can't solve it. The closer that is to being true for any new variable you add, the less 
new explanatory power a new variable adds. If you have a variable that's very close 
to a multiple plus a constant, it will add some explanatory power, but very little. It 
turns out that calendar year is a fairly good predictor of latitude. The regression 
between those things is actually much more solid than the one between latitude 
and attendees.  
 
The crux of the matter is this—despite increasing R-squared or despite increasing 
the amount of explanatory power you have over your data set, adding non-useful 
variables to a regression can reduce its predictive power. That's really the key 
thing. The reason is because in any regression, the number of degrees of freedom 
you have for your t-statistic is the number of data points minus one, less the 
number of independent variables.  
 
Most of you remember what the t-distribution looks like. The fewer degrees of 
freedom you have, the more it starts to bow out and look really funny. Instead of 
close to two being the number of standard deviations to get to 97.5 percent, it can 
get way worse than that. It's harder to use it to predict anything. That's what 
happens to your regression the more independent variables you add. You reduce 
the number of degrees of freedom. If you add too many, you reduce the power of 
your test or of your calculation in parameters so much that even the variables that 
were useful can have confidence limits so wide that they appear non-significant, 
and the point estimate becomes unreliable. That sounds ridiculous, but I promise, if 
I added 10 more variables that had no real use, even the calendar year predictor 
would start to look not significant. It's really weird, but it's true, and it's because of 
this effect. The bottom line is that extraneous variables muddy the water and you 
won't know what you really have. You want to keep yourself on a regression to 
variables that have some meaning. 
 
Let me tell you what you can do all the time. There are a few variables that may be 
useful for a multiple regression and are never co-linear with your first variable, so 
they never muddy the water this way. Use higher powers of the independent 
variable. Remember, the regression is still linear in the co-efficients, even if the 
data is a higher power of itself. You have A times X plus B times X squared plus 
constant. You still have linear co-efficients. It's still a linear regression, but you end 
up with a parabolic equation when you're done or a quadratic equation. Recall that 
adding X-squared to our calendar year versus attendance actually gave a much 
better regression than calendar year by itself. Other transformations that you can 
do on data besides higher powers include the natural log, exponential functions, 
trigonometric functions and so on—basically anything that's not a multiple plus a 
constant.  
 
Finally, let's discuss miscellaneous issues. The miscellaneous issue that I've added 
to this presentation is speeding up run-time on Monte Carlo simulations for XXX 
testing. I'm going to give credit to Ed Robbins, my father. He in turn would credit a 
Transactions article dating back 20 plus years for this. At some point you may have 
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a close call requiring extensive numbers of trials. When you're doing your X-factor 
testing, you may find that, even with your 10,000 policies that you're sampling on 
and 1,000 Bernoulli trials that you've run, you have a situation where you're not 
sure whether to accept or reject your X-factor. You're afraid that if you run 10,000 
Bernoulli trials, which creates a grid of 100 million ones and zeros, that your run-
time is going to become enormous and you're not going to be able to complete your 
testing in time.  
 
This isn't really a statistical issue; it's a stochastic issue, but it fits neatly into hip-
pocket stuff that I just wanted to give you to think about. If you run 10,000 
Bernoulli trials past 10,000 policies, you're really creating a grid of 100 million 
independent ones and zeros. If you think about this as something existing in an 
Excel spreadsheet, even though you wouldn't really do it that way, it will help you 
picture it. You put the 10,000 ones and zeros to the side of each of your policies, 
and you run random numbers where a zero equals life for the testing period that 
you're running over and a one equals a death. Then you sum up all your policies 
and face amounts and you get total dollars of loss for that period.  
 
That's the typical methodology that most companies use. The problem with that 
methodology is the way that they fill in the grid, because that's not the only way 
you can do it. In other words, having each of those cells or each iteration of your 
program create one random number so that you have a total of 100 million random 
numbers is not the only way to do it. Instead, if you have any sequence of 
independent trials with equal chance "p" of success, there's actually a probability 
distribution for the trial number where you get your first success. You can actually 
work it out by hand. If the trials are independent, what you need is one minus "p," 
which is the probability of failure, and minus one times, and then a success on the 
next trial, so that would be your "p." That's why I say you can work it out by hand. 
For instance, if a chance of success in any trial is 1 percent, the chance that your 
first success is on the first trial is also 1 percent. That's obvious, but if you want the 
chance that it's on the second trial, you need one failure, 0.99, and then a success, 
1 percent, so the probability is 0.99 percent. The chance that it's on the third trial is 
1 percent times 0.99 squared and so on.  
 
If your "p" above is the expected mortality rate for a cell in certification testing, you 
can create a cumulative distribution function for that cell. When I say cell, I mean 
the one life with whatever its face amount is. The cumulative distribution is that of 
the geometric distribution. All I then have to do is run this test that I've put 
together across the row of that cell drawing a random number comparing to the 
cumulative distribution function and getting a numerical result. I then fill in "n-1" 
zeros into that row, and then a one, and then I start over. I draw a new random 
number and so on until that row is complete.  
 
Clearly, if I get to the end of a row, since the mortality rate's probably going to 
change on the next life, I have to start over. In other words, out of my 10,000 cells 
going across from my first one, I get to the 9,980th cell and have a success, so I 
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have 20 cells left in my hypothetical spreadsheet. If the next sample that I draw 
from the cumulative distribution function gives me a result of 80, I just fill in 20 
zeros and then stop. Then I start over on the next row where my mortality or my 
probability of success is different.  
 
The end result is an expected reduction in run-time, approximately in proportion to 
your average expected mortality rate. In other words, if over all of your 10,000 
lives, your average mortality is about 1 percent, then your run-time should be 
reduced by 99 percent, or it should be reduced to 1 percent of whatever it would 
have been. That reduction could be offset a bit by added programming time on the 
front end, but if you're going to do this a lot, it could be well worth it. Once your 
grid is filled in using this methodology, the results are tallied down the columns the 
way they were before, and the stochastic implications are identical as to what they 
would have been if you would have filled in the grid one single cell at a time.  
 
In summary of all we've talked about going back to the normality thing, normal is 
somewhat normal, but you have to be careful about approximating a distribution 
this way. It's somewhat normal in that for all valuation actuary types, if we're going 
to look at a distribution and want to look at the mean result, then we can certainly 
approximate it that way. If a distribution is the sum of any IID random variables, 
we can approximate it this way. When a distribution is not normal, statistics from a 
sample (where a sample could be something like a bunch of random scenarios) 
could still be used to make inferences on tail percentiles. When generating 
stochastic scenarios—this is our statistical application one—it's good to be clear 
about what the different scenario statistics really mean, as well as the benefits of 
diversification. Linear regression is a very useful tool, and I encourage anyone to 
use it. It's important to realize that increasing R-squared is not the only goal. 
Finally, testing of X factors might be able to be sped up.  
 


