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Summary: Stochastic testing has become an integral part of the valuation actuary's 
work, but can the actuary be sure of making the correct inferences when looking at 
the results of a large number of equally likely scenarios? In this session, the 
instructor provides simple tools and guidelines to better ensure that correct 
conclusions are drawn. This material is presented without the use of complex 
mathematical formulas. Topics include the appropriateness of the assumption of 
"normality," including discussion of the distribution of a conditional tail expectation, 
drawing inferences about population means and tail percentiles, and uses and 
pitfalls of linear regression analyses. At the conclusion of this session, participants 
have an understanding of the conclusions to be drawn from the sometimes-arcane 
language of stochastic modeling. 

 
MR. DOUGLAS L. ROBBINS: I'm a Pacific Life actuary in the annuities and mutual 
funds division. Before I started doing that, which was last November, I spent about 
10 years with Tillinghast-Towers Perrin, and it was during that time that I came up 
with the idea of doing a session on drawing appropriate statistical inferences. As a 
consultant, it was never a big seller. It was always something I did because I 
thought it would be useful to the other members of my profession to have a session 
on what I think is one of the intuitively most valuable and useful concepts you can 
have in your hip pocket.  
 
In terms of how I designed this session, I always thought of it as something that I 
designed without opening a textbook. I had an advanced degree in statistics before 
I started work, so I did have some knowledge in the field, but at the same time, I 
have not gone deep into any formulas in developing the presentation, and I never 
wanted to go deep into any formulas. I wanted to give you concepts that would be 
easy for you to remember and easy to apply when you're back at your desk.  
 
I've divided the presentation into five subsections. The first two are "How Normal is 
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Normal?" and "What If It's Not?" There are a couple of sections on statistical 
applications that you might use beyond the realm of normal distribution theory, and 
the last section is on some miscellaneous issues.  
 
I want to open up by discussing how the normal distribution was probably taught to 
most of us when we were in school, especially in "cookbook" statistics. There were 
some anecdotal arguments that a lot of things in life that you've seen with a 
probabilistic structure have roughly a bell shape. I'm sure you heard about rainfall, 
highway accidents and things like that. These are things that, over time, have 
roughly a bell-shaped probability. Sometimes you have low, sometimes you have 
high and most of the time you have in the middle. 
 
You then took a quick look at the probability density function, which you were 
taught, but then you were also taught that you couldn't do much with it because 
you couldn't integrate it or something like that. Then you were given an 
introduction to a neat table in the back of your book, from which you could quickly 
draw stochastic inferences. That's the way that I was taught and where it ended up. 
You did your sigmas and your mus, and then you said, "That's 33.3 percent likely" 
or something like that.  
 
But consider the following. I'm going to give you some distributions and ask you 
how comfortable you would feel trying to make an estimate of the 99th percentile of 
a distribution using a normal approximation with some mu and sigma. How about 
the number of accidents on I-5—it's in Los Angeles, but think of it as any typical 
freeway—in a morning rush hour, if the mean is 2? How about the result of a single, 
randomly rolled, fair die with one through six spots on it? How about the expected 
cost in basis points of a variable annuity guaranteed living benefit (VAGLB)? How 
many are familiar with the last example? Not too many, so maybe that's a bad 
example. I'll spend a little more time talking about what that is when we get to the 
small case study on it. 
 
I say that maybe normal isn't so normal after all, because here's how you might do. 
You may have thought that the number of accidents on I-5 with a mean of 2 must 
be distributed roughly Poisson, because we've been taught that if you've got a 
discrete distribution with a low mean that could be zero or that could be a large 
number, but most of the time it's roughly some average number, that the 
distribution could be Poisson. You might use the normal theory, using a mean of 2 
and a variance of 2, which is the Poisson mean and variance. If you use the normal 
tables, you'd estimate a bit over 5. If you use the true Poisson distribution, the 99th 
percentile would be just over 6. So you would undershoot about 20 percent of your 
guess, which is not very good.  
 
We know, just from doing the math, that the mean of a single fair die with one to 
six spots is 3.5. We know that the standard deviation is 1.7. You can work it out 
with a stubby pencil. Using the normal approximation with mu of 3.5 and sigma of 
1.7, we'd shoot for the 99th percentile by adding 2.33 sigmas to the mu. We would 
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get 7.5, when the die has only a one through a six, so this is a significant overshot.  
 
Maybe normal is not so normal after all. On the other hand, depending on the mu 
and sigma that we're talking about, the VAGLB estimate might just be doable. We'll 
see why later on in the session.  
 
When is a normal approximation a bad idea? What conditions make it okay? Let's 
first talk about when it's a bad idea. Let's talk about the things that you would not 
want to try to approximate using normal theory if you know mu and sigma. It's 
almost always a bad idea when the data are somewhat scarce or bipolar in nature. 
Bipolar would mean that you've got two separate modes, if you will, about which 
the distribution tends to hover. It might be one or it might be the other, depending 
on conditions. A normal distribution doesn't even look like that, so it's not going to 
work. If the data are scarce, you may not have enough data to where things are 
even going to converge.  
 
Also, we're making tail inferences much of the time, especially if the distribution is 
fat-tailed. In some distributions with which you work, especially if you've done any 
kind of health or casualty work, you might know that the distribution is fat-tailed. It 
might be something where a cost could start at zero but could be out to infinity, 
and you know that the shape is fat-tailed as opposed to humpback-shaped like a 
normal distribution.  
 
But also, there are some distributions that could appear bell-shaped, but the tails in 
both directions can still be significantly different from a normal distribution. Chart 1 
is a graph of the Cauchy distribution.  

Chart 1 
Cauchy Distribution 

 
 
It looks higher in the top than normal, which is true. The shoulders are narrower. 
You might think that means there's more probability in the center, but there's 
actually a lot more probability in the tails, also. As an example of a Cauchy 
distribution, say that in zero gravity you had a wet paint roller. Say that it's sticking 
up, spinning rapidly and throwing off paint in every direction. Say that there's a 
wall some distance from it. Most of the paint is going to hit closest to where the 
paint roller is. But occasionally, you're going to have a flick of paint that comes off 
almost, but not quite, parallel to the wall, and it's going to hit it about 15 miles 
away from the paint roller, if it's in zero gravity. That's the Cauchy distribution. It's 
circular like that, because there's an arctangent even in the denominator of the 
probability density function or the cumulative density function (I said that I didn't 
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open a textbook; it's one or the other).  
 
The point is that it's a distribution with π /2 and arctan and stuff. You get crazy 
results. If you start sampling from it, you get 2, –1, 10 million, 3, 4, -2 and so on. 
In fact, you never converge to a mean. That's the crazy thing about it—there is no 
mean of this distribution. How many of you looking at that would assume that there 
was no mean? Nobody. You would look at it and think that the mean was right 
there in the middle. The mode is in the middle, and the median is in the middle. 
There's equal probability on both sides, and there's clearly a mode. It's 
counterintuitive, but there's no mean. If you integrate the probability density 
function times X or whatever, it's not integrable; the answer is infinity. You're never 
going to be able to make any kind of accurate inferences on that kind of distribution 
using normal theory.  
 
When is it okay to assume normality in a distribution? I say that it's okay under 
typically sound conditions (a finite mean and variance, which means that the mean 
and the variance have to exist) and there's a sum of a large number of 
independent, identically distributed (IID) random variables or samples from the 
distribution. Independent and identically distributed means that there are a bunch 
of trials, they're all independent of each other, and they all come from the same 
distribution. If you add them up and get enough of them, you start to get 
something that's going to converge to normality under these conditions. Say we roll 
two dice. Two dice are not a large number, but they're more than one die. Already 
you get an estimate of 12.6, where the true 99th percentile is obviously 12 (two 
sixes). So your error is much lower than it was for one die, and more dice would 
mean even less error. In fact, if you've ever played Dungeons and Dragons (or any 
game where you roll a bunch of dice) and thought about the probability distribution, 
it starts to become bell-shaped; you can see that it's becoming normal.  
 
There are also certain kinds of defined distributions, like lognormal, gamma and 
Poisson, where if one of the parameters underlying the distribution is large enough, 
it becomes normal-shaped. So if instead of one interstate going into Los Angeles, 
we were looking at the entire state of California, and the mean was 300, the normal 
approximation for that Poisson distribution would be 340. That's almost dead-on. 
 
In the valuation actuary world, when is it absolutely correct to assume normality? 
The answer is, when you're looking at the mean of a sample of scenarios. The 
reason is that when you're getting a mean of a sample of scenarios, that by 
definition is a large number of identically distributed, independent samples from the 
same distribution, whatever the distribution is that underlies your scenario 
generator. I'll say that's over 40, but maybe more if the underlying distribution is 
quite skewed. Use your judgment on that. Most actuaries have agreed, in my 
career, that 40 is probably enough, but we never use just 40 scenarios, anyway. 
The fewest we've ever used for any work is 100. If you do that, and the mean and 
the standard deviation of the distribution of possible results are finite, you've got 
the conditions you need to prove that under the central limit theorem, it converges 
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to normality. So if you're sampling for a mean ROI for pricing, you've got it. For 
valuation actuaries, if you're sampling for the mean present value of ending 
surplus, it's the same thing. As long as you're looking at the mean, that is 
something that is distributed normally almost all the time.  
 
My next point is important. When you're looking at such a mean, it's somewhat 
irrelevant—I don't say that it's completely irrelevant, because, remember, it does 
affect the number of scenarios you need to run—whether the scenario results 
themselves look like they're normally distributed.  
 
For example, let me talk about stochastic costs of a guaranteed minimum 
accumulation benefit (GMAB) after 10 years. They would typically look something 
like Chart 2.  

Chart 2 
Stochastic Costs of a GMAB 

 

 
 
You would have most of your results, from about the 20th percentile on, that would 
come up with a cost of zero. You've got several costs that are low, and then in the 
beginning of the distribution, you're going to have several, maybe three or four, 
costs that are extremely high. That doesn't look normal at all. In that example, the 
shape of the data makes it clear that the underlying distribution is not normal, but I 
know beyond a shadow of a doubt that I've got the conditions I need for the mean 
to converge to normality.  
 
Let me first explain what a guaranteed minimum accumulation benefit is. How 
many variable annuity actuaries are here? Just a few. How many of you have 
looked at the literature enough to have some idea of what I'm talking about? Most 
of you. Let me explain quickly then. I purposely chose the simplest living benefit, 
because I knew the audience was just everybody at the Valuation Actuary 
Symposium (Val Act). It's a benefit that says you're going to buy a variable annuity 
and put your $100,000 premium in, and I'm going to guarantee that no matter how 
you invest your money, subject to the conditions in the contract, even if you put it 
all in large-cap stock, you will get at least your premium back after 10 years, as 
long as you persist the entire 10 years.  
 
That's a risky guarantee for an insurance company to make. You don't know what 
the stock market is going to do over the next 10 years. Since we expect a positive 
bias in the stock market returns, you think that we're probably going to be fine, but 
if you run stochastic scenarios and are reasonably conservative, you're going to 
come up with some scenarios that go down over 10 years and produce a big cost to 
the company. But it's probably going to be only a few with big cost, a few more 
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with a small cost and then most with zero cost, which is what we saw.  
 
I know that my mean is going to be distributed normally if I run enough scenarios, 
because the cost is bounded. Even though it seems like a lot—the person puts in 
$100,000—what's the most that the company can lose? There's no way that the 
company can lose more than $100,000. If the cost is bounded (if it's not truly 
infinite), by definition the mean is finite and the variance is finite. That's all I need 
to know to know that I'm subject to the central limit theorem, and, if I sample 
enough times, my mean is going to become normal.  
 
The practical conclusion for valuation actuaries is you can probably assume, in most 
of the testing that you do, that your scenario mean is distributed normally. What 
does this mean that you can do? It does not mean that your mean plus two of your 
standard deviations gives you an estimate of the 97.5th percentile of the underlying 
distribution. I want to be careful about that because I've seen internal memos in 
my old company that seem to indicate that somebody thought you could do that. 
It's probably out there. What it does mean is that you can draw symmetric (or 
nonsymmetric, if you want) confidence intervals around your mean and get a 
confidence interval for the true mean of your distribution. Remember that you're 
taking a sample. A sample is the best you can do, and you hope that all your 
assumptions are correct. Subject to that sample, you can believe that your mean is 
within plus or minus so-and-so of the sample mean that you've got. You can use 
normal theory to do that.  
 
You do it using the standard error. The standard error is the standard deviation that 
you get from looking at your scenario results, divided by the square root of the 
number of scenarios. There may be an n-1 in there if you're trying to be unbiased. 
Most of the time, n is large enough that it doesn't matter. You've probably heard 
that before and might even remember it from when you took statistics.  
 
Let's look at our GMAB example. Let's say that I ran 100 equity scenarios. One 
hundred is still not much nowadays, but let's say that's all I did. I had 90 that had 
no cost because my equity scenario ran well enough that even after I took out my 
contract charges to the policyholder, he or she still had more than the premium at 
the end. But I had five that cost $5 apiece, so that's $25. Three cost $20 a piece, 
which makes $85. One cost $41, so that's $126. One cost $74 dollars, so that's 
$200. This is all, say, per $1,000 of premium. For the last one, I shelled out 7.4 
percent of the premium that got paid. There's no way that I made money in that 
scenario. The company lost money on a present-value basis, once you account for 
the commission. Even with all the charges, if you're taking another 7.4 percent out 
at the end, you know that it's hopeless. That's a bad scenario. That's a total of 
$200 costs over 100 scenarios, so the mean cost is $2. That's the mean of my 
scenario costs. My best estimate of my expected cost is $2 per $1,000.   
 
The sample variance is ($5^2*5+20^2*3+41^2+74^2)/100 - $2^2, or  
approximately $81, and so the standard deviation for my sample is $9. Therefore, 
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my standard error of the mean is $0.90, or 90 cents per $1,000. What I can say is 
that I'm 95 percent confident that my population mean is between $0.20 and $3.80 
per $1,000, plus or minus two standard errors. I'm using normal theory because 
I've run 100 independent, random, identically distributed samples from my 
distribution. I know that under central limit theory, my mean is distributed 
normally. There is some skewing involved. You'll notice that if I go much further 
than two standard deviations, I'm going to be below zero, which is an impossible 
result. My confidence limits should be shifted a bit to the right, but, in general, this 
is close enough. If I ran another 100 scenarios or so, I'd probably be to where it's 
truly looking normal.  
 
We're talking about scenario mean costs. I realize that we're valuation actuaries 
here, and valuation actuaries usually care more about the tails. When might mean 
costs matter most to a valuation actuary? The best modern application is market-
consistent valuation. We're talking more and more about valuing benefits on a 
market-consistent basis. We want to know not what we think as actuaries are the 
potential losses, but how much it would cost to hedge away this risk. If this benefit 
were traded on the open market, what would it cost to trade it? In fact, FAS 133 
requires that treatment for contracts with derivatives. Some of you are familiar with 
that.  
 
Guaranteed minimum accumulation and most withdrawal benefits are currently 
covered. If you want to know which withdrawal benefits might not be covered, we 
can talk about that at the end. A guaranteed minimum income benefit (GMIB) 
means you annuitize at the end of the period. That's generally not considered a 
derivative, because you can't net settle it. However, if there becomes a secondary 
market that allows net settlement, that could fall under FAS 133. I don't want to 
get too much into FAS 133. I just want to say that if you value policy options using 
risk-neutral scenarios to do FAS 133 reserves, you get your costs from the mean. 
The tail results of a set of risk-neutral or market-consistent scenarios don't mean 
anything. You get the mean cost, and that becomes your estimate of the market 
cost. It would be good to know how much statistical error might exist. If you want 
to know for sure that you're within so-and-so, or that your charge would cover the 
95th percentile, say, of possible mean costs, you would want to know your 
confidence limits on the mean results of your scenarios.  
 
Does this imply that if I run 100 more scenarios on the same benefit I should be 
within that range 95 percent of the time? No, not quite, because that sample is 
going to have its own error, and the second sample's error could compound the first 
sample's error. If the first sample was low, and the second one is high, you could 
end up outside of the range more than 5 percent of the time. The inference is on 
the actual population mean, which means that if I ran a gazillion scenarios, I would 
expect to be within that range 95 percent of the time.  
 
There is one more thing to note. Remember that I had a result of $41 and another 
result of $74, so that's 2 percent of my sample that's higher than $29. This is, 
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again, just to point out that you can't take the sample mu plus three sample sigmas 
and draw any inferences on the tail. It's not saying that the sample is distributed 
normally; it's saying that the mean result is distributed normally.  
 
What can I do if I want to make inferences on the tail? That brings us to the "what 
if it's not" part of this session. What if I have a distribution I'm sampling from that's 
not distributed normally, and I want to make tail inferences? The answer lies in the 
realm of nonparametric statistics. That's how I'm going to treat it. We'll explore 
that shortly.  
 
First I want to tell you about something that I came up with during the Web craze 
that I called the "e-lottery." It's a way I came up with to make some money. I get 
together a huge crowd of people, say 1 billion. I randomly pick and record a 
number between one and the number of people (so between one and 1 billion). I 
get a trusted firm to certify and record my pick. Each of the people puts in $1 and 
then, without conspiracy (none of them can look at each other's choice), every one 
of them picks a number between one and 1 billion. All the winners split the pot, but 
if there are no winners, I get to keep the $1 billion. What do you think are my odds 
of keeping it? Raise your hand if you think that I've got a good chance. About one-
third of the people. Raise your hand if you think that I've got almost no chance. 
Nobody thinks that. Let's talk about it.  
 
To keep the money and then retire, which is the point, I need everybody to guess 
wrong. The odds of one person guessing wrong are (n-1)/ n. There are n-1 
numbers that are wrong and n numbers. The chance is (1-1/n) if I simplify, where 
n is 1 billion. If they are all independent and can't look at each other's choice, the 
odds of all n of them guessing wrong are (1-1/n)^n. As n gets very large, the limit 
of that formula approaches 1/e. My chance of winning is 1/e, which is a pretty 
decent shot. It's about 37 percent.  
 
What's my point? It turns out that roughly the same odds apply to the underlying 
99th percentile in my 100-scenario GMAB example. What do I mean by that? The 
chance of any individual scenario being less than the true 99th percentile 
(remember, I'm talking about the true 99th percentile, which nobody knows) is 
obviously 99 percent. That's the definition of the 99th percentile. Assuming 
independence, the chance of all 100 of them being less is (0.99)^100, which is (1-
1/ n)^n, where n is 100. The 100 is not that large an n, but this is conservative, 
because the approach to 1/e is from the underside, not the high side. So in 100 
scenarios, I've got only about a 37 percent chance that all of my scenarios are less 
than the 99th percentile of my true distribution. This means that I've got about a 63 
percent chance that my worst scenario, which was $74 per $1,000, limits, is higher 
than the true 99th percentile of the underlying distribution. There's a two-thirds 
chance that my true underlying distribution is not worse than 7.4 percent of my 
premium at the 99th percentile. 
 
Better yet, if all I care about is the 95th percentile, my odds go from about 1/e to 
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(1/e)^5. Now I'm 99.5 percent sure that that 7.4 percent is worse than the 95th 
percentile of my underlying distribution. I'm almost positive. If all I care about is 
the 90th percentile, it's (1/e)^10, and it's many significant digits before I get to a 
number that's bigger than zero on that probability that I'm wrong.  
 
What if I do care about the 99th percentile? Then 63 percent certain is pretty poor. 
Nobody wants to tell the boss, "Oh, I'm about two-thirds sure that we're not going 
to bankrupt the company." But then you just need to run more scenarios. If you 
run 1,000 scenarios to make an inference on the 99th percentile, that puts the odds 
of your worst scenario being less back at (1/e)^10. Assuming the scenarios are 
correct, which nobody knows for sure (we all do the best we can to have scenarios 
that are conservative enough), if your company is willing to live with 7.40 and 
that's the worst out of 1,000 scenarios, that is almost 100 percent sure to limit your 
99th percentile, if you've run 1,000 scenarios.  
 
Do I always have to make these kinds of inferences using my worst scenario? That 
seems to be a pain. Often my worst scenario is really bad, and I might have a 
result with which we're not comfortable, but intuitively I think that this product 
should be okay. We shouldn't have to pull it, so something is wrong. The answer is 
no. The worst scenario is the simplest case, and I wanted to give you something 
that you'd remember, because what I'm about to tell you, you won't remember. It 
gets more complicated. With this you can think, "Okay, so my worst scenario isn't 
even going to bankrupt us. What does that tell me?" You can take that home, 
remember it and maybe not even have to look up the slides on the Internet.  
 
However, any time you're looking at a percentile and running a scenario, you're 
setting up a Bernoulli trial. Each scenario is a single Bernoulli trial. If you run 
enough scenarios, Bernoulli becomes binomial. You create a binomial distribution by 
running 100 or 1,000 scenarios. You can work out the odds and create your own 
confidence intervals by using binomial theory. You can say, "Given that I'm trying 
to prove that my benefit is not going to bankrupt the company more than 1 percent 
of the time, then my p is 1 percent and my q is 99 percent." You can work out a 
range of probabilities around the estimate of the percentile at which you're looking. 
 
You can also do hypothesis testing. I'm going to run through one quickly. It gets a 
little hairy as far as looking at the detail, but bear with me. If I wanted to do a one-
sided hypothesis test using nonparametric statistics, here's what I would do. Say 
I've run 1,000 scenarios on the total surplus of my company, including this 
guaranteed accumulation benefit, which seems very risky. I want my surplus level 
to "pass" 99 percent of all possible scenarios. By "all possible," we're talking about 
the universe; we're talking about what we're sampling on that we don't know. Out 
of my 1,000 scenarios that we do know (this is my sample), five out of 1,000 fail 
and have negative ending surplus. That seems like a good result because five out of 
1,000 is only 0.5 percent, and I'm happy if I can prove that only 1 percent of my 
scenarios fail. Let's see. My null hypothesis in the hypothesis test is that my true 
99th percentile result would "fail," because you're trying to disprove your null 
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hypothesis. If the null hypothesis were true, the chance of a success would be no 
more than 99 percent, and the chance of a failure could be no less than 1 percent. 
Let's be as conservative as possible and assume exactly 99 percent and 1 percent. 
The highest possible probability of no failures (all the scenarios "passing") would be 
0.99^1000, or 0.00004, which is tiny.  
 
For one failure, the binomial distribution result would be 0.99^999*.01 *1000, or 
0.0004, which is 10 times as big. The highest possible chance of two failures is 
0.0022, so now we're getting to be a real number. If you add up the first six results 
and get up to a possibility of five or fewer failures, the cumulative probability is 
6.61 percent. At a 5 percent significance level, I cannot reject my null hypothesis. 
Even though my result that I tested was five scenarios out of 1,000 and that's only 
0.5 percent failing, I don't have enough evidence at the 5 percent significance level 
to reject my null hypothesis.  
 
If you remember sampling on means and doing hypothesis tests, it's kind of like 
getting a result where your mean is on the right side of what you're trying to prove, 
but not by enough standard deviations. In this case, it's not by enough probability, 
in the binomial sense. If we had four or fewer failures, at 5 percent significance 
level, we could have rejected. That means we need to increase our surplus, right? 
No, not necessarily. The result was in the direction we want, just not by enough. 
We can always refine—look for more evidence—by running more scenarios. It turns 
out that if we run 10,000, and our failure rate is worse at 60 out of 10,000 (so it's 
0.6 instead of 0.5), now we're rejecting the null hypothesis easily; we've proved 
what we want to prove. The answer often is to run more scenarios if you're not sure 
and if you can't quite reject.  
 
I have some final comments on confidence statements. We've made several 
statements of probability or confidence levels. Remember, as the actuary, this is 
about scenario testing. The statements are based on your scenarios only. In other 
words, they assume that your lapse assumption, your mortality assumption, your 
expense assumption and other assumptions are correct. Most of the time, as 
actuaries, we're comfortable with that because we feel like we've got a good handle 
on that stuff, but just be aware of what you're saying. If you're making a statement 
to your chief financial officer (CFO), you may want to couch it and say, "This is 
assuming all of our other assumptions are correct." You may want to sensitivity test 
other assumptions. If mortality doubled because of a huge calamity, obviously that 
changes what could happen to our surplus.  
 
I'm going to go now to some statistical applications. We've talked about sampling 
theory long enough. I want to give you some hip-pocket notions to carry with you 
to some other areas in your job such that you might suddenly decide that you could 
use statistics there and how you might want to think about it.  
 
The first one is use of general linear regression. How many remember general 
linear regression? How many have used general linear regression in their jobs? It 
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looks like about a third, at least. That's good. It's probably the statistical tool used, 
but sometimes misused, by more actuaries than any other, as far as statistical tools 
in Excel or other spreadsheet or any other kind of packages you might have. Why? 
It's common; it's in almost all of them that I've ever seen. It's easy to remember 
how it works and what the solution set of parameters means. Everybody knows that 
you're looking for the beta1, beta2 or whatever. You want to know what your 
estimators are for the coefficient on your independent variable to get your 
dependent variable. But it's also fraught with pitfalls, and I'm going to try to teach 
you how to avoid some of those.  
 
We all remember the goal of linear regression. It's to demonstrate that there is a 
linear relationship between two or more bodies of data. You minimize squared 
differences, you estimate your coefficients, and you're done. You're basically trying 
to predict other data points, often future ones. Seldom do you do a linear 
regression just to explain the relationship; usually you're doing this because you 
want to know what's going to happen next.  
 
The last time I remember using this is when I was consulting for a company that 
wanted to know, before valuation date, a good estimate of what its funds were 
going to be valued at (the funds held in the variable accounts). It wanted to know, 
based on the Standard & Poor's (S&P) and the NASDAQ, the probable change in its 
funds, even though no fund is as broad as those two indexes, and there's going to 
be some variation. But the regression was good, and you could use it well to do a 
prediction like that, even when it was a future event, and you didn't know what y 
was going to be. So that's what you're trying to do. It's not just to explain the 
relationship that is there already, because you already know all those data.  
 
I've done an example. I knocked off in about 2002, partly because I felt like I had 
made my case, and we'll see that later. I did a regression of Val Act attendance 
versus latitude, as shown in Chart 3, hoping that the SOA people would look at this 
and draw their own conclusions and go my way. Obviously you're getting further 
north as latitude gets bigger. It's colder in late September, and I don't like it when 
it's below 70 degrees. I've tried to show that attendance was higher when you were 
in the lower latitudes, like here in Orlando. A couple of years ago, San Diego was a 
good choice, I thought. So I did my regression.  
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Chart 3 
Regression of Val Act Attendance vs. Latitude 

 
 
Let's look at what I got in my results. I got an X-coefficient of –17. I wanted a 
negative result, because the higher the latitude, the less attendance you get. I got 
a t-statistic of -2.16. If you think of it like normal, a standard error over 2 is a 
pretty good result, because I have a probability value of 4.57 percent, so at the 
significance level of 5 percent, I can reject and all that. My R-squared is 21.5 
percent, so I've explained 21.5 percent of the variation. Before, attendance was all 
over the place, but if I put in this predictor, latitude, I explain more than 20 percent 
of the variation in the different attendance levels. That's not too terrible. I could 
quit and say that I've proved my point.  
 
But now look at Chart 4. It is a regression of Val Act attendance versus calendar 
year. There are a couple of outliners, but it's a good result.  
 

Chart 4 
Regression of Val Act Attendance vs. Calendar Year 

 
 

 
What if I add calendar year to my regression as a second independent variable and 
do a multiple linear regression with X1 and X2 data? I get a coefficient on calendar 
year of 33.85 and a t-statistic of over 6. Six sigma is generally beyond-a-shadow-
of-a-doubt-type proof that something is significant. The probability value is 10^(-
5). In other words, it's zero. There's a 0 percent chance that I'm wrong about this. 
My coefficient on latitude goes to 0.82, with a t-statistic of 0.15, which is almost 
nothing, so latitude in this regression is no longer a useful variable at all. My R2 
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value jumps up to 76.5 percent. I'll point out to you that this happens almost any 
time you add another explanatory variable. You get more explanatory power, and 
R2 goes up, but not nearly as much for a poor variable. If I would have started with 
calendar year, I would have already been at 76.45, and adding latitude would have 
made it approximately 76.51. There would have little additional explanation.  
 
What mathematical pitfalls are within this example? First of all, the issue I've 
already raised, which is selection of inferior predictive data (selection of a bad 
variable), is not a mathematical pitfall; that's just something that happens. It's an 
issue, but not a mathematical issue. Often you might think that there's a 
relationship test for it and not find a relationship. The math is all good. You've 
indicated to yourself that you don't have a good predictor. In this case, if latitude 
was all you had to go on, it would be much better than nothing. That's why it tested 
well when you didn't put in calendar year. If you didn't know that there were 
calendar years and all you had were data on latitude and attendance, going on 
latitude would help explain some of the variation and might help you predict. 
Sometimes you don't have perfect data.  
 
However, there are two important issues here that you may recall. One is the 
nonconstant variance/outlier effect, which is the fact that you're going to have 
some data that are kind of crazy. The other issue is extrapolation beyond the range 
of the data.  
 
Regarding the outlier effect, I'll bring up 2001 on Chart 4 that you saw earlier. It is 
easily the largest squared error.  The year 1994 is at least the same number of 
significant digits in terms of squared error. Is that point truly indicative? Does 
anyone remember what happened to the Val Act in 2001? It was scheduled for 
September 12 or September 13. It was right on the tail of 9/11. It got postponed, 
and a lot of people cancelled their plans altogether. A lot of people were still afraid 
to travel, even when it was held in December. It's not truly indicative, and you 
need to consider this in drawing conclusions. It might even be worthwhile throwing 
that data point out before you did a regression. Interestingly, when you looked at 
latitude, it had a relatively small squared error.  
 
The other pitfall that you probably would remember is the difficulty if you try to 
extrapolate beyond the range of the data. Remember, in these data we had 
latitudes between maybe 25 and 45 and calendar years between the early 1980s 
and 2002. If you wanted to use a linear formula to predict the attendance of a past 
symposium during those calendar years, you'd want to use calendar year as your 
predictor. Latitude would not be as good. However, despite how things look on that 
chart, you could find that for predicting attendance in 2010 or so (estimate at 
1,214), calendar year is less useful than latitude. It's because you're going beyond 
the range of the predictive data, and shapes can often change if you go outside of 
that range.  
 
What has probably happened is that the Val Act grew in popularity over a set of 
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years, but if you look at data since then, you can already see it starting to tail off. 
In fact, a parabolic regression (a regression with X and X^2) would fit the data 
much better than what's there. I'm not indicating that it's going to go down. A 
parabola would first flatten out, and then even a parabola would start not to fit. 
Maybe you'd want to use a cubic or something to where it could maybe go up 
gradually again. We don't know what kind of regression would fit it the best. The 
point is that we've probably reached the peak of where we've got almost all the 
valuation actuaries in the country more or less interested. Some will come one 
year, and some will come another year. But it's unlikely that we can grow too much 
more, just because of the quantity of potential attendees.  
 
Even in 2010, warm temperatures are going to be what they are now, unless 
there's a huge climatic shift. Future attendance could flatten out, but you could still 
have better attendance in Orlando than you would in Pittsburgh . On the other 
hand, if you used latitude to predict 1,225 attendees in Quito, Ecuador, because 
you have a zero latitude, that's probably not going to work, either. It would 
probably be much worse. Again, you're going outside of the range of the data that 
you have, and you ought to be cautious when you're doing that.  
 
There's one more often-missed mathematical pitfall with multiple regression. You 
must be careful of colinearity of data. I said earlier that adding variables to a 
regression almost always provides more explanatory power, as measured by R2. It 
can't really not do that, because you're adding new ways to look at the data each 
time you add a set of predictors. Whether it's a good predictor or not, it's going to 
provide some explanation that the first set didn't. The one exception is if you add a 
variable that is a multiple of a previous variable, plus a constant. In other words, it 
is linearly related to the first set of predictive data. If you do that, you get no 
additional explanatory power. In fact, what happens mathematically is that you get 
a matrix that you can't invert, and you get no solution to the regression. If you put 
in something as X2 that is equal to X1 times a multiple, plus a constant, you get no 
solution. The closer that is to being true (if it's almost true), you start to get a weak 
solution, and you get almost no new explanatory power from your variable. 
 
It turns out that calendar year is a fairly good predictor of latitude. Regression 
between the two is more powerful than the first one we looked at between latitude 
and attendance. That shows that the SOA has already been going my way on this, 
so I win. I think that last year the meeting was in Boston, but this year's meeting is 
here, next year is Scottsdale and the year after that is Austin, I think.  
 
The point is that by adding calendar year to latitude, I got two variables that were 
closely related. The crux of the matter is that despite increasing explanatory power, 
which is measured by R2, adding nonuseful variables to a regression can reduce its 
predictive power, which is the power to predict new data points that might come 
up. This is because the number of degrees of freedom in the regression is the 
number of data points minus 1, minus the number of independent variables. When 
I added X2, if I have the same number of data points, I reduced my degrees of 
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freedom by 1. If you think of degrees of freedom as ways of fixing something in 
place, the less you have, the more wobbly it is. The fewer degrees of freedom you 
have, the more wobbly your estimator of future data points. If you add too many 
variables, and they're not useful variables, you can muddy the water so much that 
you end up not knowing what you have, and your point estimates of future data 
points become unreliable. The sigma is big, because you're dividing by such a small 
t-statistic. 
 
Let me go over a few variables that may be useful to you if you're doing a multiple 
regression instead of a single, and they're never colinear with the first one. One is 
higher powers of the independent variable. If X1 was X1, X2 could be X1^2. That's 
always going to work. The regression is still linear in the coefficients (the beta1 
times X1, plus beta2 times X2, et cetera), but you get a quadratic (or a cubic or 
whatever) formula on your X variable.  That always works. It's never colinear; it 
can't be colinear. Recall that I added an X^2 on attendance versus calendar year, 
and the parabola fit better, for instance.  
 
Other transformations you could use are natural log of the independent variable, 
exponential functions, trigonometric functions and so on. Trigonometric could be 
useful if you're doing a seasonal regression, and you've got the winter, then the 
summer, then the winter, then the summer, and you're trying to fit that in.  
 
Now let's go to statistical applications, part two. We finish regression and move on 
to something called C-3 Phase II. This is going to be especially helpful to the 
variable annuity actuaries. It's an area where we're really getting to use statistics. 
We're going to have to do some sampling based on a defined distribution of 
scenarios to get a defined result, which is also a statistic. If you're not interested in 
this subject, please bear with me. I think it's interesting because statistics are 
getting more and more into the valuation actuary realm in this area of C-3 Phase II.  
 
The two new statistical issues are calibration of scenarios and conditional tail 
expectation (CTE) 90 measure for risk-based capital (RBC). What should we know 
about both? If you're doing a valuation of a variable block that has guarantees, C-3 
Phase II says that you have to calibrate your equity scenarios to fit a certain 
distribution. Then you take your results, look at only the worst 10 percent and 
average the loss over those 10 percent, present value back. I'm simplifying a lot to 
make it simple. That becomes your total asset requirement, and you figure out your 
required surplus based on that, minus the reserve that you're already holding.  
 
What should we know about both? The calibration points for the equity scenarios 
are based on statistics. They are measured according to historical rate movements 
in the market. But if you think about it, how many independent 10-year historical 
holds do we have in the stock market? One of the statistics is to calibrate your 
equity scenarios for the hold over the first 10 years, and it has to be at least this 
conservative at the 10th, the 5th and the 1st percentile. What do we know about 10-
year holds? The S&P 500 index only goes back to something like the 1920s. That's 



Drawing Appropriate Statistical Inferences 16 
    
only about 80 years. How about for the modern-era S&P 500 index? Was it the 
same back in the days of the stock market crash in the 1930s as it is now?  
 
How about for more recent indices that we've added? The NASDAQ hasn't been 
around that long. We don't have many independent 10-year holds. Even though 
you can measure 10 years many ways, you realize that if you measure 1980 to 
1990 and then 1981 to1991, there are a lot of similar data in those two periods; 
they are not at all two independent examples. By the time you get to 1985 to 1995, 
you've got five years of dependence and five years of independence. It's not until 
you go to a new decade that you're completely independent. We have very few 
samples, so one has to develop distant (say 10-year) calibration points using some 
theory about distributions. You can't do it just by sampling on what has happened. 
 
Here's the gut check. Who developed the regulatory scenario set? Regulatory 
people. How would you describe regulatory people? Conservative. What kind of 
distribution do you think they chose to develop the calibration points? A 
conservative one. That means your results could turn out to be very conservative 
results, as far as the surplus you have to hold.  
 
How can you calibrate your equity scenarios? By using some fairly conservative 
assumptions of your own. I found that you probably cannot assume mean 
reversion, at least when I've tried it. Maybe some of you could come up at the end 
of this presentation and say that you've done it with mean reversion, it worked, and 
here's how. I'd be interested. But I found that you can't do that. Mean reversion is 
when you assume that if a scenario starts out poorly, there's a tendency for it to 
come back up because assets and the economy are growing at a certain rate, and 
even if valuations change, it should come to the same place after enough time. I 
don't think you can assume that for a 10-year hold under these calibration points.  
 
You probably should have a fairly diffuse distribution, with fairly wide parameters, 
in other words. The trick is that you want to try to fit all your calibration points. 
You've got to fit them all, or at least be confident that you're within materiality 
fitting them all, without badly overshooting on some of them. That can be a handy 
trick. Simply lowering your mean return or inflating your implied volatility could 
cause overshooting on some of your points. You may want to use a combination of 
the two or come up with your own alternative approach.  
 
Can you just "stretch out" your real-world set that you've run? Can you run your 
set how you like, and then, if you don't fit, push some of your outer scenarios out in 
some way? The verbiage in the guidance seems to allow that approach. I read it, 
and I think it does. It's up to valuation actuaries to decide whether this is 
acceptable to you, though, and whether it produces adequate capital. As far as 
other asset classes besides equities, the guidance says that you can come up with 
your own calibrations, but you've got to be consistent. That's all it says. There are 
probably several variations you could come up with on that. 
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What is CTE 90? I've gone through it a little bit. It's the average of your worst 10 
percent of possible outcomes estimated using your stochastic set. At one time in 
the valuation community, for getting required capital or for estimating target 
surplus on a new type of block where we didn't have a formula, we may have been 
happy with a value-at-risk measure. For instance, say our surplus has to cover the 
95th percentile of results. I can tell you that my company has some heavy-tailed 
benefits that are just like this. For heavy-tailed benefits, we needed something 
more robust than a value-at-risk measure. The reason is that there can be benefits 
like the GMAB example that I gave you, where at the 95th percentile, the cost is  
low or even zero, but going on out beyond that, the costs are highly significant. We 
needed a measure that included a feel for what the total tail costs were, out to the 
worst possible. By taking all of the worst 10 percent of possible outcomes into 
account, CTE 90 helps account for risk and gives you a better surplus measure. 
 
What are the basic statistics in a CTE 90? The first thing to realize is that we're 
estimating two quantities in a CTE 90, not just one. The first one is the 90th 
percentile. We're getting an unbiased estimate for the 90th percentile using our 
scenarios. If we run 1,000 scenarios, somewhere around the 900th scenario is an 
unbiased estimator of the 90th percentile. Once we know that, we can estimate the 
conditional distribution of losses, given that they exceed the 90th percentile.  
 
That's why it's called a "conditional" tail expectation; it's a conditional distribution, 
given that it's worse than the 90th percentile. It's a conditional mean, but it is a 
mean. It's a mean with a variance that's more volatile than a typical mean. A 
typical mean is a CTE 0; it's the mean given that your losses are worse than 
nothing. CTE 0 is the whole distribution. CTE 90 is a mean, but it's a conditional 
mean.  
 
Here's why the CTE 90 variance is more volatile. One reason is that the estimator is 
only asymptotically unbiased. What do I mean by that? If you ran a gazillion 
scenarios—whatever a gazillion is—it would be unbiased. But if you don't run a 
gazillion scenarios, it's not unbiased; it's biased, and it's biased in the wrong 
direction, because you're estimating the 90th percentile.  
 
As I said earlier, if you do a correct treatment of order statistics, around the 90th 
percentile of your sample is an unbiased estimator of the percentile. So a value-at-
risk measure is always unbiased. But when you combine the two measures, here's 
what happens. You estimate the 90th percentile, and then you're also putting in kind 
of an estimate of every percentile above that. The further up you go, the less 
unbiased the estimator from that point on is going to be, once you've set your 90th 
percentile. Think about what the worst statistic in any scenario set has to be. It's 
always your maximum: your worst cost or your worst surplus result. If you think 
about it, if you run more scenarios, it's always either going to be the same or 
worse. It's the one thing that can never go the other direction. The 90th percentile, 
if I run more scenarios, could go either way. It could actually go down. It's unlikely, 
and the further it is from the median, the less likely it is, but it could happen. The 
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maximum is always going to get worse or stay the same, with the more scenarios 
you run. If you have an infinite distribution, you can sample all you want, but it's 
always going to get worse and worse and worse, forever. You're never going to get 
a scenario that produces the maximum.  
 
The problem with a small sample size estimating the CTE 90 is that the fewer 
scenarios you run, the worse that maximum is, and, in fact, all the other numbers 
beyond the 90th percentile, but not as bad as the maximum. You're always going to 
be biased downward, and you're always going to be biased unconservative. You 
need to watch sample size. There's a similar bias in the estimator of the mean 
standard error, but it's small.  
 
If we use the mean and standard error estimate, since this is a mean, we can build 
a confidence interval around our CTE. That's the good news. The bad news is that 
there's bias, and it's volatile. The good news is that it is a mean, so we can use the 
mean and the standard error to get an estimate, and that gives us confidence so 
that if we don't run a gazillion scenarios, we can put confidence limits on where our 
true CTE is.  
 
What should we do? Be conservative about sample size. If you're estimating a CTE 
of a nearly normal event (as an actuary, you need to make that determination), a 
relatively small sample could be sufficient, and even a CTE 99 could be measured 
accurately. For most of the distributions, you're going to be doing CTE 90, but 
you're going to be doing fat-tailed stuff. For those, the bias isn't so bad a problem if 
you run maybe 1,000 scenarios. However, the combined variance of the two 
parameters could be a problem. The bottom line is that the papers I've read on the 
subject say that you have to use at least 1,000 scenarios if you're doing CTE 90, 
and the reason is the volatility of the parameters. 
 
I'd like to discuss some miscellaneous issues and then give a quick summary. I find 
that there are many times that you have a limited sample size. We talked about 
one example where we didn't have enough data. You don't have enough data, and 
there's no way to get more, so what do you do? When I say that, it's about the S&P 
500 history. You don't have a lot of sample size right now. The question is, Can you 
do anything with statistics there, or do you just throw up your hands? Does anyone 
else have any other examples of where they've had limited data but needed to 
draw conclusions somehow?  
 
FROM THE FLOOR: Lapse sensitivity. 
 
MR. ROBBINS: Lapse sensitivity is a good one. Say we don't have enough years 
yet in a product. We want to try to draw some kind of conclusion, but we're not 
sure what we can do. Expense studies could work the same, as well as mortality 
studies. Anything else?  
 
FROM THE FLOOR: Interest rates. 
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MR. ROBBINS: Interest rates are similar to equity rates, right. Yes, that's a good 
point. Do we throw up our hands and surrender, since we don't have enough data 
to converge to anything? My answer is no. My answer is that it depends on what 
your null hypothesis is. If you look at S&P 500 history, what we're trying to do is 
determine what we can say about the probability of a negative 10-year gross total 
return.  
 
A lot of people in the past, probably in the 1990s, designing the original living 
benefit structures that we've had, have said, "Even in the stock market crash of the 
1930s, a negative 10-year hold on the market has never happened." That's a fact. 
It has never happened. If you look at the index, there's a 10-year period where it 
has happened. But if you factor in dividend returns, it's unlikely. It's interesting. 
Dividend returns buy you more index when the index is down; it's kind of like 
dollar-cost averaging. There's a little bit of added insurance there than on a 
variable product where you get dividends. But to say that it has never happened 
carried some weight, and I think that intuitively people thought the stock market 
crash of the 1930s was as bad as it could get. It has never happened here. I think 
that what started to scare the markets and some people is Japan, because I think it 
has happened now there, right? Am I correct in saying that? I think that we've gone 
10 years, and it's still not close to where it was at the beginning of the 10-year 
period. It's potentially possible in the market to have a negative 10-year hold on 
stocks. What can we say, though, about the United States markets if it has never 
happened here? We think that maybe we have something like eight independent 
10-year periods at which to look. Can we draw any statistical conclusions from 
that?  
 
It depends on how reasonable our null hypothesis is that we're trying to disprove. 
Remember, you set a null hypothesis. As far as what I can do with a sample size of 
eight, it depends on the conclusion that I'm trying to reach.  
 
What if I'm trying to say that I think the chance of a negative 10-year hold in the 
future is not greater than 1 percent? That's a tough conclusion. Things are not so 
good in that case. If it were true that the market could not go down over 10 years 
more than 1 percent of the time, eight in a row times that it didn't happen, that 
would happen 92.3 percent of the time. If something happens 92.3 percent of the 
time, yes, of course that would happen. It's not proof of anything. You can't reject 
that hypothesis and say that no, you don't think so.  
 
What if I'm trying to say that I think there's no more than a 10 percent chance of a 
negative 10-year hold? Now we've got an argument, but it's not a strong argument. 
Again, that's like saying 0.9^10. If it should be 90 percent likely that we get a 
positive, 0.9^10 is about 43 percent. That's only 57 percent, as 1 minus that 
probability. Forty-three percent is still not that strong an argument. It's like saying 
that it's less than half likely, so that's good. There's more evidence than not, but 
not enough evidence to form a strong conclusion.  
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But if I'm willing to be happy with no more than 30 percent likely that we'll ever 
have a 10-year hold that's negative, now I can reject that at the 5 percent 
significance level. You can work this out in your head. If I wanted to say that eight 
times in a row conclusively proves that you wouldn't get a negative 10-year hold 
more than half the time, now you can just say, "Oh, yes—two, four, eight, 16, 32, 
64, 128, 256. If it were a 50/50 shot of getting eight in a row of no negative 10-
year hold, that can happen only one time in 256. Now I can reject that. There's no 
way. It's just a 50/50 shot." Somebody might say that he or she thinks that it's 50 
percent likely right now that the market is going to go down over the next 10 
years, and you could say that that's ridiculous. Based on the historical evidence, 
unless something is changed, there's no way.  
 
Put that in other terms you might want to use, say the probability of the Saints 
winning the Super Bowl this year. If it were a decent shot, it should have happened 
before. So no, that can't happen. If you root for the losing team in every sport like I 
do (the Saints, the Cubs), you know what I'm talking about. You can draw 
conclusions based on not much data, if you're willing to pick something that is 
reasonably unlikely or a conclusion that's reasonably easy to prove.  
 
If you need to prove something more difficult, you just need more data. If you need 
to prove something more difficult, and you don't have enough data, you're stuck, 
and you need to look for another way to design a product or something like that.  
 
My point hasn't been to argue about how likely a negative 10-year hold might be, 
but rather to show that you can draw valid inferences if you're not too demanding 
on your data. By the year 2200, when we're looking at independent 10-year holds, 
we could know enough, if we haven't had any negative 10-year holds, to reject at 
10 percent likelihood that there would ever be one at the 5 percent significance 
level. To get a feel for a 1 percent likelihood, we'd need 100 trials, and that's 1,000 
years. I don't know if we'll have stock markets in 1,000 years. That, in fact, is why 
a 10-year put on the index does in fact cost something, even though it has never 
happened before that the put would have been in the money. 
 
Let me summarize. To summarize my first two sections, normal is somewhat 
normal. You do find a lot of applications where you can use normal theory, but you 
have to be careful about approximating the shape of a distribution that way. It's 
mostly useful for approximating where your scenario mean has wound up and for 
getting a feel for the overall mean. In most of your distributions, as a valuation 
actuary, the mean will converge and become normal if the sample is big. When a 
distribution is not normal and you want to get a feel for the tail, you should be 
using some kind of binomial theory with nonparametric statistics.  
 
When generating and using stochastic scenarios, it's good to be clear on what some 
of the statistics really mean, such as CTE 90 and tail parameters. Regression is 
useful, but it's important to realize that increasing R2 is not the only goal; you want 
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to increase your predictive power as much as you can and not muddy the water 
with extraneous variables. Even limited data can be useful if you're not too 
demanding with your conclusions that you're trying to draw.  
MR. BERNARD RABINOWITZ:  I'm a health insurance actuary, so I'm not familiar 
with a lot of the terms you used. But can you explain calibration of the model? 
What does that mean? 
 
MR. ROBBINS: It's calibration of the equity scenarios. The requirement states that 
if you're doing a model for equities, for funds that are generally invested in 
something like an S&P 500 index, after one year the 10th percentile cannot be any 
better than, say, a 10 percent drop. The 5th percentile out of all your scenarios 
cannot be any better than a 15 percent drop, and the 1st percentile can't be any 
better than, say, a 25 percent drop (something very conservative). After five years, 
you also have a required 10th, 5th and 1st percentile, and after 10 years, again, you 
have the same thing. You have to make sure your scenarios are diffuse enough—
spread out enough—that you meet these requirements for them before you're 
allowed to use those scenarios. Does that answer your question? 
 
MR. RABINOWITZ: Yes. I have another one. I may not have been exactly truthful 
when I said that I'm a health insurance actuary. I used to be a life and annuity 
actuary, way back in the 1960s and 1970s. Our company had a subsidiary in 
Canada, and we were selling equity-linked whole life insurance. We put a guarantee 
on it, and we tried to cost the guarantee. These are the days before you had the 
type of computing power that you have today. One of my colleagues came up with 
a method, and it involved looking at the daily swing in stock prices. Sometimes it 
went up, and sometimes it went down. You assigned that the probability of going 
up and going down was the same, so all he looked at were deviations. We built a 
model. It took three or four days to run on the company's mainframe. We'd do 
quite a few hours at night, and we crunched it through. We got some interesting 
loss scenarios. It's like saying that we haven't had a hurricane for 20 years, so it's 
not going to happen. This is what I'm hearing.  
 
MR. ROBBINS: That's interesting. What you're describing is kind of a binomial 
lattice approach, where every year or every period, you have an equal probability of 
an up by sigma or a down by sigma? 
 
MR. RABINOWITZ: Yes. When you run it yearly, you get entirely different results. 
But when you run it daily, the results show much more volatility. 
 
MR. ROBBINS: Sure. If you run it daily, it sounds simple and could be scoffed at 
now, but it should produce good results. That approach is still the basis of option 
pricing theory. All Black-Sholes is is the continuous equivalent over time of a series 
of discrete jumps like that. If you do it daily to get results that don't matter daily, 
and you end up with a distribution at the end of a year, it would be a good model. 
 
MR. RABINOWITZ: But using that method, there was a cost.  
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MR. ROBBINS: That's good. There probably should have been. I think that 
Canadian variable products, which were called segregated funds, have had things 
like guaranteed accumulation benefits a lot longer than they did in the United 
States. Companies used to think that the costs should be about zero, and then they 
brought in more option pricing techniques and found out that they were totally 
underpriced. The United States was probably just lucky that it didn't develop those 
guarantees as early, before the theory caught up.  
 
MS. SHIRLEY HWEI-CHUNG SHAO: As we move toward the principle-based 
approach, are there going to be more reviewers, for example, the corporate actuary 
department that wants to review what the variable annuity people are doing ? 
There's also going to be a reviewing actuary, maybe an independent reviewing 
actuary. There will also be regulators. 
 
MR. ROBBINS: Sure. 
 
MS. SHAO: Do you have any suggestions on what kind of role these reviewers 
should perform when it comes to what you're talking about? How much should we 
be reviewing? Should we be reviewing whether the statistic inferences are made 
correctly and all that? 
 
MR. ROBBINS: In a session just on statistics, as far as telling people what they 
should be doing as far as their job, I'm not sure that I have much to say. I would 
look for the basics, like what I've taught today. If people give you a CTE, are they 
just giving you the CTE from their scenarios, or are they telling you the confidence 
limits on the CTE? Say they've done only 1,000 scenarios. How do you know that 
CTE doesn't happen to be an unconservative sample and that it could be higher if 
you did a different 1,000 scenarios? Much simpler, if someone is telling you that the 
99th percentile cost of this benefit is such-and-such, did that person just pull the 
99th scenario out of 100, or did that person really figure out a bound on the 99th 
percentile of the true distribution? It's that kind of thing. I would open up the 
questions like that, and I would probably be caught if someone asked me things like 
that at my company, frankly. Often, you take the simple road when you're trying to 
answer a question about a percentile or a statistic. You don't fully think it through 
and think what the worst case could be.  
 
  


