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Abstract

Due to great concerns caused by losses from catastrophes, insurers have been seeking solu-
tions to mitigating catastrophe risks. Traditional reinsurance, despite being a commonly used
solution, does not have enough capacity to digest all the catastrophe risks. Alternative risk
transfer to the capital market through securitization has emerged as another solution. This re-
port discusses securitized (re)insurance products, that is, insurance linked securities (ILSs), such
as catastrophe (CAT) bonds and industry loss warranties (ILWs). Our focus is on the pricing of
ILSs, as well as possible issues with using them as hedging tools, such as hedging effectiveness
and basis risk. We establish a general pricing theory using CAT bonds as an example, and we
establish a framework for quantifying the basis risk of hedging using ILWs as an example. In
doing so, we propose to use extreme value theory to characterize the catastrophe risks involved.

1 Introduction

1.1 Catastrophe losses

Immense losses from the catastrophes that occurred in recent years have caught much attention

from insurers, regulators, and academics. The year 2015 represents a typical example of such loss

experience, with an overall loss of $90 billion and an insured loss of $27 billion resulting from 1,060

documented loss events worldwide, along with 23,000 fatalities, according to Munich Re1. At the

top of the list of those causing the greatest overall losses are the Nepal earthquake in April 2015, the

China/Philippines Typhoon Mujigae in October 2015, and the U.S. windstorm in February 2015,

which resulted in overall losses of $4.8 billion, $3.5 billion, and $2.8 billion, respectively. At the top

of those causing the greatest insured losses are the U.S. windstorm in February 2015 and the U.S.

severe storms in May 2015 and in April 2015, which resulted in insured losses of $2.8 billion, $2.5

billion, and $1.6 billion, respectively. The three deadliest events are the Nepal earthquake in April

2015, the India/Pakistan heat wave in May–June 2015, and the Europe heat wave in June–August

2015, which took 9,000, 3,670, and 1,250 lives, respectively. Despite being the lowest since 2009,

the 2015 loss numbers are still disconcertingly high.

1For details, see https://www.munichre.com/en/media-relations/publications/press-releases/2016/2016-

01-04-press-release/index.html.
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Historically, the top-five costliest catastrophes since 1980—Hurricane Katrina in 2005, the Japan

earthquake in 2011, Hurricane Sandy in 2012, Hurricane Ike in 2008, and Hurricane Andrew in

1992—have cost insurers $62 billion, $40 billion, $29.5 billion, $18.5 billion, and $17 billion, respec-

tively 2.

Concerned with great losses, insurers are constantly seeking solutions to managing such catastro-

phe risks. Traditional reinsurance has been a commonly used solution, yet traditional reinsurance

industry has a capacity that is too limited to digest all the catastrophe risks. An alternative so-

lution is to securitize the risks and use insurance-linked securities (ILSs) to transfer the risks to

the capital market. In view of the large size of the capital market, such an alternative risk transfer

(ART) mechanism can greatly enhance the risk bearing capacity.

The focus of our report will be on ILSs and, in particular, on catastrophe (CAT) bonds and

industry loss warranties (ILWs). We shall discuss the pricing of ILSs as well as possible issues

with using them as hedging tools. We shall establish a general pricing theory using CAT bonds

as an example, and we establish a framework for quantifying the basis risk of hedging using ILWs

as an example. In doing so, we rely on extreme value theory (EVT) to model and measure the

catastrophe risks involved.

1.2 Insurance-linked securities

Insurance-linked securities are financial securities that have a payoff linked to insurance risks and

are often designed to provide additional funds for insurers/reinsurers to pay large claims when

triggered. They have been widely used by insurers/reinsurers as a tool to transfer (catastrophic)

insurance risks to the capital market. The use of ILSs helps insurers/reinsurers raise risk capital

from the capital market and greatly enhances their risk-bearing capacity. Currently, commonly

used ILSs in the market include CAT bonds, ILWs, and sidecars.

From ILS investors’ point of view, since ILS triggering events are believed to be usually un-

correlated with the financial market (see, e.g., Lane and Beckwith 2009 and Galeotti et al. 2013),

ILSs are considered as an effective diversification of their portfolio that bears an attractive yield.

This has provided a sufficient demand to fuel the ILS market expansion in the current low-interest

environment. The first quick expansion of the ILS market took place in 2005 after Hurricane Ka-

trina. Although it cooled because of the 2008 financial crisis, the market regained momentum in

recent years. Outstanding ILS capital has been increasing steadily from $14.4 billion in 2011 to

$25.3 billion, $26.0 billion, and $26.8 billion in 2014, 2015, and 2016, respectively. In addition, the

new issuances in these three years, $9.1 billion, $7.9 billion, and $7.1 billion, were much higher

than the new issuance of $2.8 billion in 2008.

2See the page “Significant Natural Catastrophes” under “NatCatSERVICE” at https://www.munichre.com/

touch/naturalhazards/en/homepage/index.html.
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Moreover, although most ILSs are available only to sophisticated investors, the secondary mar-

ket has seen a rapid growth; for example, the ILS trade volume in the first quarter of 2016 was over

25% more than that in the last quarter of 2015 (Aon Benfield)3. Another reason for the success of

the ILS market is the large size of the capital market compared to the insurance market; a huge

insurance loss of billions of dollars may be imperceptible if positioned in the U.S. bond market,

which has an outstanding market of tens of trillions of dollars. This makes catastrophic insurance

losses easily absorbable and has partly fueled the supply side of the ILS market. Meanwhile, the

recognition of contingent capital as eligible risk capital by regulation frameworks, such as the Sol-

vency II Directive and the Swiss Solvency Test, has also stimulated ILS supply. As of the end of

2016, the ILS outstanding risk capital is $26.8 billion, of which the majority is from CAT bonds.

Therefore, we shall base most of our discussions on CAT bonds.

1.3 CAT bonds

The mechanism of CAT bonds

CAT bonds are issued by a collateralized special purpose vehicle (SPV), usually established offshore

by a sponsor that is an insurer/reinsurer. The formation of the SPV helps isolate the particular

catastrophe risks involved in the CAT bond investment from the sponsor’s other business risks and

provides investors with a pure trade of the catastrophe risks. The SPV receives premia from the

sponsor and provides reinsurance coverage in return. The premia are usually paid to bond investors

as part of coupon payments, which typically also contain a floating portion. The floating portion is

linked to a certain reference rate such as the London Inter-Bank Offered Rate (LIBOR), reflecting

the return from the trust account where the principal is deposited. When the specified catastrophic

event occurs at a strength that is enough to trigger the bond, the principal and, hence, the floating

portion of the coupon payments may be reduced so that some funds can be sent to the sponsor as

a reimbursement for the claims paid. Usually offered with a maturity of one to five years, CAT

bonds have the advantage of providing insurers/reinsurers with coverage for multiple years without

incurring extra transaction costs. See Cummins (2008) for related discussions.

The choice of trigger

In the design of CAT bonds, of great importance is the choice of trigger, which can be categorized

into indemnity triggers and nonindemnity triggers. Indemnity triggers trigger the bond according

to the sponsor’s actual loss due to the specified catastrophic events, while in contrast, nonindem-

nity triggers are based on other quantities chosen to reflect/approximate (yet unlikely to precisely

represent) the actual loss. Typical nonindemnity triggers include industry loss triggers, parameter

3See http://ir.aon.com/about-aon/investor-relations/investor-news/news-release-details/2016/

Catastrophe-bond-issuance-set-first-quarter-record-of-22bn-according-to-Aon-ILS-study/default.

aspx.
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triggers, modeled loss triggers, and hybrid triggers. Industry loss triggers trigger the bond when the

value of a chosen industry loss index, such as the Property Claims Services (PCS) index, exceeds

some threshold. Parameter triggers trigger the bond when a parameter of the catastrophic event

exceeds some threshold, such as the magnitude of an earthquake being measured over 7.0 or the

Chicago Mercantile Exchange Hurricane Index exceeding 10.0. Modeled loss triggers trigger the

bond based on the loss calculated via a model provided by a recognized agency such as Applied In-

surance Research Worldwide, EQECAT, and Risk Management Solutions. Hybrid triggers combine

the above-mentioned triggers and can be useful for bonds that cover multiple perils. We refer the

reader to Dubinsky and Laster (2003), Guy Carpenter & Company (2007), and Cummins (2008)

for related discussions of the triggers.

Among the five types of triggers, the most popular ones are indemnity triggers and industry loss

index triggers. As of the end of 2016, about 63.9% of CAT bond and other ILS outstanding risk

capital is based on an indemnity trigger, and about 24.7% is based on an industry loss index trigger4.

There is a trend that indemnity-triggered bonds are taking a higher proportion. According to

Cummins and Weiss (2009), the most popular CAT bond triggers during 1997–2007 were indemnity

triggers, parameters triggers, and industry index triggers, which took up 30%, 25.9%, and 21.5%,

respectively.

The choice of trigger is essentially a trade-off between moral hazard and basis risk. Indemnity

triggers are known to provide a better hedge for the sponsor since the resulted claim reimbursement

is perfectly linked to the sponsor’s loss, leading to lower basis risk. However, the use of indemnity

triggers involves disadvantages such as bond investors’ concern with moral hazard in the calculation

of the sponsor’s loss and the sponsor’s concern with confidential information disclosure. Also, due

to the long loss adjustment process, indemnity-triggered bonds usually take a much longer time

to settle than some nonindemnity-triggered bonds (e.g., parameter-triggered bonds). Therefore,

investors demand a higher yield from indemnity-triggered bonds, a phenomenon suggested by Du-

binsky and Laster (2003) and Cummins and Weiss (2009) and empirically verified by Galeotti et

al. (2013). With nonindemnity triggers moral hazard can be significantly reduced. However, due

to possible lack of dependence between the nonindemnity trigger of choice and the sponsor’s loss,

there could be substantial basis risk that the CAT bond cannot effectively hedge the sponsor’s loss.

Examples of CAT bonds

Here we list three examples of CAT bonds5 issued in the past to show some typical designs.

Example 1.1 Kamp Re 2005 Ltd.

• Issuer: Kamp Re 2005 Ltd.

4See http://www.artemis.bm/deal_directory/cat_bonds_ils_by_trigger.html.
5Details of these bonds can be found at http://www.artemis.bm.

4

http://www.artemis.bm/deal_directory/cat_bonds_ils_by_trigger.html
http://www.artemis.bm


• Sponsor: Swiss Reinsurance America Corp.

• Catastrophe risks covered: U.S. hurricane and U.S. earthquake

• Issue date: August 2005

• Maturity date: August 2008

• Amount: $190 million

• Ratings: BB+ (Standard & Poor’s)

• Trigger type: Indemnity (triggered if losses from one single hurricane or earthquake exceeds

$1 billion)

Kamp Re 2005 Ltd. was the first natural CAT bond triggered, and investors lost 75% of the

principal. This had a substantial impact on the prices of CAT bonds issued afterwards.

Example 1.2 Muteki Ltd.

• Issuer: Muteki Ltd. Cedent

• Sponsor: Zenkyoren

• Catastrophe risk covered: Japan earthquake

• Issue date: May 2008

• Maturity date: May 2011

• Amount: $300 million

• Ratings: Ba2 (Moody’s)

• Trigger type: Parametric

Because of the March 11, 2011, Japan earthquake, the bond was triggered about 10 weeks before

maturity. The investors lost all of the $300 million principal.

Example 1.3 Acorn Re Ltd. (Series 2015-1)

• Issuer: Acorn Re Ltd.

• Sponsor: Hannover Rück SE / Oak Tree Assurance, Ltd.

• Catastrophe risks covered: U.S. earthquake

• Issue date: July 2015

• Maturity date: July 2018

• Amount: $300 million

• Ratings: BBsf (Fitch)

• Trigger type: Parametric

We shall use this bond as a prototype when discussing CAT bond pricing in Section 4.1.

The first two examples show cases where some (or all) bond principal is lost because of the

occurrence of the specified catastrophic events. It is noteworthy that, although CAT bonds are

designed to provide investors with a pure trade of insurance risk and to eliminate credit risk via
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collateral accounts, the flaws of the Total Return Swap structure that prevailed before the 2008

financial crisis have caused principal losses for investors. In fact, four of the 10 principal losses (the

2006 deal issued by Carillon Ltd., the 2007 deal issued by Ajax Re Ltd., and the 2008 deals issued

by Newton Re and Willow Re) are due to the failure of Lehmann Brothers, who acted as the swap

counterparty; see NAIC (2012). Since then much improvement has been made on the collateral

structure to further reduce credit risk.

1.4 Industry loss warranties

ILWs are a kind of reinsurance contract that reimburses the purchaser when triggered. Typically

used triggers include indemnity triggers and index loss triggers. Dual-triggered ILW contracts have

both an indemnity trigger and an index loss trigger; that is, such contracts are triggered when

both the company specific loss is beyond some limit and the industry loss as a whole is also over

some attachment point. Compared to traditional reinsurance, index-triggered ILWs are highly

standardized, have relatively low transaction costs, are less susceptible to moral hazard, and are

more liquidly traded in the secondary market. They can be offered both before and after the

occurrence of perils (although it must be before the estimated industry loss is publicly available).

Although some of the features may become less prominent after the introduction of an indemnity

trigger to the ILW contract, the indemnity trigger generally makes the contract look friendlier to

regulators. The purchase of ILWs with an indemnity trigger is considered as a reinsurance purchase

by regulators and will help reduce the insurer or reinsurer’s required risk capital.

ILWs also take up a significant portion of the ILS market and have been serving as another

solution to catastrophe risk transfer. The size of the ILW market used to be approximately of

the same order as that of the CAT bond market (Cummins 2008), although it appears not to be

growing as fast. Because of the lack of data, a precise and most updated estimate of the size is not

available6.

To understand a typical design of ILW, below we show a hypothetical example, excerpted from

McDonnell (2002):

• Term: 01/01/2014–12/31/2014

• Territory: 48 U.S. states

• Perils covered: all natural catastrophes

• Index: PCS

• Industry loss trigger: $10 billion

• Company loss trigger: $100 million

• Coverage limit: $300 million

• Reporting period: 36 months

6See http://www.willisre.com/documents/Media_Room/Publication/Willis_Re_Q1_2012_ILW.pdf for a sum-
mary of the market size until 2012.
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• Premium: 12% (rate-on-line) of coverage limit

The rest of this report contains five sections. Section 2 introduces EVT and prepares the the-

oretical framework that will be used for modeling extreme risks and their extreme dependence.

Section 3 proposes a general pricing framework using a product pricing measure. Section 4 illus-

trates the pricing framework as well as the use of EVT using two CAT bonds as examples. Section

5 discusses the basis risk of ILWs for both ILWs with average-sized attachment points and ILWs

with large attachment points. Finally, Section 6 collects technical proofs and details of the interest

rate models used throughout the report.

2 Modeling Extreme Risks

Apparently, both the pricing of such ILSs and the quantification of their basis risk will have to rely

on proper modeling of the underlying extreme risks and their extreme dependence. In this section,

we prepare a few general modeling frameworks that are useful for these purposes.

2.1 Modeling extreme dependence

Since aggregate insurance losses are often modeled by sums of (dependent) random variables, we

pay special attention to such sum structures. Assume that the losses from d individual events or d

covered regions are X1, . . ., Xd and, hence, the aggregate amount of losses is

Sd =
d∑
j=1

Xj .

While there are well-established statistical methods available for characterizing the marginal distri-

butions of the losses X1, . . . , Xd, it is in general much harder to model the intangible dependence

structures among them.

Since we are concerned with extreme risks, we focus on dependence in the tail area, which we

shall interchangeably call tail dependence, extreme dependence, or asymptotic dependence. Two

random variables Y1 and Y2 with distribution functions G1 and G2 are said to be tail dependent if

they have a significant tendency of extreme comovement, that is, if their coefficient of upper tail

dependence, defined by

lim
u↑1

P (G1(Y1) > u|G2(Y2) > u) ,

exists and is positive. The coefficient of lower tail dependence can be defined in a similar way.

The characterization of tail dependence is of great importance in modeling extreme risks. We

propose a risk factor approach to this problem. Generally, one may assume that the individu-

al losses X1, . . . , Xd are exposed to a common risk factor θ, which can be either univariate or

multivariate depending on a given situation. This risk factor summarizes the impacts of various
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intrinsic quantities of interest and plays an important role in modeling tail dependence. For ex-

ample, in earthquake insurance the risk factor θ can be chosen to be the earthquake magnitude,

in agricultural insurance it can be weather indices such as the temperature and precipitation, in

health insurance it can be the spread of a pandemic and the effect of a corresponding vaccine, and

in life insurance it can be some environmental factor that influences the mortality rate. If financial

investments are considered, then θ can be represented by some underlying macroeconomic factors.

Usually, this risk factor θ is crucial in affecting the strength of tail dependence. A flexible model

therefore ought to span a wide range of tail dependence when θ varies.

Among many models for dependence structures, copula models are particularly useful. A copula

with dimension d is a joint distribution function of d uniform (0, 1) random variables. For individual

losses X1, . . . , Xd with specified marginal distributions F1, . . . , Fd, one can incorporate a copula,

denoted by C(u) for u ∈ (0, 1)d, to model their dependence. We say that the random vector

X = (X1, . . . , Xd) has a copula C if it holds for every x ∈ Rd that

P (X1 ≤ x1, . . . , Xd ≤ xd) = C(F1(x1), . . . , Fd(xd)).

See, for example, Nelsen (2006) for a comprehensive treatment of copulas.

To capture the tail dependence among insurance losses, one may consider t-copulas. To specify

a t-copula, one needs a degree of freedom v and a positive definite correlation matrix % = (ρjk).

Then the t-copula is given by

Ctv,%(u) = tv,%
(
t−1
v (u1), . . . , t−1

v (ud)
)
, u ∈ (0, 1)d,

where tv,% is the joint distribution function of a d-dimensional t distribution with degree of freedom

v, mean 0, and correlation matrix %, and t−1
v is the quantile function of a standard univariate t

distribution with degree of freedom v. In the risk factor approach, a risk factor θ can be put into

the correlation matrix in the copula and can be calibrated from data.

Other copula choices can model tail dependence, each having its own merits and demerits. For

example, t-copulas, while being able to depict tail dependence, have upper and lower tails that

behave very similarly. More precisely, if the random vector X possesses a t-copula, then every pair

of its components has the same coefficient of upper and lower tail dependence; see, for example,

Section 7.3.1 of McNeil et al. (2015). Hence, t-copulas do not have the flexibility to model different

upper and lower tail dependence structures. On the other hand, Gumbel copulas, given by

C(u) = exp

−
 d∑
j=1

(− lnuj)
γ

1/γ
 , u ∈ (0, 1)d, 1 ≤ γ ≤ ∞, (2.1)

potentially resolve this issue and can be another good candidate for modeling tail dependence. An

important feature of Gumbel copulas is that the pairwise coefficient of lower tail dependence is 0
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while the pairwise coefficient of upper tail dependence is 2− 21/γ , which is positive if γ > 1. It is

easy to see that letting γ = 1 in (2.1) results in the independence copula

Cind(u) =

d∏
i=1

ui,

while letting γ =∞ results in the comonotonicity copula

Ccom(u) = min
1≤i≤d

ui.

Concerning the risk factor approach, if we link the parameter γ of a Gumbel copula to a risk factor

θ in a suitable way, then we can span the range of tail dependence from asymptotic independence

to asymptotic full dependence, as θ varies from its normal range to its extrema.

2.2 Extreme value distributions

It is natural to consider using an asymptotic method for tail risk analysis. Asymptotically, one may

use extreme value distributions to approximate the distributions of certain quantities of interest,

such as the maximum loss within a period of time and the exceedance of loss over a high threshold.

Specifically, for a distribution function F , let Mn be the maximum of a sample of size n from

F . If there are normalizing constants cn > 0 and dn ∈ R such that c−1
n (Mn − dn) converges weakly

to a nondegenerate distribution H, then we say that F belongs to the max-domain of attraction

(MDA) of H. By the well-known Fisher–Tippett–Gnedenko theorem, H must be a member of the

family of generalized extreme value distributions whose standard version is

Hξ(x) = exp
{
−(1 + ξx)−1/ξ

}
, 1 + ξx > 0,

where (1 + ξx)−1/ξ is interpreted as e−x for ξ = 0. This unifies the three extreme value types:

Fréchet, Gumbel, and Weibull.

Moreover, the well-known one-dimensional peaks-over-threshold (POT) theorem states that, for

F ∈ MDA(Hξ) with a finite or infinite upper endpoint xF , there exists a positive function a such

that, for x > 0 and 1 + ξx > 0,

lim
y↑xF

P

(
X − y
a(y)

> x

∣∣∣∣X > y

)
= (1 + ξx)−1/ξ.

This means that the scaled excesses over a high threshold y converge weakly to the generalized

Pareto distribution (GPD). The auxiliary function a, as well as the normalizing constants cn and dn

above, can be explicitly expressed; see, for example, Theorem 1.1.6 of de Haan and Ferreira (2006).

With the convergence above, approximations for the tail probability of X and some tail-related

risk measures such as value at risk (VaR) and conditional tail expectation will be straightforward.

By incorporating a scale parameter the GPD above can be extended to

Gξ,β(x) = 1−
(

1 + ξ
x

β

)−1/ξ

, β > 0,
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where x ≥ 0 if ξ ≥ 0 and 0 ≤ x ≤ −β/ξ if ξ < 0. As stated in Theorem 3.4.13(e) of Embrechts et

al. (1997), for a random variable X following the GPD Gξ,β , its mean excess function is a linear

function,

e(y) = E [X − y|X > y] =
β + ξy

1− ξ
, β + ξy > 0.

The linearity allows us to use a plot of the estimated mean excess function to check whether a GPD

is a good fit to the data.

Details of these concepts and results are available in standard monographs of EVT such as

Embrechts et al. (1997), Beirlant et al. (2004), and de Haan and Ferreira (2006). Applications of

EVT to insurance, finance, and risk management can be found in Embrechts et al. (1998, 1999),

McNeil and Frey (2000), Bali (2007), Zimbidis et al. (2007), Donnelly and Embrechts (2010),

Kellner and Gatzert (2013), Kelly and Jiang (2014), McNeil et al. (2015), and van Oordt and Zhou

(2016), among many others.

2.3 Univariate and multivariate regular variation

The modeling of tail dependence and extreme sizes of losses can be packed into a unified modeling

framework using the notion of multivariate regular variation (MRV).

We start with univariate regular variation. A positive function f on R+ = [0,∞) is said to be

regularly varying at ∞ with regularity index α ∈ R, written as f ∈ RVα, if

lim
x→∞

f(xz)

f(x)
= zα, z > 0.

Thus, f ∈ RVα if and only if

f(x) = xαl(x) (2.2)

for some slowly varying function l (that is, l ∈ RV0). See Bingham et al. (1987) and Resnick (1987)

for textbook treatments of regular variation.

Let X be a random variable distributed by F on R+ with tail F = 1− F ∈ RV−α, α > 0; that

is,

lim
x→∞

F (xz)

F (x)
= z−α, z > 0. (2.3)

By relation (2.2), the tail F (x) decays roughly at a power rate. Hence, the random variable X and

its distribution function F are often said to be of Pareto type. Commonly used distributions such

as Pareto, Student’s t, F , Burr, Loggamma, Fréchet, and inverse gamma distributions are all of

the Pareto type. Note that a Pareto-type distribution is heavy tailed in the sense that its right tail

is heavier than that of any exponential distribution.

An MRV structure can be used to model both extreme losses and their extreme dependence.

For illustration, we consider a simple case where all marginal distributions of the losses have tails

equivalent to that of a Pareto-like distribution function F . Denote the space [0,∞]d by [0,∞]. A
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random vector X = (X1, . . . , Xd) is said to possess an MRV structure on [0,∞]\{0} if there exists

a limit measure ν on [0,∞]\{0}, not identically 0, such that, for every z > 0,

lim
x→∞

1

F (x)
P

(
X

x
∈ [0, z]c

)
= ν ([0, z]c) , (2.4)

where [0, z]c is the complement of the set [0, z]. Note that the MRV structure is indeed a multi-

variate extension of univariate regular variation. On the one hand, the univariate regular variation

described by (2.3) corresponds to (2.4) with d = 1 and ν ([0, z]c) = z−α; on the other hand, the

multivariate regular variation described by (2.4) implies that some, and maybe all, marginal tails

of X are regularly varying. For detailed discussions of MRV, we refer the reader to the monographs

by de Haan and Ferreira (2006) and Resnick (2007).

This structure provides us with great generality for modeling, in the sense that all random

vectors with Pareto-like marginal distributions will follow this structure as long as the dependence

among their components satisfies some mild conditions. Such dependence can be produced by,

for instance, mixtures and various copulas such as Gaussian, t, and Archimedean copulas; see,

for example, Li and Sun (2009) and Tang and Yuan (2013). Dependence in the tail of particular

strength can be captured through a particular limit measure ν. For example, strong tail dependence,

which could give rise to joint large losses, can be captured by a limit measure that assigns mass to

the interior area (1,∞], while weak tail dependence can be modeled by a limit measure concentrated

on the axes only. Indeed, if ν((1,∞]) > 0, then for d ≥ 2 we have, for example,

lim
x→∞

P (X1 > x,X2 > x)

P (X1 > x)
=
ν
(
(1,∞]× (1,∞]× [0,∞]d−2

)
ν ((1,∞]× [0,∞]d−1)

> 0.

This together with the tail equivalence of the marginal distribution functions implies that X1 and

X2 are tail dependent.

Below we show a few examples where an MRV structure naturally arises from various specifi-

cations; they also show how the strength of tail dependence is reflected by the limit measure.

Example 2.1 Suppose that X1, . . ., Xd are independent, identically distributed (i.i.d.) following

a common Pareto distribution with shape and scale parameters α and θF :

F1(x) = · · · = Fd(x) = F (x) = 1−
(

θF
x+ θF

)α
, x > 0. (2.5)

Then for every z > 0,

lim
x→∞

1

F (x)
P

(
X

x
∈ [0, z]c

)
= lim

x→∞

1

F (x)
P

 d⋃
j=1

(
Xj

x
> zj

)
= lim

x→∞

1

F (x)

d∑
j=1

P (Xj > xzj) =

d∑
j=1

z−αj .
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Therefore, we see that X possesses an MRV structure, and relation (2.4) holds with ν defined by

ν ([0, z]c) =

d∑
j=1

z−αj , z > 0.

Here the limit measure ν is concentrated on the axes only. Precisely, it assigns a mass of z−α to

the interval [z,∞] on each axis for any z > 0.

Example 2.2 Suppose that X1, . . ., Xd are identically distributed by F , a t distribution with

degree of freedom v. Also suppose that X has a Gaussian copula C given by

C (u1, . . . , ud) = Φd

(
Φ−1 (u1) , . . . ,Φ−1 (ud) ; Σ

)
, u ∈ [0, 1]d ,

where Φd is a d-dimensional standard normal distribution function with correlation matrix Σ =

(ρij)1≤i,j≤d, and Φ is the univariate standard normal distribution function. Then X+ = (X1 ∨
0, . . . , Xd ∨ 0) possesses an MRV structure and relation (2.4) holds with ν defined by

ν ([0, z]c) =
∑

∅6=I⊆{1,...,d}

(−1)|I|−1

(
min
i∈I

z−αi

)
1
(ρjk=1 for j,k∈I)

, z > 0;

see Lemma 6.4 of Yuan (2016). In the case that ρjk < 1 for all 1 ≤ j < k ≤ d, the components of X+

are asymptotically independent, and the limit measure ν, just like in Example 2.1, is concentrated

on the axes and assigns a mass of z−α to the interval [z,∞] on each axis for any z > 0. Note

that this leads to a situation where we cannot distinguish asymptotic independence from complete

independence by solely specifying the limit measure. By contrast, if ρjk = 1 for some 1 ≤ j < k ≤ d,

that is, if Xj and Xk have a total positive linear relationship, then Xj and Xk are comonotonic

(i.e., they have the comonotonicity copula) and ν is concentrated on the hyperplane {z ∈ [0,∞] :

zj = zk}.

Example 2.3 Suppose that X1, . . . , Xd all follow the Pareto distribution given by (2.5). In

addition, suppose that X has a Gumbel copula of form (2.1). Then, by Lemma 5.2 of Tang and

Yuan (2013), X possesses an MRV structure and relation (2.4) holds with ν defined by

ν ([0, z]c) =

 d∑
j=1

z−αγj

1/γ

, z > 0.

If γ = 1, the limit measure ν is still concentrated on the axes and assigns a mass of z−α to the

interval [z,∞] on each axis for any z > 0. By contrast, if γ > 1, then ν assigns positive mass to

the interior (0,∞], leading to asymptotic dependence among X1, . . . , Xd. In particular, if γ =∞,

then ν is concentrated on the diagonal {z ∈ [0,∞] : z1 = · · · = zd}.

It is easy to extend Examples 2.1–2.3 to the case where the marginal distributions are noniden-

tical Pareto with the same or even different shape parameters while the loss vector X still possesses
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an MRV structure with the limit measure ν explicitly given. To keep the report short, we do not

expand this discussion here, but we would like to point out that such extensions are important

when dealing with inhomogeneous insurance portfolios.

One more advantage of the MRV framework is its nonparametric nature in characterizing tail

dependence, which makes it less susceptible to model misspecification. Note that such a model

misspecification issue is always a concern while using copula-based models; for example, one may

mistakenly specify a t-copula model for data generated from a Gumbel copula.

Moreover, in extreme risk management one often needs to estimate the probability that losses

become jointly large or fall into some high-risk region. While the estimation is relatively easy by

our method when tail dependence is present, it becomes harder when losses are asymptotically

independent, because in this situation the event becomes less discernible and the target probability

becomes even smaller. For this case, it is helpful to characterize the tail behavior of losses in a finer

manner by the so-called hidden regular variation (HRV) structure. Such a finer characterization also

becomes particularly useful in situations like Examples 2.1 and 2.2, where one cannot distinguish

asymptotic independence from complete independence by just using a limit measure. We refer the

reader to Resnick (2007) and Mitra and Resnick (2011) for detailed discussions of HRV.

With the above mathematical tools, we show that it is relatively easy to study the tail behavior

of the aggregate loss. For simplicity, consider the case where the loss variables X1, . . . , Xd all

follow a Pareto distribution F with shape parameter α > 0, and they jointly possess a Gumbel

copula with parameter γ > 1 as given before. Then by the MRV structure presented in Example

2.3, we obtain

lim
x→∞

P (Sd > x)

F (x)
= ν(A), (2.6)

where A = {z ∈ [0,∞] :
∑d

j=1 zj > 1}. This type of approximations can be derived under more

general assumptions and can be translated seamlessly to obtain similar formulas in the case that

the underlying parameter governing the strength of dependence is random and linked to a certain

risk factor.

3 A General Pricing Framework

As the CAT bond market expands, the pricing of CAT bonds becomes increasingly important and

has attracted much research attention. We introduce in this section a general framework for CAT

bond pricing.

3.1 CAT bond terms

Consider a CAT bond with maturity date T and principal/face value K. The bond makes annual

coupon payments to investors at the end of each year for T years and makes a final redemption

13



payment on the maturity date T . The coupons are structured to contain two parts: (1) a fixed

part as the premium paid to bond investors for the reinsurance coverage and (2) a floating part

equal to the return, at the LIBOR, on the bond sale proceeds that are deposited in a trust.

Suppose that the coupon payments and final redemption are linked to the occurrence of the

specified natural catastrophes and financial catastrophes. It is worthwhile mentioning that events

such as the default of the trustee and massive mortgage defaults could be sources of catastrophic

financial risks. Trustee defaults have occurred in the past; see, for example, NAIC (2012). There

are also recent CAT bond issuances that covered catastrophic financial risks; the one issued by

Bellemeade Re Ltd. in July 2015 that covered mortgage default risk is an example7. Thus, we aim

to propose a framework general enough to include two triggers: (1) an indemnity/nonindemnity

insurance risk trigger Y , based on the occurrence of the specified natural catastrophes, and (2)

a financial risk trigger Z, based on the occurrence of the specified financial catastrophes. If the

bond is triggered, part or even all of the principal is liquidated from the collateral to reimburse

the sponsor’s claim losses, and the floating coupon is reduced according to the amount of principal

remaining; otherwise, the bond just behaves like a default-free coupon bond.

We model the insurance risk trigger Y to be a non-negative, nondecreasing, and right-continuous

stochastic process {Yt, t ≥ 0} defined on a filtered physical probability space (Ω1,F1, {F1
t }, P 1). In

the context of earthquake CAT bonds, an example of the insurance risk trigger process {Yt, t ≥ 0}
is the maximum magnitude of earthquakes, or the number of earthquakes with magnitude above a

certain threshold, within a certain region during [0, t]; see Section 4.1 for more discussion. Another

example of {Yt, t ≥ 0} is the sponsor’s loss or the statewide loss from the specified catastrophic

events prior to time t, which is often modeled as a compound Poisson process. In this case, the

Poisson process represents the number of the specified catastrophic events, and the i.i.d. non-

negative random variables, independent of the Poisson process, represent the amounts of losses

incurred from individual catastrophic events. More discussion of a bond using such a trigger can

be found in Section 4.2.

Similarly, the financial risk trigger Z is modeled as another non-negative, nondecreasing, and

right-continuous stochastic process {Zt, t ≥ 0} defined on a filtered physical probability space

(Ω2,F2, {F2
t }, P 2), on which an arbitrage-free financial market is also defined. Note here that an

increase of Z usually results from a financial market decline, which exposes the insurer to higher

financial risk. An example of the financial risk trigger process is the drop of a certain stock price

index (e.g., the Dow Jones Industrial Average Index) if the CAT bond is designed to be triggered

when the overall economy turns down. If the CAT bond is designed to cover mortgage default risk,

then the running maximum of delinquency rate indices such as the S&P/Experian First Mortgage

Default Index can be used as the financial risk trigger process.

7For details, see http://www.artemis.bm/deal_directory/bellemeade-re-ltd-series-2015-1/.
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Given the two physical probability spaces (Ω1,F1, {F1
t }, P 1) and (Ω2,F2, {F2

t }, P 2), we intro-

duce the product space (Ω,F , {Ft}, P ) with Ω = Ω1 × Ω2, F = F1 × F2 being the smallest sigma

field covering A1 × A2 for all A1 ∈ F1 and A2 ∈ F2, Ft = F1
t × F2

t for each fixed t ≥ 0, and

P = P 1 × P 2. An implication of the expression P = P 1 × P 2 is that the two probability spaces

are assumed to be independent, which is reasonable in view of the low correlation between the

occurrence of natural catastrophes and the performance of the financial market. Thus, under this

product probability measure P , the development of the trigger is independent of the performance

of the financial market.

For all random variables defined on one of the two spaces, we can easily redefine them in the

product space (Ω,F) in a natural way. For instance, for random variables Y 1(ω1) and Y 2(ω2)

defined on the spaces (Ω1,F1) and (Ω2,F2), respectively, we can extend them to be Y 1(ω1, ω2) =

Y 1(ω1)1Ω2(ω2) and Y 2(ω1, ω2) = 1Ω1(ω1)Y 2(ω2), so that they are defined on the product space

(Ω,F). Then it is easy to verify that Y 1(ω1, ω2) and Y 2(ω1, ω2) are independent of each other

under the product measure P . Actually, for two Borel sets B1 and B2, we have

P
(
Y 1(ω1, ω2) ∈ B1, Y

2(ω1, ω2) ∈ B2

)
= P

((
Y 1(ω1) ∈ B1

)
× Ω2, Ω1 ×

(
Y 2(ω2) ∈ B2

))
= P 1 × P 2

((
Y 1(ω1) ∈ B1

)
×
(
Y 2(ω2) ∈ B2

))
= P 1

(
Y 1(ω1) ∈ B1

)
P 2
(
Y 2(ω2) ∈ B2

)
= P

(
Y 1(ω1, ω2) ∈ B1

)
P
(
Y 2(ω1, ω2) ∈ B2

)
.

See Section 5 of Cox and Pedersen (2000) for similar discussions. In what follows, we always tacitly

follow this interpretation when we have to extend random variables defined on the two individual

spaces to the product space.

The remaining principal of the CAT bond at time t depends on the developments of the insurance

risk trigger Y and the financial risk trigger Z over [0, t]. To quantify this, we introduce a bivariate

function Π(·, ·) : [0,∞)× [0,∞)→ [0, 1], component-wise nonincreasing and right-continuous with

Π(0, 0) = 1, such that the remaining principal of the CAT bond at any time t ∈ [0, T ] is equal to

KΠ (Yt, Zt) .

In particular, the remaining principal at maturity is equal to KΠ (YT , ZT ). Note that we do not

exclude the possibilities of Π(y,∞), Π(∞, z), or Π(∞,∞) being positive, which mean that even in

extreme scenarios the bond investors may still get back some principal. Moreover, the occurrence

of a natural and/or financial catastrophe at time t wipes off an amount equal to

KΠ (Yt−0, Zt−0)−KΠ (Yt, Zt)

15



from the principal. As we see, by stipulating a plan of allocating the principal between the investor

and the sponsor according to the developments of triggers Y and Z, this bivariate function Π(·, ·)
plays a crucial role in the CAT bond’s construction.

As time passes, while the fixed part of the coupon payments (i.e., the premium payments)

remains unchanged, the floating part may be reduced due to the reduction in principal. More

precisely, let the fixed annual coupon rate be R, let the floating annual coupon rate be it over year

t (i.e., from time t− 1 to time t), t = 1, . . . , T , and let rt be the annualized instantaneous risk-free

interest rate at t, t ≥ 0, where the stochastic processes {it, t = 1, . . . , T} and {rt, t ≥ 0} are defined

on (Ω2,F2). Therefore, on each coupon payment date, the bond investor receives

KR+KitΠ (Yt−1, Zt−1) , t = 1, . . . , T.

With a pricing measure Q, which we shall determine in Section 3.2, the price at time t ∈ [0, T ]

of the CAT bond is given by

Pt = KEQ

 T∑
s=btc+1

D(t, s) (R+ isΠ (Ys−1, Zs−1)) +D(t, T )Π (YT , ZT )

∣∣∣∣∣∣F1
t ×F2

t

 , (3.1)

where btc denotes the integer part of t and D(t, s) = exp
{
−
∫ s
t ru du

}
denotes the corresponding

discount factor over the interval [t, s]. As it shows, in the case where t is exactly a coupon date,

formula (3.1) gives the price immediately after this coupon payment is made. Hereafter, we use

EQt [·] = EQ
[
·| F1

t ×F2
t

]
to denote the expectation under Q conditional on the available information

up to time t, so that formula (3.1) can be rewritten as

Pt = KEQt

 T∑
s=btc+1

D(t, s) (R+ isΠ (Ys−1, Zs−1)) +D(t, T )Π (YT , ZT )

 . (3.2)

3.2 On the pricing measure

In this section we discuss how to determine a pricing measure Q for the pricing formula (3.2).

Naturally, we employ the well-established arbitrage pricing theory for asset pricing (see, e.g.,

Björk 2009) to price the financial risks. That is, we use a risk-neutral probability measure Q2 for

the space (Ω2,F2) to price the financial risks contained in Z to be the conditional expectation

under Q2 of the stochastic present value given available information.

Next we define a pricing measure Q1 for the space (Ω1,F1) that can be used to price the

catastrophic insurance risks.

A distorted measure for catastrophic insurance risk pricing

Note that typically the underlying catastrophic insurance risks in the CAT bond cannot be hedged

by existing assets in the insurance market, and the risk-neutral pricing framework does not apply
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to the pricing of such risks. To reflect investors’ demand for catastrophic insurance risk premia, we

employ the ideas of Denneberg (1994) and Wang (1996, 2000, 2002, 2004) to introduce a distorted

probability measure as the pricing measure.

Let g : [0, 1] → [0, 1], with g(0) = 0 and g(1) = 1, be a distortion function and assume that it

is differentiable on [0, 1] with a non-negative derivative of arbitrary order,

g(k)(q) ≥ 0, q ∈ [0, 1], k = 0, 1, . . . . (3.3)

The latter is often called the absolute monotonicity condition (see, e.g., Di Bernardino and Rullière

2013).

Using g as the distortion function, we define a distorted probability measure Q1 on (Ω1,F1) by

distorting the finite-dimensional distributions of {Yt, t ≥ 0}; that is, let

Q1(Yt1 ≤ x1, Yt2 ≤ x2, . . . , Ytn ≤ xn) = g ◦ P 1(Yt1 ≤ x1, Yt2 ≤ x2, . . . , Ytn ≤ xn) (3.4)

hold for every n ∈ N, every t ∈ [0, T ]n with 0 ≤ t1 < t2 < · · · < tn ≤ T , and every x ∈ Rn. Note

that this indeed defines a proper distribution function for (Yt1 , Yt2 , . . . , Ytn). To see this, consider

the case with n = 3 as an example. Denoting for simplicity by G the distribution of (Yt1 , Yt2 , Yt3)

under P 1, we have

dg ◦G(x1, x2, x3)

= g(3) (G(x1, x2, x3))G(dx1, x2, x3)G(x1, dx2, x3)G(x1, x2, dx3)

+g(2) (G(x1, x2, x3))G(dx1, dx2, x3)G(x1, x2, dx3)

+g(2) (G(x1, x2, x3))G(dx1, x2, dx3)G(x1, dx2, x3)

+g(2) (G(x1, x2, x3))G(x1, dx2, dx3)G(dx1, x2, x3)

+g(1) (G(x1, x2, x3))G(dx1, dx2, dx3).

Thus, condition (3.3) guarantees the non-negativity of dg ◦G(x1, x2, x3), which therefore defines a

proper three-dimensional distribution function. Finally, by Kolmogorov’s extension theorem (see,

e.g., Theorem 2.1.5 of Øksendal 2003), there is a probability measure Q1 under which Y has finite-

dimensional distributions satisfying (3.4) above. This probability measure Q1 will be the pricing

measure to be used for catastrophic insurance risks.

Two remarks follow. First, as shown in their Proposition 2.1, in order for Q1(Yt1 ≤ x1, Yt2 ≤
x2, . . . , Ytn ≤ xn) in (3.4) to be an absolutely continuous distribution, Di Bernardino and Rullière

(2013) propose the absolute monotonicity condition (3.3) on g and an additional assumption that

(Yt1 , Yt2 , . . . , Ytn) possesses an absolutely continuous distribution under P 1. We point out that this

additional assumption is unnecessary for our purpose. Second and more importantly, the condition

g(2)(q) ≥ 0 for q ∈ [0, 1] in (3.3) implies that g(q) ≤ q for q ∈ [0, 1], and thus, for every 0 ≤ t ≤ T
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and x ∈ R,

Q1 (Yt > x) = 1− g ◦ P 1 (Yt ≤ x) ≥ 1− P 1 (Yt ≤ x) = P 1 (Yt > x) .

This means that Yt becomes more heavy-tailed (hence, riskier) under the distorted probability

measure Q1 than under the original probability measure P 1.

Below are some examples of distortion function satisfying the absolute monotonicity condition

(3.3), the verification of which is relegated to Section 6.

Example 3.1 Let g be defined on [0, 1].

(i) (polynomial distortion) g(q) = M(q)/M(1), where M(q) is a nondegenerate polynomial func-

tion taking the form of

M(q) = anq
n + an−1q

n−1 + · · ·+ a1q

for n ∈ N, an > 0, an−1 ≥ 0, . . . , and a1 ≥ 0;

(ii) (exponential distortion) g(q) = (eλq − 1)/(eλ − 1) for some λ > 0;

(iii) (the Wang transform) g(q) = Φ
(
Φ−1(q)− κ

)
for some κ > 0, where Φ is the standard normal

distribution.

The Wang transform has been widely used in the insurance literature because of its mathe-

matical tractability. The single parameter κ reflects the extent to which the distribution under P 1

needs to be distorted to be more skewed toward the right for the pricing purpose and thus can be

understood as the market price of risk. It is usually estimated by calibrating the model to the price

data from existing deals and then used to price new deals.

A product measure for CAT bond pricing

Per the discussions above, we have obtained a pricing measure Q1 for the catastrophe insurance

market and a pricing measure Q2 for the financial market. The independence assumption we made

between the two markets suggests that, to price products with payoffs linked to both catastrophic

insurance and financial risks, we should use the product measure Q1 ×Q2 as the pricing measure.

Substituting Q = Q1 ×Q2 into (3.2) yields our general pricing formula, for t ∈ [0, T ],

Pt = KEQ
1×Q2

t

 T∑
s=btc+1

D(t, s) (R+ isΠ (Ys−1, Zs−1)) +D(t, T )Π (YT , ZT )

 , (3.5)

where D(t, s), R, and it are defined as before.

Some authors have argued that, since the catastrophic insurance risks have only a marginal

influence on the overall economy and do not pose systematic risk, it is unnecessary to price these

risks and the risk premium should be set to zero; see, for example, Lee and Yu (2002). This

may not be reasonable considering the fact that on the insurance market the catastrophes do have
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substantial and possibly systematic influence (see, e.g., Gürtler et al. 2016) and, hence, should be

priced accordingly.

Moreover, in the literature the pricing measure for catastrophic insurance risks is sometimes

obtained by simply attaching a constant risk premium c to the risk-free interest rate used in the

pricing formula so that the discount factor D(t, s) is modified to

D̃(t, s) = exp

{
−
∫ s

t
(ru + c) du

}
,

regardless of the actual physical distribution of the underlying catastrophic insurance risk; see, for

example, Zimbidis et al. (2007) and Shao et al. (2015). Such a pricing scheme may be questionable

too since the resulting risk premia for catastrophes at different degrees have become indistin-

guishable. Our idea of introducing a pricing measure Q1 is to link it directly to the underlying

catastrophic insurance risk Y . If the catastrophic insurance risk Y fades out, then the CAT bond

should converge to a usual bond in the arbitrage-free financial market. In this case, our pricing

formula (3.5) remains valid because the distribution of Y under Q2 becomes degenerate.

Other closely related discussions of pricing CAT bonds and CAT derivatives can be found in

Cox and Pedersen (2000), Cox et al. (2000), Lin and Cox (2008), Muermann (2008), Egami and

Young (2008), Ma and Ma (2013), and Nowak and Romaniuk (2013), among others. In particular,

Egami and Young (2008) follow a different approach to pricing CAT bonds in an incomplete market.

They apply the concept of indifference pricing to obtain a bond price that makes the bond issuer

indifferent, in terms of expected utilities, between selling and not selling for that price. See also

Barrieu and Loubergé (2009) and Leobacher and Ngare (2016) for some recent studies following

this line.

An important special case

Here we show a significant simplification of the pricing formula (3.5) for an important special case

where Π(y, z) is reduced to Π(y), a univariate function of the insurance risk trigger only. Under

the general pricing framework introduced above, we make the following assumptions:

• The CAT bond is triggered only by the insurance risk trigger Y and, hence, Π : [0,∞)→ [0, 1]

reduces to a univariate, nonincreasing, and right-continuous function with Π(0) = 1

• {Yt, t ≥ 0} is a Markov process with respect to the filtration {F1
t , t ≥ 0}

• The Wang transform g(·) = Φ
(
Φ−1(·)− κ

)
for some κ > 0 is used as the distortion function

defining Q1.

Then by factorizing each expectation EQ
1×Q2

t in (3.5) into EQ
1

t ×E
Q2

t , the price of the CAT bond

at t ∈ [0, T ] is expanded (and actually simplified) to

Pt = KR
T∑

s=btc+1

EQ
2

t [D(t, s)]
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+K

T∑
s=btc+1

EQ
1

t [Π (Ys−1)]EQ
2

t [D(t, s)is]

+KEQ
1

t [Π (YT )]EQ
2

t [D(t, T )] . (3.6)

For the computation of each expectation EQ
1

t [Π(Ys)], assume that Y = {Yt, t ≥ 0} is a time-

homogenous Markov process with respect to the filtration {F1
t , t ≥ 0} under Q1, as is often true.

For s = btc, we have EQ
1

t [Π(Ys)] = Π(Ybtc). For s = btc + 1, . . . , T , by the Markov property of Y

we have

EQ
1

t [Π(Ys)] = EQ
1

[Π(Ys)|Yt = y]

=

∫ 1

0
Q1 (Π(Ys) > u|Yt = y) du

=

∫ 1

0
Q1 (Ys < Π←(u)|Yt = y) du

=

∫ 1

0
Φ
(
Φ−1 (1− ps−t(u|y))− κ

)
du, (3.7)

where Π← denotes the generalized inverse of Π, defined by

Π←(u) = inf {y ∈ R : Π(y) ≤ u} , u ∈ [0, 1],

and ps−t(u|y) denotes the conditional probability

ps−t(u|y) = P 1 (Ys ≥ Π←(u)|Yt = y) .

In the third step of (3.7), we have applied the fact that Π(y) > u if and only if y < Π←(u), which

can be easily verified by the right-continuity of Π; see also Proposition A.3(iv) of McNeil et al.

(2015) for a similar result. Thus, we need to evaluate the conditional distribution of Ys given Yt

under the physical probability measure P 1 for every s = btc+ 1, . . . , T . This is where EVT comes

into play, as demonstrated in the following section.

4 Applications of the Pricing Theory

In this section, we apply the established approach through relation (3.6) to price two concrete CAT

bonds.

4.1 CAT bond I

We consider an earthquake CAT bond in which the payoff function Π(·) is structured to apply to the

magnitudes of major earthquakes. Usually, earthquake CAT bonds are triggered by the maximum

magnitude of earthquakes or the number of earthquakes with a high magnitude. In the former

case, relying on the Fisher–Tippett–Gnedenko theorem, one may apply the block maxima method
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to approximate the distribution of the maximum magnitude. We present details of this method in

Section 6.2; see also Zimbidis et al. (2007) for related discussions. Note that, however, the block

maxima method rests on the knowledge of the maxima for all blocks. This may not be the case

when, for example, only major earthquakes with magnitude over a certain level are recorded. In

this case the POT method can be used as an alternative. Here we present an example motivated

by the Acorn Re 2015-1 CAT bond8 (see also Example 1.3 in Section 1.3), where the POT method

becomes particularly useful.

Example 4.1 Consider a T -year CAT bond with face value 1, in which the payoff function Π is

defined by

Π (y) = 1− y, y ≥ 0,

and the insurance risk trigger Yt is modeled by

Yt = min {0.25N1(t) + 0.5N2(t) + 0.75N3(t) +N4(t), 1} , t ≥ 0, (4.1)

with N1(t), N2(t), N3(t), and N4(t) denoting the numbers of earthquakes by time t with magnitude

between 8.2 and 8.5, between 8.5 and 8.7, between 8.7 and 8.9, and over 8.9, respectively. This

means that every occurrence of an earthquake with magnitude between, for example, 8.2 and 8.5

will wipe off 25% of the principal. The other specifications of the bond are as given in Section 3.1.

Data and estimation

We use the earthquake catalog data of California9 provided by the California Department of Con-

servation’s California Geological Survey to estimate the distribution of the earthquake magnitude.

The data list information about earthquakes that occurred between 1769 and 2000 in California

with a magnitude of at least 4.0, including the date and time of the occurrences, the latitudes and

longitudes of their locations, and their magnitudes. The ones that occurred within 100 kilometers

of the state border and therefore could still cause damage to properties in California are also in-

cluded. Although data are available for the year 1769 through 2000, only the data set after 1942

is complete. The full data set for the year 1769 through 2000 contains 5,493 records. Four records

have a date of 0, which are for earthquakes that happened before 1840. We interpret the dates of 0

as records missing and simply replace them by the first dates of the corresponding months. Also,

we have deleted seven records with a magnitude of 0.

There may be multiple records of earthquake within a day for different locations across Cali-

fornia. Since we are estimating the distribution of daily earthquake magnitude in California as a

whole region, we use only the maximum record within a day. This leaves 3,484 records in the data

set.
8Details can be found at http://www.artemis.bm/deal_directory/acorn-re-ltd-series-2015-1/.
9Available at http://www.consrv.ca.gov/CGS/rghm/quakes/Pages/index.aspx.
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Figure 1. Scatter plot of earthquakes with magnitude 4.0 or greater.
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Figure 2. Frequency of earthquakes with magnitude θ or greater: a comparison between the full
data (1769–2000) and the complete data (1943–2000).

From Figure 1 we see that there are significantly fewer records prior to the year 1942 than after,

which is a clear indication of data missing. Nonetheless, we may reasonably assume that the major

earthquakes prior to 1942 are still recorded in the data. We should take into consideration such

22



large records because they will likely have a noticeable impact on the tail of the fitted earthquake

magnitude distribution and, hence, are crucially important for our pricing purpose. To locate

the part of data prior to 1942 that can be deemed complete, we show in Figure 2 a comparison

between the full data (1769–2000) and the complete data (1943–2000) in terms of the frequency of

earthquakes with a magnitude above some level.

The right graph of Figure 2 is a zoomed-in version of the left one for θ ≥ 6.0. Note the close

frequencies of earthquakes starting from θ = 7.0 for the two data sets. It is therefore reasonable to

assume that in the full data the records of earthquakes of magnitude of 7.0 or greater are complete.

Using the complete data after 1942 we summarize our exploratory analysis in Figure 3.
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Figure 3. (a) Scatter plot. (b) Histogram. (c) QQ-plot. (d) Mean excess plot.
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Figure 4. Mean excess plot with early records of earthquakes that have a magnitude of at least 7.

The graphs can offer us guidance to fit the earthquake magnitude distribution. To obtain a better

fit in the tail area, we incorporate the large records prior to 1942 with magnitude 7.0 or greater

and show a revised mean excess plot in Figure 4.

Recall from Section 2.2 that the mean excess plot of a GPD is linear. Therefore, Figure 3(d)

suggests that we should be safe to consider using a GPD to fit the conditional distribution of

the earthquake magnitude Θ|Θ > y. Although the choice of threshold is a trade-off between bias

and variance and is indeed subjective, it is suggested that we use a graphical approach to choose

a threshold y such that the empirical mean excess function is approximately linear beyond y.

Therefore, a proper choice of the threshold can be y = 5.0; see Embrechts et al. (1999) for a similar

discussion. In the complete data we find 334 records of 5.0 or greater, the exceedance probability

P (Θ > y) is roughly estimated as 334/(365× 58) = 1.58%, and, hence, we may consider y = 5.0 as

a high threshold.

We then implement an MLE procedure to estimate the GPD parameters ξ and β based on the

full data set (1769–2000) of earthquakes with magnitude 7 or greater and the complete data set

(1943–2000) of earthquakes with magnitude between 5.0 and 7.0. Specifically, let θ1, . . . , θm be the

observations of all earthquake magnitudes over 7.0, let θm+1, . . . , θm+n be those between 5.0 and

7.0, and let θ̃j = θj − 5 be the exceedance over the threshold 5.0, j = 1, . . . ,m+n. In our data set,

we have m = 18 and n = 328.
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Figure 5. PP plot (left) and QQ plot (right) for model checking.

We use the R function optim to maximize the (conditional) log-likelihood function

l(ξ, β|θ1, . . . , θm+n) =
m

ξ
ln (β + 2ξ)− n ln

(
β−1/ξ − (β + 2ξ)−1/ξ

)
−
(

1

ξ
+ 1

)m+n∑
j=1

ln
(
β + ξθ̃j

)
with respect to ξ and β, and we obtain ξ̂ = −0.127 and β̂ = 0.606. The MLEs are known to have

good properties such as consistency and asymptotic efficiency for ξ > −1/2 (see Section 6.5 of

Embrechts et al. 1997). The PP plot and QQ plot in Figure 5 show that the fitting is reasonably

good. Nonetheless, we point out that the choice of the high threshold y may have a significant

impact on the estimation results, as can be seen from the graph of mean excess function. A smaller

value of y typically leads to estimates that correspond to a larger maximum possible magnitude of

earthquake.

The bond price and sensitivity analysis

Our pricing framework involves a continuous-time risk-free interest rate process {rt, t ≥ 0} and

a discrete-time LIBOR process {it, t ∈ N}, both defined on (Ω2,F2). In order to apply some

well-established continuous-time interest rate models, we consider a continuous-time version of the

LIBOR process {`t, t ≥ 0} and let it = `t for t ∈ N as an approximation. We model {rt, t ≥ 0}
and {`t, t ≥ 0} as two correlated Cox–Ingersoll–Ross (CIR) processes (6.4) and (6.6), respectively,

under the risk-neutral measure Q2. We relegate precise model descriptions and related simulation

algorithm to Section 6.3.

Further assume that daily earthquake magnitudes are i.i.d. random variables. Hence, the

insurance risk trigger {Yt, t ≥ 0} defined by (4.1) is a time-homogeneous Markov process. Then we
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may use relation (3.6) to price the bond.

Specifically, for each s = btc + 1, . . . , T , we shall simulate the value of EQ
1

t [Π (Ys)] for a given

value of Yt, and simulate the value of

EQ
2

t [D(t, s)`s]

for given values of rt and `t. The probability measure Q1 is obtained through the Wang transform on

the earthquake magnitude distribution directly with parameter κ, rather than on the trigger process

{Yt, t ≥ 0}. Note that because the value of the trigger process is nondecreasing in the earthquake

magnitudes, and because such a transform preserves all information needed for describing the

trigger process, the measure Q1 so obtained is sufficient for our pricing purpose.

Recall that at time 0 the pricing exercise is to find the fixed coupon rate R such that the bond

price P0 is equal to its face value 1. We now conduct numerical studies to demonstrate the impacts

on the coupon rate of the Wang transform parameter κ, the risk-free interest rate, the maturity of

the bond, and the parameters of the earthquake magnitude distribution.

In our base model, we assume that the CAT bond matures in one year. The base-model

parameters of the two CIR models (6.4) and (6.6) are ar = 0.1, br = 3%, σr = 0.03, r0 = 1%,

a` = 0.1, b` = 3.5%, σ` = 0.04, `0 = 1.5%, and ρ = 0.9. Under the probability measure P 1, the

daily earthquake magnitudes are i.i.d. with a 1.58% probability of exceeding 5.0, and conditional

on its exceedance the amount of exceedance follows a GPD with shape parameter ξ = −0.127 and

scale parameter β = 0.606. To obtain the distorted measure Q1 for pricing, we use the Wang

transform with κ = 1.

Each expectation EQ
1

t [Π (Ys)] is estimated using a simulation of 105 samples of the earthquake

magnitude, simulated under Q1, for each of the 360 days every year. In our sensitivity analysis, we

always link the parameters ξ and β so that β/ξ = −0.606/0.127 and, hence, the upper endpoint of

the earthquake magnitude distribution is fixed. We demonstrate the numerical results in Figures

6–11.

We observe the following:

• The Wang transform parameter κ as an indicator of the earthquake risk premium has a large

impact on the CAT bond price (see Figure 6). A larger value of κ means a higher risk premium

required by the bond investor and therefore a lower bond price. For example, an increase of

κ from 0.8 to 1.5 increases the fixed coupon rate substantially from 0.41% to 13.38%. Note

that a low market price of risk leads to negative fixed coupon rate, because in our setting

it is guaranteed that the collateral will earn the floating coupon rate linked to LIBOR, with

zero default probability, and hence when the demanded risk premium is low, the initial bond

price cannot be below its face value.
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Figure 6. Change of the fixed coupon rate R
with respect to κ.
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Figure 7. Change of the fixed coupon rate R
with respect to ξ.
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Figure 8. Change of the fixed coupon rate R
with respect to r0.
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Figure 9. Change of the fixed coupon rate R
with respect to br.

• The shape parameter ξ, which controls the tail behavior of the earthquake magnitude distri-

bution, also has a great impact (see Figure 7). A smaller value of ξ (together with β adjusted

according to β/ξ = −0.606/0.127) means a higher probability assigned to the tail and, hence,

leads to a lower bond price. A decrease of ξ from −0.15 to −0.2 increases the fixed coupon

rate dramatically from 6.57% to 31.29%.
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Figure 10. Change of the fixed coupon rate R
with respect to T .
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Figure 11. Change of the fixed coupon rate R
with respect to the lowest trigger
level.

• The current interest rate r0 has a linear positive effect on R (see Figure 8), as is also clear

from relations (3.6) and (6.5).

• As the long-term interest rate br increases, the fixed coupon rate also increases, although not

substantially (see Figure 9).

• The bond maturity date does not affect the fixed coupon rate (see Figure 10), just as it does

not for regular noncatastrophe bonds sold at par.

• Finally, it is anticipated that the trigger levels have an impact on the bond price. Figure

11 shows that changing only the lowest level of the trigger with the other three unchanged

already leads to a significant change in the bond price.

Figure 12 shows a sample path of bond price evolution for a three-year bond, given a sample

path of rt and `t, assuming that a major earthquake with magnitude between 8.2 and 8.5 happens

10 months after the bond’s issuance.

4.2 CAT bond II

In Section 4.1, the earthquake CAT bond we considered has the earthquake magnitude as a para-

metric trigger, while in this section we consider a CAT bond whose trigger depends on the aggregate

loss of the sponsor or that of the entire industry. This applies to both indemnity-based and index-

based triggers.

We specify the insurance risk trigger {Yt, t ≥ 0} to be the aggregate loss process from a certain

kind of catastrophes in d different regions. Suppose that the arrival of catastrophes in the d regions
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Figure 12. A sample path of bond price evolution.

share the same Poisson process Nt with intensity λ; that is, the number of catastrophes by time t

is Nt. Suppose that the kth catastrophe in the jth region incurs a loss of amount Xjk ≥ 0, and,

hence, the total loss from the catastrophes in the jth region until time t is
∑Nt

k=1Xjk. In this way,

the aggregate loss over the d regions up to time t is given by

Yt =

d∑
j=1

Nt∑
k=1

Xjk =

Nt∑
k=1

 d∑
j=1

Xjk

 , (4.2)

which is a compound Poisson process (hence, a time-homogeneous Markov process) under P 1,

assuming that (X1k, . . . , Xdk), k = 1, 2, . . ., form a sequence of i.i.d. random vectors, independent

of {Nt, t ≥ 0}.
As before, we use a nonincreasing and right-continuous payoff function Π : [0,∞)→ [0, 1] with

Π(0) = 1 to describe the reduction of the remaining principal according to the development of the

aggregate loss process {Yt, t ≥ 0}. Furthermore, we introduce a reference loss variable Y , which is

non-negative and distributed by G under P 1, and introduce a nonincreasing and right-continuous

link function η : [0, 1]→ [0, 1] with η(0) = 1 and 0 ≤ η(1) < 1. Then we define

Π(y) = η (G(y)) , (4.3)

meaning that the amount the principal will be wiped out by an aggregate loss of y depends on how

the aggregate loss is compared to the reference variable Y .
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In the payoff function Π defined above, η is a general link function and G is a general distribution

function. In order to address extreme risks, specify the link function η as

η(q) =


1, q < q1,
c, q1 ≤ q < q2,
0, q2 ≤ q,

(4.4)

for some 0 < q1 < q2 < 1 and 0 < c < 1. Thus, if Yt ≥ G←(q1), then the bond is triggered and the

principal decreases to 100c% of the original principal; if further Yt ≥ G←(q2), then the remaining

principal vanishes. The reference variable Y is typically chosen to be comparable to YT in tail. For

simplicity, we specify Y to be YT and correspondingly G to be FT , the distribution function of YT .

Then the payoff function Π(y) defined by (4.3) becomes

Π(y) = η (FT (y)) . (4.5)

In summary, the CAT bond we deal with in this section possesses the following structure:

Example 4.2 Consider a T -year CAT bond with face value 1. The insurance risk trigger {Yt, t ≥ 0}
is specified to be the aggregate loss process from a certain kind of catastrophes in d different regions

and modeled by the compound Poisson process (4.2). The payoff function Π is defined by (4.5)

with η given by (4.4). The other specifications of the bond are as given in Section 3.1.

The tail probability of the aggregate losses under an MRV structure

Recall the aggregate loss process (4.2) in which (X1k, . . . , Xdk), k = 1, 2, . . ., form a sequence of

i.i.d. random vectors with generic vector X = (X1, . . . , Xd). Assume that X ∈ MRV−α; that is,

relation (2.4) holds for some distribution function F with tail F ∈ RV−α and some nonzero limit

measure ν. As mentioned before, the tail dependence of X is reflected by the limit measure ν and

can span from asymptotic independence to asymptotic dependence. Applying relation (2.6), we

have, as x→∞,

P 1

 d∑
j=1

Xj > x

 ∼ ν(A)F (x),

where A =
{

z ∈ [0,∞] :
∑d

j=1 zj > 1
}

. Here and throughout the report, the notation ∼ means

that the ratio of both sides tends to 1. Moreover, we have

P 1 (Yt > x) = P 1

 Nt∑
k=1

d∑
j=1

Xjk > x


∼ λtP 1

 d∑
j=1

Xj > x


∼ λtν(A)F (x), (4.6)
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where the second step can be obtained by applying the dominated convergence theorem and the

well-established subexponentiality theory; see Theorem 1.3.9 of Embrechts et al. (1997). One may

introduce a microstructure for the loss vector X to refine the value of ν(A).

On the bond price

To obtain the bond price, first we still apply relation (3.7) to compute the expectations EQ
1

t [Π (Ys)],

s > t. Note that, as q1 ↑ 1, it holds uniformly for 0 ≤ u < 1 that Π←(u) ≥ F←T (q1) ↑ ∞. Therefore,

for every s ∈ (t, T ], it follows from (4.6) that, uniformly for 0 ≤ u < 1,

ps−t(u|y) = P 1 (Ys ≥ Π←(u)|Yt = y)

= P 1

Ns−t∑
k=1

d∑
j=1

Xjk ≥ Π←(u)− y


∼ λ(s− t)ν(A)F (Π←(u)− y).

Then Lemma 6.1 allows us to further approximate EQ
1

t [Π(Ys)] in (3.7) by

1−
∫ 1

0
Φ
(
Φ−1

(
1− λ(s− t)ν(A)F (Π←(u)− y)

)
− κ
)
du.

This may be useful when the quantity ν(A)F (Π←(u) − y) is easily computable. In fact, in this

simple example, it is easy to verify that the quantity above can be further expressed as follows:

Proposition 4.1 As q1 ↑ 1, it holds for every s ∈ (t, T ] that

EQ
1

[Π(Ys)|Yt = y]

= 1− (1 + o(1))(1− c)Φ
(

Φ←
(

1− λ(s− t)ν(A)F

(
F←

(
1− 1− q1

λTν(A)

)
− y
))
− κ
)

−(1 + o(1))cΦ

(
Φ←

(
1− λ(s− t)ν(A)F

(
F←

(
1− 1− q2

λTν(A)

)
− y
))
− κ
)
, (4.7)

where A =
{

z ∈ [0,∞] :
∑d

j=1 zj > 1
}

.

We still assume that, under the risk-neutral measure Q2, the risk-free interest rate {rt, t ≥ 0}
and the LIBOR rate {`t, t ≥ 0} follow two correlated CIR processes given by (6.4) and (6.6),

respectively. Then substituting the right-hand side of (4.7) into our general pricing formula (3.6)

and using the algorithm described in Section 6.3 to simulate EQ
2

t [D(t, s)is], s = btc+ 1, . . . , T , we

obtain an approximation for the bond price.

Sensitivity analysis

We now conduct numerical studies to demonstrate the relationship between the fixed coupon rate,

calculated using the approximation in relation (4.7), and various other parameters. In our base
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model, we consider a one-year CAT bond that covers d = 5 regions. The base-model parameters

of the two CIR models are the same as in Section 4.1; that is, we set ar = 0.1, br = 3%, σr = 0.03,

r0 = 2%, a` = 0.1, b` = 3.5%, σ` = 0.04, `0 = 2.5%, and ρ = 0.9. The base-model parameters in

the payoff function Π are chosen to be c = 0.5, q1 = 98%, and q2 = 99.9%.

Moreover, the jump intensity λ is set to 1. The random vector X = (X1, . . . , Xd) is assumed

to have Pareto marginal distributions with shape parameter 2 and scale parameter 1 and possess

a Gumbel copula with parameter 2. This is known to yield an MRV structure for X; see, for

example, Lemma 5.2 of Tang and Yuan (2013). To obtain the distorted measure Q1, we use the

Wang transform with κ = 0.5 in the base model.

The numerical results are summarized in Figures 13–18. As before, we notice that the Wang

transform parameter κ has a great impact on the CAT bond price (see Figure 13). An increase

of κ from 0.8 to 1.5 would increase the fixed coupon rate substantially from 5.2% to 16.7%. The

current interest rate r0 still has a positive linear effect on the fixed coupon rate (see Figure 14),

and the long-term interest rate br still has a modest effect on the fixed coupon rate (see Figure

15). Unlike the previous case, an increase of the maturity increases the aggregate loss at maturity

and, hence, the quantile trigger level, and as a result, the fixed coupon rate is decreased (see Figure

16). Finally, a decrease of c or q1 decreases the remaining principal and, hence, increases the fixed

coupon rate (see Figures 17–18).
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Figure 13. Change of the fixed coupon rate R
with respect to κ.
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Figure 14. Change of the fixed coupon rate R
with respect to r0.
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Figure 15. Change of the fixed coupon rate R
with respect to br.
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Figure 16. Change of the fixed coupon rate R
with respect to T .
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Figure 17. Change of the fixed coupon rate R
with respect to c.
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Figure 18. Change of the fixed coupon rate R
with respect to q1.

5 Quantifying the Basis Risk of ILWs

A well-known problem related to the use of an index-linked catastrophic loss instrument in the

context of hedging is basis risk. This arises when, for example, the dependence between the

company’s loss and the industry loss is not sufficiently strong, and, hence, the former is not a good

representative of the latter. In this section we shall discuss quantification of the basis risk in the
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use of dual-triggered ILWs, as well as the sensitivity of the basis risk to the dependence between

the company’s loss and the industry loss.

Consider a dual-triggered ILW that reimburses the purchaser/insurer if both its own loss and

the industry-wide loss are above certain levels. Specifically, the ILW is assumed to have the payoff

ΠILW = ((X − x)+ ∧ l) 1(Y >y), (5.1)

where X and Y are two non-negative random variables representing the insurer’s loss due to

prescribed catastrophic events and the value of an industry loss index, respectively, l is the coverage

limit, and x and y are the company- and industry-level attachment points, respectively. Similar

ILW payoffs have appeared in, for instance, Cummins et al. (2004) and Gatzert and Kellner (2011).

We discuss the cases with the company-level attachment point being average sized and being large,

and we use different models to feature the two cases.

5.1 Average-sized attachment points

For the case with average-sized attachment points, following Zeng (2000) and Ross and Williams

(2009), we quantify the basis risk of the ILW defined in (5.1) as the conditional probability that

the insurer does not receive a payoff given that its loss X has surpassed the attachment point x;

that is,

BR = P (Y ≤ y|X > x) . (5.2)

We look at the microstructure of the losses that constitute X and Y , and we model the industry

loss Y during a prescribed period using a compound Poisson structure

Y =

N(λ)∑
j=1

Zj ,

where N(λ) is a Poisson random variable, with intensity λ > 0, counting the number of losses, and

Zj , j = 1, 2, . . ., are sizes of individual losses, assumed to be i.i.d. non-negative random variables

with common mean µ and variance σ2 and independent of N(λ). The number of losses this specific

insurer will encounter is still a Poisson random variable, which we denote by N1(θλ) with 0 ≤ θλ ≤ λ
representing its Poisson intensity. The number of the remaining losses is again a Poisson random

variable, which we denote by N2(λ − θλ) with intensity λ − θλ. Within this Poisson framework,

N1(θλ) and N2(λ− θλ) are two independent Poisson numbers, and, as a result, X and Y −X are

two independent random variables jointly identical in distribution to

(S1, S2) =

N1(θλ)∑
j=1

Zj ,

N1(θλ)+N2(λ−θλ)∑
j=N1(θλ)+1

Zj

 .

Assume that, as λ→∞, 
0 ≤ θλ →∞,
0 ≤ λ− θλ →∞,
θλ/λ→ θ ∈ [0, 1].
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The quantity θ in the last assumption above roughly represents this specific insurer’s market share

in the insurance market.

Choose the company-level attachment point x to be the 100pth quantile of X, and choose the

industry-level attachment point y to be the 100qth quantile of Y for p, q ∈ (0, 1). By the central

limit theorem (CLT), as λ→∞, the normalized quantities

S̃1 =
S1 − θλµ√
θλ (µ2 + σ2)

, S̃2 =
S2 − (λ− θλ)µ√
(λ− θλ) (µ2 + σ2)

, and Ỹ =
Y − λµ√
λ (µ2 + σ2)

all converge in distribution to N(0, 1). Thus, x and y, as the 100pth and 100qth quantiles of X

and Y , respectively, satisfy{
x = θλµ+ Φ−1(p)

√
θλ (µ2 + σ2) + o(

√
λ),

y = λµ+ Φ−1(q)
√
λ (µ2 + σ2) + o(

√
λ).

We have

BR = P (S1 + S2 ≤ y|S1 > x)

=
P (S1 + S2 ≤ y, S1 > x)

P (S1 > x)

=

P

(√
θλ
λ S̃1 +

√
λ−θλ
λ S̃2 ≤ Φ−1(q) + o(1), S̃1 > Φ−1(p) + o(1)

)
P
(
S̃1 > Φ−1(p) + o(1)

) .

Recall that S̃1 and S̃2 are independent and both converge in distribution to N(0, 1) as λ→∞. We

conclude the following result, which represents a CLT solution to measuring the basis risk:

Theorem 5.1 Consider the basis risk defined by (5.2). Under the assumptions above, it holds for

every p, q ∈ (0, 1) that

lim
λ→∞

BR =
1

1− p
P
(√

θη1 +
√

1− θη2 ≤ Φ−1(q), η1 > Φ−1(p)
)
, (5.3)

where η1 and η2 are two i.i.d. N(0, 1) random variables.

Two extreme cases are θ = 0 and θ = 1. The first case means that this insurer occupies a negligible

market share of the whole industry, and the result above shows that the basis risk is approximately

1− q, while the second case means that this insurer’s business dominates the whole industry, and

the result above shows that the basis risk is approximately q−p
1−p ∨ 0.

We conduct a numerical study of how the basis risk, approximated by relation (5.3), is influenced

by the parameters θ and q, and we show the results in Figures 19–20. We observe that the basis

risk decreases in θ, the market share of the insurer, and that it increases in q, the quantile level of

the index trigger. Both observations are intuitively clear.
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5.2 Large attachment points

In this section, we consider the case where the company level attachment point x is large. To

quantify the basis risk of the ILW with payoff given by (5.1), we now follow Gatzert and Kellner

(2011) to use a traditional reinsurance contract and a hypothetical “perfect” ILW contract as

benchmarks for perfect hedging. The traditional reinsurance contract has a payoff of

Πre = (X − x)+ ∧ l. (5.4)

In the “perfect” ILW the industry risk profile perfectly matches that of the insurer, and it has a

payoff of

Πpe =
(
(X − x)+ ∧ l

)
1(Y c>y), (5.5)

where Y c is identical in distribution to Y and comonotonic with X. One sees that the traditional

reinsurance corresponds to a special case of the ILW defined in (5.1) with y = 0−, and the “perfect”

ILW corresponds to another special case of the ILW with the company loss X and the industry loss

index Y being comonotonic. The hedged losses become
LILW = X −

(
(X − x)+ ∧ l

)
1(Y >y),

Lre = X − (X − x)+ ∧ l,
Lpe = X −

(
(X − x)+ ∧ l

)
1(Y c>y),

while being hedged by the ILW in (5.1), the traditional reinsurance in (5.4), and the “perfect” ILW

in (5.5), respectively. According to Gatzert and Kellner (2011), we quantify the hedge effectiveness

of each product as the counter-value of the proportional reduction in the VaR of the loss,

HE∗ = 1− VaRq [L∗]

VaRq [X]
, 0 < q < 1, (5.6)

where ∗ stands for ILW, re, or pe, and then we quantify the basis risk of the ILW as the counter-value

of the proportional reduction in hedge effectiveness,

BRre = 1− HEILW

HEre , BRpe = 1− HEILW

HEpe . (5.7)

It is easy to see that BRre ≥ 0. This is because LILW ≥ Lre almost surely, which implies that

VaRq

[
LILW

]
≥ VaRq [Lre], and, hence, that HEre ≥ HEILW. However, the non-negativity of BRpe

is not guaranteed, since we cannot assert a stochastic dominance between LILW and Lpe.

We are interested in the situation with a large company-level attachment point x, meaning that

the ILW is designed to hedge extreme risks, and a high level q for the VaR, meaning to measure

extreme risks. In such a situation, the CLT is no longer useful, and we instead employ an EVT

approach to find asymptotic estimations for BRre and BRpe defined in (5.7).

To this end, assume that the company loss X and the industry loss index Y are distributed

by F and G, respectively, with F ∈ RV−α for some α > 0. Furthermore, they possess a copula C
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whose survival copula Ĉ, defined to be

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), (u, v) ∈ (0, 1)2,

satisfies

lim
s↓0

Ĉ (su, sv)

s
= H(u, v), (u, v) ∈ [0,∞)2 (5.8)

for some bivariate, nondegenerate, and continuous function H on [0,∞)2. The function H describes

the tail dependence structure of (X,Y ) and is usually called a tail dependence function; see Jaworski

(2004) and Joe et al. (2010). Clearly, H(u, 0) = H(0, v) = 0, H(u,∞) = u, and H(∞, v) = v

for (u, v) ∈ [0,∞)2. Thus, with the convention that H(∞,∞) = ∞, relation (5.8) holds for

(u, v) ∈ [0,∞]2. Furthermore, H is 2-increasing; that is, the inequality

H(u2, v2)−H(u1, v2)−H(u2, v1) +H(u1, v1) ≥ 0

holds for every 0 ≤ u1 ≤ u2 ≤ ∞ and 0 ≤ v1 ≤ v2 ≤ ∞, because Ĉ as a copula is 2-increasing. We

remark that the degree of dependence between X and Y described by (5.8) spans the dependence

level from asymptotic independence to asymptotic dependence. In particular, if X and Y are

comonotonic, as is the case for the “perfect” ILW, the function H reduces to u ∧ v.

Moreover, assume that the coverage limit l, the industry-level attachment point y, and the VaR

level q are associated with the company-level attachment point x according to

lim
x↑∞

l

x
= cl, lim

x↑∞

G(y)

F (x)
= cy, and lim

x↑∞

1− q
F (x)

= b (5.9)

for some 1 ≤ cl ≤ ∞, 0 ≤ cy ≤ ∞, and 0 < b ≤ ∞. Note that in the case of the traditional

reinsurance, we have y = 0− and consequently cy =∞.

For a nonincreasing function h, as in Section 3.2, its general inverse is defined by

h←(x) = inf{y ∈ R : h(y) ≤ x}.

The following lemma provides an asymptotic approximation for the VaR of the hedged loss,

Lemma 5.1 Under the assumptions above, as x ↑ ∞, we have

VaRq[L
ILW] ∼


h←(b)x, for 0 < b ≤ h(1),
x, for h(1) < b ≤ 1,

b−1/αx, for b > 1,

(5.10)

where

h(u) = u−α +H
(
(cl + u)−α, cy

)
−H

(
u−α, cy

)
. (5.11)

Note that u−α−H (u−α, cy) = H (u−α,∞)−H (u−α, cy) is nonincreasing in u by the 2-increase

of H. Thus, h is a nonincreasing function, and the general inverse h← is well defined.
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As mentioned before, in the case of the traditional reinsurance, cy = ∞, and consequently the

function h is simplified to

h1(u) = (cl + u)−α.

It follows from Lemma 5.1 that

VaRq[L
re] ∼


(
b−1/α − cl

)
x, for 0 < b ≤ (cl + 1)−α,

x, for (cl + 1)−α < b ≤ 1,

b−1/αx, for b > 1.

(5.12)

Also as mentioned before, the “perfect” ILW is another special case of the ILW with the bivariate

function H(u, v) simplified to u ∧ v. Thus, it also follows from Lemma 5.1 that

VaRq[L
pe] ∼


h←2 (b)x, for 0 < b ≤ h2(1),
x, for h2(1) < b ≤ 1,

b−1/αx, for b > 1,

(5.13)

where

h2(u) = u−α + (cl + u)−α ∧ cy − u−α ∧ cy.

Plugging these estimates given by (5.10)–(5.13) into (5.6) and subsequently plugging the re-

sulting estimates for HE∗ into (5.7) yield two approximations for BRre and BRpe. We conclude the

following theorem, which represents an EVT solution to measuring the basis risk.

Theorem 5.2 Consider BRre and BRpe defined in (5.7). Under the assumptions above, it holds

for all 0 < b ≤ (cl + 1)−α that

lim
x↑∞

BRre = 1− 1− b1/αh←(b)

clb1/α
and lim

x↑∞
BRpe =

h←(b)− h←2 (b)

b−1/α − h←2 (b)
. (5.14)

Finally, we implement some numerical studies to check the accuracy of our asymptotic approx-

imations for the VaR of the hedged losses and demonstrate the change of the basis risk, approxi-

mated by relation (5.14), with respect to some parameters. The choices of distributions, copulas,

and related parameters are listed in Table 1.

For VaRq[L
ILW ] For VaRq[L

re] For VaRq[L
pe]

X Pareto (shape = scale = 1) Pareto (shape = scale = 1) Pareto (shape = scale = 1)
Y Pareto (shape = 1, scale = 5) – 2X
C Gumbel (γ = 1.5) – Co-monotonicity copula
cl 2 2 2
cy 0.5 − 0.5

b
(cl+1)−α

0.9 0.9 0.9

Table 1. Parameters for checking the accuracy of asymptotic approximations (5.10), (5.12), and
(5.13).
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Figures 21–23 show the ratios of the asymptotic approximations for VaRq[L
ILW], VaRq[L

re], and

VaRq[L
pe], given by relations (5.10)–(5.13), respectively, to the corresponding empirical estimates

obtained from 107 samples. The ratios in Figures 21–23 all stay around 1 for reasonably large

values of the attachment point x, showing that asymptotic approximations are accurate.
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Figure 21. Accuracy of the asymptotic approximation for VaRq

[
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Figure 22. Accuracy of the asymptotic approximation for VaRq [Lre].
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Figure 23. Accuracy of the asymptotic approximation for VaRq [Lpe].

Figures 24–25 show the change of BRre and BRpe given by Theorem 5.2 with respect to the

parameter γ of the Gumbel copula (which governs the strength of tail dependence) and the param-

eter cy in (5.9). The choices of distributions, copulas, and related parameters are listed below in

Table 2.

With respect to γ With respect to cy
X Pareto (shape = 2, scale = 1) Pareto (shape = 2, scale = 1)
C Gumbel (γ ∈ [2, 20]) Gumbel (γ = 2)
x 3 3
cl 2 2
cy 0.5 [0.2, 2]

b
(cl+1)−α

0.95 0.95

Table 2. Parameters for demonstrating the impact of γ, cy, and x on the basis risk.

We see that a stronger tail dependence between the sponsor’s loss X and the industry loss

index Y leads to a lower basis risk. Moreover, the basis risk defined with the reinsurance being the

benchmark decreases in the index trigger level y. However, the relationship is not as clear when

the “perfect” ILW is used as the benchmark.
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Figure 24. Change of the basis risk with respect to γ.
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Figure 25. Change of the basis risk with respect to cy.
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6 Appendix

6.1 Proofs

Verification for Example 3.1. The verifications for (i)–(ii) are trivial. To verify (iii), denote

x = Φ−1(q), so that g(q) = Φ (x− κ) and q = Φ(x). We have

g′(q) =
dg(q)

dx

dx

dq
=

Φ′ (x− κ)

Φ′(x)
= e−κ

2/2eκx > 0.

Continue this procedure to obtain

g′′(q) =
dg′(q)

dx

dx

dq
=
√

2πκe−κ
2/2e

1
2
x2+κx > 0

and

g′′′(q) =
dg′′(q)

dx

dx

dq
= 2πκe−κ

2/2ex
2+κxx+ 2πκ2e−κ

2/2ex
2+κx > 0.

We may assume by induction that

g(k)(q) =
∑
j

cj(κ)eMj(x)Nj(x) > 0,

where the sum is taken over a finite set of j, each Mj(x) and Nj(x) are polynomials with non-

negative (but not all zero) coefficients, and each cj(κ) is a positive function of κ. It is easy to verify

that g(k+1)(q) still possesses this structure. Thus, by induction we have proven the positivity of

g(k)(q) for all k = 0, 1, . . ..

The following lemma will be used to establish our asymptotic estimations.

Lemma 6.1 Suppose that u1 ↓ 0, u2 ↓ 0, and u1 ∼ u2. Then it holds for every κ ∈ R that

Φ
(
Φ−1 (1− u1)− κ

)
∼ Φ

(
Φ−1 (1− u2)− κ

)
.

Proof. First, observe that as x ↑ ∞, we have

Φ(x− κ) ∼ φ(x− κ)

x
=
φ(x)

x
eκx−κ

2/2 ∼ Φ(x)eκx−κ
2/2,

where the first and last steps are due to the Mills ratio of the standard normal distribution (Mills

1926). Moreover, it is easy to verify by Lemma 6.3 of Yuan (2016) that, as u ↓ 0,

Φ−1(1− u) =
√

2 ln (1/u)− 1

2
ln ln (1/u)− 1

2
ln (4π) + o(1).

Therefore, we obtain

Φ
(
Φ−1 (1− u1)− κ

)
∼ e−κ

2/2u1 exp
{
κΦ−1 (1− u1)

}
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∼ e−κ
2/2u1 exp

{
κ

(√
2 ln (1/u1)− 1

2
ln ln (1/u1)− 1

2
ln (4π)

)}
∼ e−κ

2/2u2 exp

{
κ

(√
2 ln (1/u2)− 1

2
ln ln (1/u2)− 1

2
ln (4π)

)}
∼ Φ

(
Φ−1 (1− u2)− κ

)
,

where the third step is due to the easily verifiable fact that if two positive functions v1 and v2

satisfy v1 →∞, v2 →∞, and v1 ∼ v2, then e
√

ln v1 ∼ e
√

ln v2 . This completes the proof.

Proof of Proposition 4.1. For every s ∈ (t, T ], direct calculation leads to

EQ
1

[Π(Ys)|Yt = y]

= EQ
1

[Π(Ys−t + y)]

= EQ
1

[η (FT (Ys−t + y))]

= 1− (1− c)Q1 (Ys−t > F←T (q1)− y)− cQ1 (Ys−t > F←T (q2)− y) ,

where in the first step we applied the fact that {Yt, t ≥ 0} is a homogeneous Markov process and

in the last two steps we applied relations (4.4)–(4.5). Thus,

EQ
1

[Π(Ys)|Yt = y] = 1− (1− c)Φ (Φ← (1− p1)− κ)− cΦ (Φ← (1− p2)− κ) (6.1)

with pj = P 1 (Ys−t > F←T (qj)− y), j = 1, 2. Note that we have

P 1 (Ys−t > x) ∼ λ(s− t)µ(A)F (x), x→∞,

and

F←T (qj) ∼ F←
(

1− 1− qj
λTν(A)

)
, qj ↑ 1.

It follows that

pj ∼ λ(s− t)ν(A)F

(
F←

(
1− 1− qj

λTν(A)

)
− y
)
, qj ↑ 1. (6.2)

By Lemma 6.1, plugging (6.2) into (6.1) yields the desired result in (4.7).

Proof of Lemma 5.1. It is easy to verify that(
LILW > z

)
=

{
(X > l + z, Y > y) ∪ (X > z, Y ≤ y) , for z ≥ x,
(X > z), for z < x.

For u ≥ 1, it follows that

P
(
LILW > ux

)
= P (X > l + ux, Y > y) + P (X > ux, Y ≤ y) .

For the the first probability on the right-hand side, notice that

P (X > l + ux, Y > y) = Ĉ
(
F (l + ux), G(y)

)
.
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Our assumptions l/x → cl and G(y)/F (x) → cy in (5.9) as well as F ∈ RV−α imply that, for

arbitrarily fixed 0 < ε < 1 and all large x,

Ĉ
(
(1− ε)(cl + u)−αF (x), (1− ε)cyF (x)

)
≤ Ĉ

(
F (l + ux), G(y)

)
≤ Ĉ

(
(1 + ε)(cl + u)−αF (x), (1 + ε)cyF (x)

)
.

Applying relation (5.8) to both sides yields that

H
(
(1− ε)(cl + u)−α, (1− ε)cy

)
F (x)

. Ĉ
(
F (l + ux), G(y)

)
. H

(
(1 + ε)(cl + u)−α, (1 + ε)cy

)
F (x).

By the continuity of the bivariate function H, we obtain

Ĉ
(
F (l + ux), G(y)

)
∼ H

(
(cl + u)−α, cy

)
F (x).

Hence,

P (X > l + ux, Y > y) ∼ H
(
(cl + u)−α, cy

)
F (x).

For the second probability, we derive

P (X > ux, Y ≤ y) = P (X > ux)− P (X > ux, Y > y)

= F (ux)− Ĉ
(
F (ux), G(y)

)
∼ u−αF (x)−H

(
u−α, cy

)
F (x).

For 0 < u < 1, straightforwardly,

P
(
LILW > ux

)
= P (X > ux) ∼ u−αF (x).

Therefore,

lim
x→∞

P
(
LILW > ux

)
F (x)

=

{
h(u), for u ≥ 1,
u−α, for 0 < u < 1,

(6.3)

where the function h(u) is given by relation (5.11). Note that the right-hand side of (6.3) as a

function of u has a jump at 1 and is continuous elsewhere. The three relations in (5.10) are then

obtained by inverting the right-hand side of (6.3) accordingly. This completes the proof.

Proof of Theorem 5.2. First, notice that both h(u) and h2(u) decrease to h1(u) as cy ↑ ∞,

which implies that h1(u) ≤ min{h(u), h2(u)} for u > 0. Thus, for 0 ≤ b ≤ h1(1) = (cl + 1)−α, the

first relations in (5.10)–(5.13) apply. It follows straightforwardly that

BRre = 1− HEILW

HEre
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= 1−
VaRq [X]−VaRq

[
LILW

]
VaRq [X]−VaRq [Lre]

→ 1− b−1/αx− h←(b)x

b−1/αx−
(
b−1/α − cl

)
x

= 1− 1− b1/αh←(b)

clb1/α
.

Similarly,

BRpe = 1− HEILW

HEpe

=
VaRq

[
LILW

]
−VaRq [Lpe]

VaRq [X]−VaRq [Lpe]

→ h←(b)− h←2 (b)

b−1/α − h←2 (b)
.

This completes the proof.

6.2 Illustration of the block maxima method

As an example, assume that in year s, the day j earthquake magnitude in the specified region

is Θs,j , and that {Θs,j , s = 1, . . . , T, j = 1, . . . , 365} are i.i.d. random variables with generic ran-

dom variable Θ and common distribution in MDA(Hξ). If Ys is the maximum magnitude of the

earthquakes by year s, that is,

Ys = max
1≤k≤s,1≤j≤365

Θk,j ,

then we may use the block maxima method to approximate the distribution of Ys. Recall that

coupon payments are made every year, and, hence, for t ∈ [0, T ], we need to approximate, for

every year s, s = 1, . . . , T , the conditional distribution function of Ys|Yt = y, which is identical in

distribution to Ys−t ∨ y.

Rewrite

Ys = max
1≤k≤s

max
1≤j≤365

Θk,j = max
1≤k≤s

Mk.

By the definition of MDA(Hξ), there are constants c > 0 and d ∈ R such that the distribution of

(Mk − d)/c is approximately Hξ(x), or, equivalently,

P 1 (Mk ≤ x) ≈ exp
{
−(1 + ξ(cx+ d))−1/ξ

}
.

Standard statistical methods (such as maximum likelihood estimation) are available to obtain

estimates ĉ, d̂, and ξ̂ for the parameters above. As a result, we have, for x ≥ y,

P 1 (Ys ≤ x|Yt = y)

= P 1 (Ys−t ∨ y ≤ x)

≈ exp
{
−(s− t)(1 + ξ̂(ĉx+ d̂))−1/ξ̂

}
,

and for x < y it is equal to 0.
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6.3 Interest rate models

Throughout the report, we model, under the risk-neutral measure Q2, the annualized instantaneous

risk-free interest rate process {rt, t ≥ 0} by a Cox–Ingersoll–Ross (CIR) model (see Cox et al. 1985):

drt = ar (br − rt) dt+ σr
√
rtdWr,t, (6.4)

where ar, br, and σr are positive numbers, with ar corresponding to the speed of mean reversion,

br the long-run mean, and σr the volatility, and Wr,t a standard Brownian motion under Q2. The

CIR process is clearly a time-homogeneous Markov process, and it is known that if 2arbr ≥ σ2
r ,

then the positivity of rt is guaranteed. Also, under such a process for the short rate, we have

EQ
2

[D(0, t)] = A(0, t)e−B(0,t)r0, t ≥ 0, (6.5)

where

A(0, t) =

(
2he(ar+h)t/2

2h+ (ar + h) (eth − 1)

)2arbr/σ2
r

,

B(0, t) =
2
(
eth − 1

)
2h+ (ar + h) (eth − 1)

,

h =
√
a2
r + 2σ2

r .

By the time-homogeneity property, we have, for s ≥ t ≥ 0,

EQ
2

t [D(t, s)] = A(0, s− t)e−B(0,s−t)rt.

Moreover, as stated in Subsection 4.1, we consider a continuous-time LIBOR process {`t, t ≥ 0}
and let the floating coupon rate be it = `t for t ∈ N. We assume that under Q2 the LIBOR

{`t, t ≥ 0} follows another CIR process,

d`t = a` (b` − `t) dt+ σ`
√
`tdW`,t, t ≥ 0, (6.6)

where a`, b`, and σ` are positive numbers interpreted similarly to the above, and W`,t is another

standard Brownian motion under Q2, satisfying

dWr,tdW`,t = ρdt, t ≥ 0,

for some ρ ∈ (−1, 1). Putting the two processes together, we see that the bivariate stochastic

process {(rt, `t), t ≥ 0} forms a special case of the affine term structure model (9) of Dai and

Singleton (2000) and, in particular, is a time-homogeneous Markov process.

We use simulation to estimate the term EQ
2

t [D(t, s)`s] in relation (3.6). The simulation of CIR

processes is known to be a challenging problem and has been discussed extensively in the literature

under the more general framework of the Heston stochastic volatility models; see Heston (1993) for
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the introduction of the Heston models and see, for example, Andersen (2008) and Alfonsi (2010)

for discussions of simulations of these processes. Generally, two kinds of methods can be used for

this simulation, discretization methods and exact simulation methods, both subject to criticisms.

Discretization methods such as the Euler–Maruyama method may introduce bias that is not easy to

reduce, and exact simulation methods require exact knowledge about the conditional distributions

of the underlying process, which is a problem, especially in a multivariate case like what we need

to handle here. We follow a discretization method proposed by Lord et al. (2010), the so-called

full truncation method. The method has been proven by the authors to produce discretization that

leads to strongly converging approximations. To estimate EQ
2

t [D(t, s)`s], we use this method to

generate 105 paths for both CIR processes.
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