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Executive Summary

This report documents the “Components of Historical Mortality Improvement” project commissioned
by the Longevity Advisory Group (LAG) of the Society of Actuaries. The purpose of the project is to
compare and contrast methodologies for allocating historical gender-specific mortality improvement
(or deterioration) experience in the U.S. into four components (age, period, cohort, and residual),
drawing from the methodologies developed previously by the Continuous Mortality Investigation
(CMI) of the Institute and Faculty of Actuaries (IFoA).

The deliverables of this project include the following:

1. A summary of the methodologies used by the CMI to allocate historical mortality improvement
experience into gender-specific age, period, cohort (year-of-birth), and residual components.

2. Specific suggestions of other APC allocation methodologies that deserve consideration.

3. An assessment of the overall effectiveness of all of the methodologies under consideration with
respect to (1) the adequacy in capturing the features possessed by the US gender-specific histor-
ical mortality improvement experience and (2) the robustness relative to different factors (e.g.,
confirming that relatively small changes to the selected observation period does not produce
disproportionately large changes in the underlying A/P/C components).

4. Identify the most effective A/P/C allocation method, based on the gender-specific US popula-
tion mortality data from 1950 through current, and for ages 20 through 95.

The project team divides the methodologies under consideration into two broad categories, Route
A and Route B. In Route A, the APC models are fitted to smoothed mortality improvement rates, and
the parameters in the estimated models give A/P/C decompositions of historical mortality improve-
ment. The steps involved in Route A are shown in the flow chart below:

 

Step 1: Calculate 
smoothed mortality 
improvement rates. 

Step 2: Fit an APC 
model to the smoothed 

improvement rates.  

Step 3: The parameters 
in the model gives the 

A/P/C decomposition of 
historical mortality 

improvemnt.  

Route A 

Route A includes the older CMI method (thereafter called the CMI-09 method), which is documented
in the CMI Working Papers 38 and 39 (CMI, 2009a,b).
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In Route B, APC models are fitted to mortality rates and the desired A/P/C decomposition of
mortality improvement experience is obtained by transforming the parameters in the chosen APC
model. The steps involved in Route B are shown in the flow chart below:

 

Step 1: Fit an APC 
model to the raw 
mortality rates. 

Step 2: Transform the 
parameters in the model.   

Step 3: The transformed 
model parameters gives 
the A/P/C decomposition 

of historical mortality 
improvement. 

Route B 

Route B encompasses the newer CMI method (thereafter referred to as the CMI-17 method), which
is documented in the CMI Working Papers 97, 98 and 99 (CMI, 2017a,b,c).

The project report is divided into two volumes. Volume 1 (this volume) provides the background
information and presents the modeling work associated with Route A. Volume 2 documents the mod-
eling work related to Route B, and concludes with a recommendation.

Section 1 of this volume describes the two data sets used, which are respectively provided by the
Human Mortality Database (HMD) and the U.S. Social Security Administration (SSA):

Data set Source Age Range Sample Period
(i) HMD 20 to 95 1968 to 2014
(ii) SSA 20 to 95 1968 to 2014

The possible limitations of the data sets are noted. Sections 2 and 3 define the notation and summa-
rizes the CMI-09 method.

Section 4 details the implementation of the CMI-09 method using the U.S. data sets. The imple-
mentation was successful, but a major drawback of the method was identified. When applied to the
U.S. male data sets, large vertical clusters are found in the heat maps of the standardized residuals.
This outcome in an indication that the APC model structure used in the CMI-09 method is unable to
pick up some features that are specific to the U.S. historical mortality improvement experience. It is
found that adding an age breakpoint ameliorates the problem, but using the use of an age breakpoint
may result in inconsistencies between mortality projections for younger and older ages.

Section 5 presents the robustness tests that we performed on the CMI-09 method. We test the ro-
bustness of the resulting age, period and cohort components to (1) changes in the calibration window,
(2) changes in the age range, (3) changes in the parameter constraints used, and (4) inclusion/exclusion
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of the oldest/newest cohorts. It is found that the CMI-09 method is reasonably robust, but the problem
of residuals clustering for U.S. male still remains even if calibration window or age range is somewhat
modified.

Section 6 studies if the CMI-09 method may be improved by considering alternative, more so-
phisticated APC model structures for decomposing the smoothed mortality improvement rates. Seven
candidate model structures are examined: M2, M3 (the model used in the CMI-09 method), M6,
M7, M8, the full Plat model and the simplified Plat model.1 We first perform a range of robustness
tests to shortlist a smaller number of model structures that merit further consideration. Then, we
analyze the standardized residuals produced by the shortlisted models using statistical tools such as
the Anderson-Darling test. The analyses suggest that the simplified Plat model is the most suitable
for the U.S. smoothed mortality improvement rates. This model also eliminates the need for an age
breakpoint.

Section 7 studies a more statistically rigorous method for estimating the Route A APC models.
The method integrates smoothing and estimation into one single process by introducing a roughness
penalty to the objective function from which optimized parameters are derived. A cross-validation
is used to determine the best tradeoff between smoothness and goodness-of-fit. It is found that this
alternative estimation/smoothing method yields fairly similar A/P/C decompositions.

Section 8 repeats the analyses using the data for ages 55 to 95 only. The results suggest that the
simplified Plat model is still the most effective Route A model even when the data for younger ages
are discarded.

Section 9 draws the following conclusion: When Route A is used, the simplified Plat model
(without any age breakpoint) is the most effective model for decomposing the U.S. historical mortality
improvement experience into A/P/C components.

The next volume describes and evaluates the Route B models. It also compares the decomposition
results from the two routes, and make a final recommendation.

The project team is grateful to all members of the Project Oversight Group, formed by Jennifer
Haid (Chair), Jean-Marc Fix, Zach Granovetter, George Graziani, Alla Kleyner, Dale Hall, Bob
Howard, Al Klein, Andy Peterson, Larry Pinzur, Erika Schulty, and Larry Stern, for their guidance
and insightful comments.

1We exclude M1 (the Lee-Carter model) and M5 (the Cairns-Blake-Dowd model), because these models do not incor-
porate cohort effects. We also exclude M4 as it does not explicitly decompose historical mortality into APC components.
Details concerning the models under consideration can be found in the papers by Cairns et al. (2009) and Plat (2009).
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1 The Data Sets Used

We consider two data sets, which have the same age range and the same age sample period. Data
set (i) is composed of the raw death and exposure counts provided by the Human Mortality Database
(HMD), whereas data set (ii) is based on the raw death and exposure counts provided by the U.S.
Social Security Adminstration (SSA). The following table summarizes the two data sets used in this
report:

Data set Source Age Range Sample Period
(i) HMD 20 to 95 1968 to 2014
(ii) SSA 20 to 95 1968 to 2014

It should be noted that the two data sets are based on different sources. For the SSA data set, the
death and exposure counts for age 65 and over are based on experience derived from the Medicare-
enrolled population. In contrast, the HMD data set is based on deaths reported by states and census
population (exposure) estimates. Goss et al. (2015) argue that the SSA data set is more reliable for
the following reasons:

1. age accuracy (Medicare requires proof of age when enrolling);

2. representation of almost the entire Social Security area population;

3. both death and exposure counts are obtained from a single, consistent source.

In addition, according to the HMD documentation, the HMD data at higher ages are not ‘raw’.2 For
these reasons, the conclusions drawn in this study are based primarily on the SSA data set. The HMD
data set is used as a benchmark only.

2Above age 80, population estimates in the HMD data set are derived by the method of extinct generations for all
cohorts that are extinct and by the survivor ratio method for non-extinct cohorts who are older than age 90 at the end of
the observation period.
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2 Notation

The following notation is used throughout the rest of this report:

• x represents the age of an individual;

• t represents calendar year;

• [x0, x1] is the sample age range (i.e., the calibration window);

• [t0, t1] is the sample period;

• c = t− x is the year of birth; note that within the data sample c ranges from t0 − x1 to t1 − x0;

• mx,t and m̃x,t represent the raw and smoothed central rates of death, respectively;

• qx,t and q̃x,t represent the raw and smoothed conditional death probabilities, respectively;

• Zx,t = 1− qx,t/qx,t−1 is the raw mortality improvement rate for age x and year t;

• Z̃x,t = 1− q̃x,t/q̃x,t−1 is the smoothed mortality improvement rate for age x and year t;

3 A Summary of the CMI-09 Method

The CMI-09 decomposition method includes two stages. In the first stage, a two-dimensional
(age/cohort) P-Spline (Currie et al., 2004) is applied to the crude mortality rates. In the second stage,
the smoothed mortality improvement rates are decomposed into age/period/cohort/residual compo-
nents using an additive APC model. The CMI-09 decomposition method can be summarized as
follows:

• Stage 1: Two dimensional P-spline smoothing

– Step 1.1: Obtain the smoothed mortality rate m̃x,t by fitting a two-dimensional P-spline to
the crude mortality rates mx,t’s.

– Step 1.2: Connect the smoothed mortality rate m̃x,t with the smoothed death probability
q̃x,t using the UDD (uniform distribution of deaths between integer ages) assumption:

q̃x,t = m̃x,t/(1 + 0.5m̃x,t).

• Stage 2: Age/Period/Cohort/Residual Components Decomposition

– Step 2.1: Define the smoothed mortality improvement Z̃x,t as the fall in the smoothed
mortality rates from q̃x,t−1 to q̃x,t (CMI, 2009b, pp.35).

Z̃x,t = 1− q̃x,t/q̃x,t−1
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– Step 2.2: Fit the smoothed mortality improvement to a simple additive APC model,

Z̃x,t = ax + kt + gc + ex,t, (1)

where ax, kt, gc and ex,t are the age, period, cohort and residual components, respectively.
The age, period and cohort components are obtained by minimizing the residual sum of
squares (CMI, 2009b, pp.36):

x1∑
x=x0

t1∑
t=t0

e2x,t.

Three constraints,

x1∑
x=x0

ax = 0,

t1−x0∑
c=t0−x1

gc = 0,

t1−x0∑
c=t0−x1

c · gc = 0,

are used to stipulate parameter uniqueness.3

– Step 2.3: For each age/period/cohort components, we use basis-splines with 4-year knot
spacing (consistent with the knot-spacing in the P-Spline models applied to the raw pop-
ulation data) to ensure reasonable smoothness.

3The first two constraints are provided in the CMI documentations. The third constraint is provided by Jon Palin from
the CMI.
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4 Implementing the CMI-09 Method

In this section, we apply the CMI-09 method to the U.S. mortality data. Possible limitations of the
CMI-09 method are also identified.

4.1 The Smoothed Death Rates

In the first stage of the CMI method, a two-dimensional (age/cohort) P-Spline is applied to the crude
mortality rates. Following Currie et al. (2006), the project team has applied the following settings for
the two-dimensional P-Spline:

• Dimensions: age-cohort

• Knot spacing: one knot every four years up to a maximum of 40 knots

• Type of splines: cubic

• Penalty degree: quadratic

Figures 1 and 2 show the raw and smoothed central death rates (in log scale) across ages for three
specific years-of-birth: 1930, 1950 and 1970. It should be noted that not all rates in the age range of
20 to 95 are available. For instance, as the data sets cover calendar years 1968 to 2014 only, for year-
of-birth 1930 the available central death rates span age 38 (= 1968−1930) to age 84 (= 2014−1930)
only. For the same reason, we can only show the central death rates up to age 64 (= 2014− 1950) for
year-of-birth 1950 and up to age 44 (= 2014 − 1970) for year of birth 1970. It can be observed that
the P-splines effectively removed the jaggedness in the raw rates, and that the rates from the HMD
and SSA data sets are quite similar.

Figures 3 and 4 show the raw and smoothed central death rates (in log scale) across years-of-
birth for three specific ages: 35, 65 and 95. As the data sets cover calendar years 1968 to 2014, the
available mortality rates for age 35 begin in year-of-birth 1933 (= 1968 − 35) and end in year-of-
birth 1979 (= 2014− 35). Likewise, the available mortality rates for age 65 span years-of-birth 1903
(= 1968− 65) to 1949 (= 2014− 65) and those for age 95 cover years-of-birth 1873 (= 1968− 95)
to 1919 (= 2014− 95). The rates from the HMD and SSA data sets are broadly in line, but at age 95
the SSA rates are notably higher.
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Figure 1: The raw and smoothed mortality rates of U.S. males born in year 1930 (upper panels), year
1950 (middle panels) and year 1970 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 2: The raw and smoothed mortality rates of U.S. females born in year 1930 (upper panels),
year 1950 (middle panels) and year 1970 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 3: The raw and smoothed mortality rates of U.S. males at age 35 (upper panels), age 65 (mid-
dle panels) and age 95 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).

12



1880 1900 1920 1940 1960 1980

−7

−6.9

−6.8

−6.7

−6.6

−6.5

Year−of−birth

L
o
g
 c

e
n
tr

a
l 
d
e
a
th

 r
a
te

Age 35

 

 

Raw

Smoothed

1880 1900 1920 1940 1960 1980

−7

−6.9

−6.8

−6.7

−6.6

−6.5

Year−of−birth

L
o
g
 c

e
n
tr

a
l 
d
e
a
th

 r
a
te

Age 35

 

 

Raw

Smoothed

1880 1900 1920 1940 1960 1980

−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

Year−of−birth

L
o
g
 c

e
n
tr

a
l 
d
e
a
th

 r
a
te

Age 65

 

 

Raw

Smoothed

1880 1900 1920 1940 1960 1980

−4.7

−4.6

−4.5

−4.4

−4.3

−4.2

−4.1

−4

Year−of−birth

L
o
g
 c

e
n
tr

a
l 
d
e
a
th

 r
a
te

Age 65

 

 

Raw

Smoothed

1880 1900 1920 1940 1960 1980

−1.45

−1.4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

Year−of−birth

L
o
g
 c

e
n
tr

a
l 
d
e
a
th

 r
a
te

Age 95

 

 

Raw

Smoothed

1880 1900 1920 1940 1960 1980

−1.45

−1.4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

Year−of−birth

L
o
g
 c

e
n
tr

a
l 
d
e
a
th

 r
a
te

Age 95

 

 

Raw

Smoothed

Figure 4: The raw and smoothed mortality rates of U.S. females at age 35 (upper panels), age 65
(middle panels) and age 95 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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4.2 The Smoothed Mortality Improvement Rates

The input for the second stage of the CMI-09 method is the smoothed mortality improvement rates.
Figures 5 and 6 provide the heat maps for the smoothed mortality improvement rates for U.S. males
and females, respectively. The smoothed mortality improvement rates from the two data sets are very
similar. For the readers’ information, we indicate in the heat maps the ages at which the peaks and
troughs are located.
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Figure 5: Heat maps of the smoothed mortality improvement rates Z̃x,t for the U.S. males.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 6: Heat maps of the smoothed mortality improvement rates Z̃x,t for the U.S. females.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).

14



4.3 The Age/Period/Cohort Components in the CMI-09 Method

In the second stage of the CMI-09 method, the following additive APC model is fitted to the smoothed
mortality improvement rates Z̃x,t:

Z̃x,t = ax + kt + gc + ex,t,

where ax, kt, gc and ex,t are the age, period, cohort and residual components, respectively. Figures 7
and 8 show the estimated age, period and cohort components based on the two data sets for U.S. males
and females, respectively. The two data sets yield very similar age, period and cohort decompositions.
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Figure 7: The estimated Age/Period/Cohort components obtained from the CMI-09 method, where
the smoothed mortality improvement rates of U.S. males are fitted to an additive APC
model.
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Figure 8: The estimated Age/Period/Cohort components obtained from the CMI-09 method, where
the smoothed mortality improvement rates of U.S. females are fitted to an additive APC
model.
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4.4 The Residual Component in the CMI-09 Method

Figures 9 and 10 show the heat maps of the standardized residuals

ex,t
s.d.(ex,t)

resulting from the two estimated additive APC models for U.S. males and females, respectively. For
the readers’ information, we indicate in the heat maps the ages at which the peaks and troughs are
located.

If an estimated model is adequate, then the standardized residuals should exhibit a random pattern.
The heat maps suggest that the CMI-09 APC model seems to be adequate for U.S. females, but
not quite for U.S. males. In the residuals heat map for U.S. males, we observe three large vertical
bands over the period of 1985 to 2005. These residual clusters suggest that some characteristics that
are specific to the historical mortality of U.S. males have not been picked up by the CMI-09 APC
model. This problem may be fixed by adapting the CMI-09 APC model or by considering a more
sophisticated APC model structure. These possible methods are examined in later parts of this report.
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Figure 9: Heat maps of the standardize residuals calculated from the CMI-09 APC model Z̃x,t =
ax + kt + gc + ex,t, where the smoothed mortality improvement rates are fitted to the U.S.
males.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 10: Heat maps of the standardized residuals calculated from the CMI-09 APC model Z̃x,t =
ax + kt + gc + ex,t, where the smoothed mortality improvement rates are fitted to the U.S.
females.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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4.5 The Impact of Different Age Breakpoints on the Residual Component

One possible way to ameliorate the problem of residuals clustering is to introduce an age breakpoint.
In this sub-section, we study the impact of introducing an age breakpoint on the residual component.
Six age breakpoints, 45, 50, 55, 60, 65 and 70, are considered. For example, when the age breakpoint
is set to 45, we fit one APC model to the smoothed improvement rates over ages 20 to 45 and another
APC model to the smoothed improvement rates over ages 46 to 95. The residual component is then
recalculated.

The results are presented in Figures 11 and 12 (for males) and Figures 13 and 14 (for females).
In all figures, the top panels show the residual component when no age breakpoint is used (i.e., what
was shown in Figures 9 and 10), while the other panels show the residual components when various
age breakpoints (indicated by the black dashed lines) are used.

For males, the use of an age breakpoint dampens the patterns found in the original residuals.
Using the Anderson-Darling test, it is found that the distribution of the standardized residuals is the
closest to a standard normal distribution when the age breakpoint is set to 55.4 This optimal age
breakpoint is in line with what the heat maps shown in Figure 9, where we observe during 1996-1998
the standardized residuals change sign at age 55. For females, the effect of using an age breakpoint is
minimal, no matter where the age breakpoint is located.

4Further analyses on the normality of standardized residuals are presented in Section 6.3.
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Figure 11: Heat maps of the standardized residuals calculated from the CMI-09 APC model Z̃x,t =
ax + kt + gc + ex,t, where the smoothed mortality improvement rates are fitted to the U.S.
males. The dotted lines represent the “age breakpoints”.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 12: Heat maps of the standardized residuals calculated from the CMI-09 APC model Z̃x,t =
ax + kt + gc + ex,t, where the smoothed mortality improvement rates are fitted to the U.S.
males. The dotted lines represent the “age breakpoints”.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).

20



Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010
20

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

25

87
90 90

50

75

35

67

80

70

65

Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010
20

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

25

90
87

50

75

65

90

65

45

35

67

80

Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

50

90 90

77

87

80

67
65

73

40
43

25

55

Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

87

55

90

43
40

80

60

85

65

80

70
72

65

25
30 30

Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

90 90

77

87

80

67
65

73

40
43

25

55

Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

87
90

85

72

6565

80

55

43

25
30 30

40

48

60

80

7069

Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

40

25

90 90

80

87

50

67

73

43

35 35

55

78

65

Year

A
ge

Standardized residual component

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010

30

40

50

60

70

80

90

−3

−2

−1

0

1

2

3

60

40

50

43

25
30 30

48

53
55

69

90

80

72

65 65

80

87

Figure 13: Heat maps of the standardized residuals calculated from the CMI-09 APC model Z̃x,t =
ax + kt + gc + ex,t, where the smoothed mortality improvement rates are fitted to the U.S.
females. The dotted lines represent the “age breakpoints”.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 14: Heat maps of the standardized residuals calculated from the CMI-09 APC model Z̃x,t =
ax + kt + gc + ex,t, where the smoothed mortality improvement rates are fitted to the U.S.
females. The dotted lines represent the “age breakpoints”.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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4.6 Concluding Remark

When the CMI-09 approach is applied to U.S. male mortality experience, large vertical residual clus-
ters are observed in 1996 to 1998. The clusters indicate some sort of ‘regime-switching’: the stan-
dardized residuals before and after age 55 are of opposite signs. This represents an indication that
the CMI-09 APC model is unable to pick up some features that are specific to U.S. male mortality
experience.

To confirm this conjecture, here we apply the CMI-09 decomposition method to data from the
population of England and Wales (E&W) over the same age range and sample period, and examine
if similar clusters are found in the residual heat maps for the E&W models. The results are shown in
Figures 15 (males) and 16 (females). The following observations are made:

• Of our biggest concern are the large vertical clusters that are found in the plot for U.S. males
during 1996-1998. These vertical clusters are not found in the residual heat maps for the E&W
models, suggesting that they are due to data-specific characteristics that have not been picked
up by the APC structure used.

• The age breakpoint (at around age 55) found in the plot for U.S. males is not observed in the
plots derived from the E&W data, suggesting that it is also a data-specific characteristic.

• Some obvious diagonal bands are observed in the residuals heat maps for the E&W models.
These bands suggest that E&W mortality is subject to highly significant cohort effects, which
have not been adequately captured by the APC structure (even though the structure contains a
cohort effect term).

The results shown in Figures 15 and 16 further confirm that we need to adapt the CMI-09 APC
model to better suit U.S. historical mortality. Introducing an age breakpoint (discussed in the previous
sub-section) ameliorates the problem of residual clustering, but may result in inconsistencies between
mortality projections for younger and older ages. Another possible direction is to consider alternative,
more sophisticated APC model structures. Research along this direction is presented in Section 6 of
this report.
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Figure 15: Heat maps of the standardized residuals of the CMI-09 APC model Z̃x,t = ax+kt+gc+ex,t
fitted to the smoothed mortality improvement rates for U.S. males (left panel) and E&W
males (right panel).
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Figure 16: Heat maps of the standardized residuals of the CMI-09 APC model Z̃x,t = ax+kt+gc+ex,t
fitted to the smoothed mortality improvement rates for U.S. females (left panel) and E&W
females (right panel).
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5 Testing the Robustness of the CMI-09 Method

It is important to ensure that the resulting A/P/C components remain largely unchanged when there are
small changes to the data input or model set-up. In this section, we perform several robustness tests on
the CMI-09 decomposition method. Specifically, we test the robustness of the decomposition result
to (1) changes in the calibration window, (2) changes in the age range, (3) the choice of parameter
constraints, and (4) the exclusion of the oldest/newest cohorts.

5.1 Changes in the Calibration Window

In this sub-section, we apply the CMI-09 approach to three calibration windows, which have the same
length but different starting/ending years. This set-up is to mimic the situation when the model is
updated every 5 years. The following table summarizes the calibration windows under consideration:

Starting Age Ending Age Starting Year Ending Year Length of
Calibration Window

Baseline
20 95

1968 2004 37 years
Alternative 1 1973 2009 37 years
Alternative 2 1978 2014 37 years

Figures 17 (males) and 18 (females) show the age, period and cohort components estimated from
the CMI-09 approach when the different calibration windows are used. The following observations
are made:

• The lengths of the period and cohort components remain the same, as the length of the calibra-
tion window is always 37 years.

• As the calibration window is changed, the values of the age, period and cohort components
change, but the overall shapes of the components remain fairly the same.

• Among all three components, the age component appears to be the most sensitive to the change
in calibration window.

• No matter what calibration window is used, the cohort component always fluctuates around
zero because of the imposed parameter constraints.

Figures 19 (males) and 20 (females) show the (standardized) residual components when different
calibration windows are used. The peaks and valleys in the residual plots remain in approximately the
same locations as the calibration window is changed, indicating that the residual component is fairly
insensitive to changes in the calibration window.
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(a) U.S. Males: Dataset (i), HMD data
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(b) U.S. Males: Dataset (ii), SSA data

Figure 17: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
three different calibration windows are used, U.S. males.
- Baseline: ages 20 to 95, years 1968 to 2004 (covering years-of-birth 1873 to 1984).
- Alternative 1: ages 20 to 95, years 1973 to 2009 (covering years-of-birth 1878 to 1989).
- Alternative 2: ages 20 to 95, years 1978 to 2014 (covering years-of-birth 1883 to 1994).
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(a) U.S. Females: Dataset (i), HMD data
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(b) U.S. Females: Dataset (ii), SSA data

Figure 18: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
three different calibration windows are used, U.S. females.
- Baseline: ages 20 to 95, years 1968 to 2004 (covering years-of-birth 1873 to 1984).
- Alternative 1: ages 20 to 95, years 1973 to 2009 (covering years-of-birth 1878 to 1989).
- Alternative 2: ages 20 to 95, years 1978 to 2014 (covering years-of-birth 1883 to 1994).
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Figure 19: Heat maps of the standardized residuals of the CMI-09 APC model Z̃x,t = ax + kt +
gc +ex,t fitted to the smoothed mortality improvement rates for U.S. males, when different
calibration windows are used.
- Left panels: Data set (i) (HMD).
- Right panels: Data set (ii) (SSA).
- Top panels: Baseline, ages 20-95, years 1968-2004.
- Middle panels: Alternative 1, ages 20 to 95, years 1973 to 2009.
- Lower panels: Alternative 2, ages 20 to 95, years 1978 to 2014.
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Figure 20: Heat maps of the standardized residuals of the CMI-09 APC model Z̃x,t = ax + kt + gc +
ex,t fitted to the smoothed mortality improvement rates for U.S. females, when different
calibration windows are used.
- Left panels: Data set (i) (HMD).
- Right panels: Data set (ii) (SSA).
- Top panels: Baseline, ages 20-95, years 1968-2004.
- Middle panels: Alternative 1, ages 20 to 95, years 1973 to 2009.
- Lower panels: Alternative 2, ages 20 to 95, years 1978 to 2014.
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5.2 Changes in the Age Range

In this sub-section, we apply the CMI-09 approach to different age ranges:

Starting Age Ending Age Starting Year Ending Year Number of Ages
Baseline 20 95

1968 2014
76

Alternative 1 30 85 56
Alternative 2 40 75 36

Figures 21 (males) and 22 (females) show the age, period and cohort components estimated from
the CMI-09 approach when different age ranges are used. The following observations can be made:

• The lengths of the age and cohort components become smaller as the age range is shortened.

• As the age range window is shortened, the values of the age, period and cohort components
change, but the overall shapes of the components remain fairly the same.

• No matter what age range is used, the cohort component always fluctuates around zero because
of the imposed parameter constraints.

Figures 23 (males) and 24 (females) show the residual components when different age ranges are
used. It is found that the residual component is rather insensitive to changes in the age range used.
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(a) U.S. Males: Dataset (i), HMD data
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(b) U.S. Males: Dataset (ii), SSA data

Figure 21: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
different age ranges are used, U.S. males.
- Baseline: ages 20 to 95, years 1968 to 2014 (covering years-of-birth 1873 to 1994).
- Alternative 1: ages 30 to 85, years 1968 to 2014 (covering years-of-birth 1883 to 1984).
- Alternative 2: ages 40 to 75, years 1968 to 2014 (covering years-of-birth 1893 to 1974).
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(a) U.S. Females: Dataset (i), HMD data
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(b) U.S. Females: Dataset (ii), SSA data

Figure 22: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
different age ranges are used, U.S. females.
- Baseline: ages 20 to 95, years 1968 to 2014 (covering years-of-birth 1873 to 1994).
- Alternative 1: ages 30 to 85, years 1968 to 2014 (covering years-of-birth 1883 to 1984).
- Alternative 2: ages 40 to 75, years 1968 to 2014 (covering years-of-birth 1893 to 1974).
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Figure 23: Heat maps of the standardized residuals of the CMI-09 APC model Z̃x,t = ax+kt+gc+ex,t
fitted to the smoothed mortality improvement rates for U.S. males, when different age
ranges are used.
- Left panels: Data set (i) (HMD).
- Right panels: Data set (ii) (SSA).
- Top panels: Baseline, ages 20 to 95, years 1968 to 2014.
- Middle panels: Alternative 1, ages 30 to 85, years 1968 to 2014
- Lower panels: Alternative 2, ages 40 to 75, years 1968 to 2014.
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Figure 24: Heat maps of the standardized residuals of the CMI-09 APC model Z̃x,t = ax+kt+gc+ex,t
fitted to the smoothed mortality improvement rates for U.S. females, when different age
ranges are used.
- Left panels: Data set (i) (HMD).
- Right panels: Data set (ii) (SSA).
- Top panels: Baseline, ages 20 to 95, years 1968 to 2014.
- Middle panels: Alternative 1, ages 30 to 85, years 1968 to 2014
- Lower panels: Alternative 2, ages 40 to 75, years 1968 to 2014.
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5.3 The Choice of Parameter Constraints

In the CMI-09 method, three parameter constraints are used to stipulate the parameter uniqueness. In
this section, we examine how the estimation results may change when these constraints are altered.
The following three sets of constraints are considered:

• Baseline:
x1∑

x=x0

ax = 0,

t1−x0∑
c=t0−x1

gc = 0,

t1−x0∑
c=t0−x1

c · gc = 0.

These constraints ensures that both the age and cohort components fluctuate around zero, and
that the cohort component exhibits no linear trend.

• Alternative 1:
t1∑

t=t0

kt = 0,

t1−x0∑
c=t0−x1

nc · gc = 0,

t1−x0∑
c=t0−x1

nc · c · gc = 0.

In the above, nc stands for the number of data points associated with year-of-birth c.5 By
including nc, the cohorts for which we have more information about play a more significant
role in the parameter constraints. Using these constraints, the period and (weighted) cohort
components will fluctuate around zero, and the weighted cohort component will exhibit no
linear trend. We remark here that this collection of constraints is also considered in the paper
by Hunt and Blake (2015).

• Alternative 2:
t1∑

t=t0

kt = 0,

t1−x0∑
c=t0−x1

gc = 0,

t1−x0∑
c=t0−x1

c · gc = 0.

The same as alternative 1, except that nc is not involved in the second and third constraints.
These constraints ensure that both the period and cohort components will fluctuate around zero
and that cohort component will exhibit no linear trend.

Figures 25 (males) and 26 (females) show the estimated age, period, and cohort components when
different parameter constraints are used. The following observations are made:

• As we switch from the baseline to alternative 2, the cohort component remains the same,
whereas the age and period components shift in a parallel manner. In fact, it can be proven
mathematically that the increase in the magnitude of the age component is exactly the same as
the reduction in the magnitude of the period component.

5Our data sample spans ages 20 to 95 and years 1968 to 2014. For the earliest cohort (c = 1968 − 95 = 1873),
we have n1873 = 1 as there is only one data point (which corresponds to age 95 and year 1968) is associated with this
cohort. Likewise, for the second earliest cohort c = 1874, we have n1874 = 2 as there are two data points (one of which
corresponds to age 94 and year 1968 and the other of which corresponds to age 95 and year 1969) associated with this
cohort. The values of nc for other cohorts can be deduced in a similar manner.
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• Alternatives 1 and 2 yield very similar estimates, indicating that the weights (nc’s) have only
modest impact on the resulting estimates.

We remark here that because the cohort component is very insensitive to the choice of constraints,
the blue and red lines in the right panels of Figure 25 are very close to each other (and difficult to
distinguish).
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(a) U.S. Males: Dataset (i), HMD data
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(b) U.S. Males: Dataset (ii), SSA data

Figure 25: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
different parameter constraints are used, U.S. males.
- Baseline:

∑
x ax = 0,

∑
c gc = 0 and

∑
c c · gc = 0.

- Alternative 1:
∑

t kt = 0,
∑

c nc · gc = 0 and
∑

c nc · c · gc = 0.
- Alternative 2:

∑
t kt = 0,

∑
c gc = 0 and

∑
c c · gc = 0.

37



20 40 60 80
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Age

V
a
lu

e

Age component

 

 

Baseline

Alternative 1

Alternative 2

1970 1980 1990 2000 2010
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Year

V
a
lu

e

Period component

1880 1900 1920 1940 1960 1980
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Year−of−birth

V
a
lu

e

Cohort component

(a) U.S. Females: Dataset (i), HMD data
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(b) U.S. Females: Dataset (ii), SSA data

Figure 26: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
different parameter constraints are used, U.S. females.
- Baseline:

∑
x ax = 0,

∑
c gc = 0 and

∑
c c · gc = 0.

- Alternative 1:
∑

t kt = 0,
∑

c nc · gc = 0 and
∑

c nc · c · gc = 0.
- Alternative 2:

∑
t kt = 0,

∑
c gc = 0 and

∑
c c · gc = 0.

38



5.4 Exclusion of the Oldest/Newest Cohorts

There are only a few observations associated with the oldest/newest cohorts covered by the data
sample. If the model is not stable, including these cohorts in the estimation process may distort the
resulting age, period and cohort components. In this sub-section, we examine how the resulting age,
period and cohort components may change when the oldest and newest cohorts are excluded. The
following three situations are considered:

• Baseline: All available data are used.

• Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.

• Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.

Alternatives 1 and 2 are illustrated in the following lexis diagrams.
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Year
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e
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The resulting age/period/cohort components are shown in Figures 27 (males) and 28 (females).
It is found that the exclusion of the oldest and the newest cohorts has only a modest impact on the
estimation results.

5.5 Concluding Remark

The results of the robustness tests suggest that the CMI-09 approach is reasonably robust relative to
small changes in the data set and model set-up. However, the problem of residual clustering remains
significant and must be addressed. In the next section, we investigate if the problem can be mitigated
by using a different APC structure.
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(a) U.S. Males: Dataset (i), HMD data

20 40 60 80
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Age

V
a
lu

e

Age component

 

 

Baseline

Alternative 1

Alternative 2

1970 1980 1990 2000 2010
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Year

V
a
lu

e

Period component

1880 1900 1920 1940 1960 1980
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

Year−of−birth

V
a
lu

e
Cohort component

(b) U.S. Males: Dataset (ii), SSA data

Figure 27: The estimated Age/Period/Cohort components obtained from the CMI-09 method, with
and without exclusion of the youngest/oldest cohorts, U.S. males.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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(a) U.S. Females: Dataset (i), HMD data
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(b) U.S. Females: Dataset (ii), SSA data

Figure 28: The estimated Age/Period/Cohort components obtained from the CMI-09 method, with
and without exclusion of the youngest/oldest cohorts, U.S. females.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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6 Improving the CMI-09 Method

In this section, we investigate if the problem of residuals clustering can be mitigated by using a
different APC structure. Seven candidate model structures are considered. In what follows, we first
define the candidate model structures. The definitions are followed by a collection of robustness tests
which allow us to shortlist a smaller number of model structures for further consideration. Finally,
we perform a residual analysis to identify the model structure that is best suited for U.S. historical
mortality experience.

6.1 Definitions of the Candidate APC Model Structures

We consider seven candidate APC models, including M2, M3, M6, M7, M8, the full Plat model
and the simplified Plat model. These models were originally developed to model mortality rates
or probabilities (mx,t’s or qx,t’s), but in the context of this investigation, we use them to model the
smoothed mortality improvement rates (Z̃x,t’s). Note that M3 is identical to the APC model used in
the CMI-09 approach.

In describing the model structures, the following conventions are used:

• [x0, x1] is the sample age range;

• [t0, t1] is the sample period;

• c = t− x is the year of birth; note that within the data sample c ranges from t0 − x1 to t1 − x0;

• nc is the number of data points associated with year-of-birth c;

• x̄ = (x0 + x1)/2 is the mean age over the sample age range;

• (x̄− x)+ = max(x̄− x, 0) is the maximum of x̄− x and 0;

• Z̃x,t is the smoothed mortality improvement rate for age x and year t;

– β
(1)
x is a stand-alone age-specific parameter,

– β
(2)
x is an age-specific parameter that interacts with a time-varying parameter,

– β
(3)
x is an age-specific parameter that interacts with a cohort-related parameter,

• κ(i)t , i = 1, 2, 3, are time-varying parameters:

– κ
(1)
t is a stand-alone time-varying parameter;

– κ
(2)
t is a time-varying parameter that interacts with an age-specific parameter or a linear

function of age;

– κ
(3)
t is a time-varying parameter that interacts with a non-linear function of age.

• γc is a cohort-related parameter;
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• ex,t is the error term.

The mathematical definitions of the seven candidate models are provided below. For all APC
model structures, identifiability constraints are needed to stipulate parameter uniqueness. The identi-
fiability constraints used for each candidate model are also given below.

• M2 – The Renshaw-Haberman Model (Renshaw and Haberman, 2006)

Z̃x,t = β(1)
x + β(2)

x κ
(2)
t + β(3)

x γc + ex,t

Identifiability constraints:∑x1

x=x0
β
(1)
x = 0,

∑x1

x=x0
β
(2)
x = 1,

∑x1

x=x0
β
(3)
x = 1, and

∑t1−x0

c=t0−x1
ncγc = 0.

• M3 – The Age-Period-Cohort Model (Osmond, 1985; used in the CMI-09 decomposition
method)

Z̃x,t = β(1)
x + κ

(2)
t + γc + ex,t

Identifiability constraints:
∑x1

x=x0
β
(1)
x = 0,

∑t1−x0

c=t0−x1
γc = 0, and

∑t1−x0

c=t0−x1
cγc = 0.

• M6 – The CBD Model with a Cohort Effect (Cairns et al., 2009)

Z̃x,t = κ
(1)
t + κ

(2)
t (x− x̄) + γc + ex,t

Identifiability constraints:
∑t1−x0

c=t0−x1
γc = 0 and

∑t1−x0

c=t0−x1
cγc = 0.

• M7 – The CBD Model with Quadratic Age and Cohort Effects (Cairns et al., 2009)

Z̃x,t = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γc + ex,t

Identifiability constraints:
∑t1−x0

c=t0−x1
γc = 0,

∑t1−x0

c=t0−x1
cγc = 0, and

∑t1−x0

c=t0−x1
c2γc = 0

• M8 – The CBD Model with an Age-Dependent Cohort Effect (Cairns et al., 2009)

Z̃x,t = κ
(1)
t + κ

(2)
t (x− x̄) + γc(xc − x) + ex,t

Identifiability constraints:
∑t1−x0

c=t0−x1
ncγc = 0.

• The Full Plat model (Plat, 2009):

Z̃x,t = β(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + γc + ex,t

Identifiability constraints:∑x1

x=x0
β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1
t=t0

κ
(3)
t = 0,

∑t1−x0

c=t0−x1
γc = 0,

∑t1−x0

c=t0−x1
cγc = 0, and∑t1−x0

c=t0−x1
c2γc = 0.

• The Simplified Plat model (Plat, 2009):

Z̃x,t = β(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + γc + ex,t

Identifiability constraints:∑x1

x=x0
β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1−x0

c=t0−x1
γc = 0,

∑t1−x0

c=t0−x1
cγc = 0, and

∑t1−x0

c=t0−x1
c2γc = 0.
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All of the models are estimated by minimizing the residual sum of squares; that is, we minimize
the following objective function:

x1∑
x=x0

t1∑
t=t0

e2x,t, (2)

subject to the applicable identifiability constraints.
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6.2 Testing the Robustness of the Alternative Model Structures

6.2.1 Defining the Robustness Measure

We define the following quantitative measure of robustness:

robustness =
maxi(maximum absolute change in the i-th model term)

maxx,t(Z̃x,t)−minx,t(Z̃x,t)
, (3)

where maxx,t(Z̃x,t) and minx,t(Z̃x,t) represent the maximum and minimum values of the smoothed
mortality improvement rates in the dataset, respectively, and ‘the i-th model term’ refers to the i-
th term on the right-hand-side of the model structure (excluding the error term). The denominator
maxx,t(Z̃x,t) − minx,t(Z̃x,t) ‘standardizes’ the robustness measure by considering the variability of
the data being fed into the model.

To illustrate, let us consider testing the robustness of M6 to changes in the calibration window.
We consider three calibration windows, which have the same length but different starting years (1968,
1978, and 1988, respectively). The following table summarizes the calibration windows under con-
sideration:

Starting Age Ending Age Starting Year Ending Year Length of
Calibration Window

Baseline
20 95

1968 2004 37 years
Alternative 1 1973 2009 37 years
Alternative 2 1978 2014 37 years

Recall that M6 has the following model structure:

Z̃x,t = κ
(1)
t + κ

(2)
t (x− x̄) + γc + ex,t.

The following steps are taken to obtain the relevant robustness measure:

(1) the maximum and minimum values of the smoothed mortality improvement rates over year 1968
to 2014 and age 20 to 95 are 0.0860 and −0.0530; the denominator of equation (3) is calculated
as 0.0860− (−0.0530) = 0.1363;

(2) fit M6 using the baseline setting and obtain estimates of the three model terms: κ(1)t , κ(2)t (x− x̄),
and γc;

(3) re-fit M6 using the alternative 1 setting and obtain new estimates of the three model terms: κ̃(1)t ,
κ̃
(2)
t (x− x̄), and γ̃t−x;

(4) compare the baseline and alternative 1 setting, calculate the maximum change in each of the three
model terms:

max
t=1974,...,2004

|κ(1)t − κ̃
(1)
t | = 0.0017

max
x=20,...,95;t=1974,...,2004

|κ(2)t (x− x̄)− κ̃(2)t (x− x̄)| = 0.0036

max
c=1879,...,1984

|γc − γ̃c| = 0.0040

45



(5) re-fit M6 using the alternative 2 setting and obtain new estimates of the three model terms: κ̂(1)t ,
κ̂
(2)
t (x− x̄), and γ̂t−x;

(6) compare the baseline and alternative 2 setting, calculate the maximum change in each of the three
model terms:

max
t=1979,...,2004

|κ(1)t − κ̂
(1)
t | = 0.0027

max
x=20,...,95;t=1979,...,2009

|κ(2)t (x− x̄)− κ̂(2)t (x− x̄)| = 0.0045

max
c=1884,...,1984

|γc − γ̂c| = 0.0071

(7) compare the alternative 1 and alternative 2 setting, calculate the maximum change in each of the
three model terms:

max
t=1979,...,2009

|κ̂(1)t − κ̃
(1)
t | = 0.0018

max
x=20,...,95;t=1979,...,2009

|κ̂(2)t (x− x̄)− κ̃(2)t (x− x̄)| = 0.0030

max
c=1884,...,1989

|γ̂c − γ̃c| = 0.0059

(8) calculate the maximum change in each of the model term

maximum change in κ(1)t = max(0.0017, 0.0027, 0.0018) = 0.0027

maximum change in κ(2)t = max(0.0036, 0.0045, 0.0020) = 0.0045

maximum change in γc = max(0.0040, 0.0071, 0.0059) = 0.0071

(9) set the maximum of the three values obtained in Step (8) as the numerator in equation (3), and
calculate the robustness:

max(0.0027, 0.0045, 0.0071)

0.1363
= 5.2%

In the following robustness tests, we rate the robustness of the candidate models using the follow-
ing criteria:

• High robustness: 0 ≤ robustness measure ≤ 10%

• Medium robustness: 10% < robustness measure ≤ 20%

• Low robustness: robustness measure > 20%

6.2.2 Changes in the Tolerance Value Used in Optimizing Model Parameters

To obtain parameter estimates, the objective function specified in equation (2) is minimized using an
iterative Newton’s method. The iterations stop when the change in the value of the objective function
is smaller than a pre-specified tolerance value. In this section, we robustness test the candidate models
with respect to changes in the tolerance value. Three tolerance values are considered:
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• Baseline: tolerance value = 10−8.

• Alternative 1: tolerance value = 10−6.

• Alternative 2: tolerance value = 10−10.

The result of this robustness test is summarized in the following table:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 19.8% Medium 131.1% Low
M3 0.0% High 0.0% High
M6 0.1% High 0.1% High
M7 0.2% High 0.2% High
M8 0.4% High 21.1% Medium

Full Plat 6.2% High 10.5% Medium
Simplified Plat 0.0% High 0.0% High

Figures 29, 30 and 31 illustrate high, medium and low levels of robustness to changes in the
tolerance value, respectively. In each diagram, the black, blue and red lines represent parameter
estimates obtained using different tolerance values. For the M3 fitted to SSA female data (high
robustness), the three colored lines overlap one another. For the full Plat model fitted to SSA female
data (medium robustness), the three colored lines are slightly different, and it appears that the fourth
term κ

(3)
t (x̄ − x)+ contributes the most to the robustness measure. Finally, for the M2 fitted to SSA

female data (low robustness), the black and red lines overlap; however, for females, the blue line in
each panel is significantly different from the other two lines. This indicates that reducing the tolerance
value to 10−6 leads to a very different A/P/C decomposition.

For M2 and M8, the low robustness to changes in the tolerance value is due possibly to the
convergence problem. The optimization for M2 and M8 often converges very slowly. For instance,
when applying M2 to the SSA female dataset, it takes 7,276 iterations to reach the tolerance value of
10−8.6 In addition, we have to bound the absolute value of the cohort component γc in these models,
or otherwise the optimization may never converge.

6Typically, it takes less than 100 iterations to reach convergence.
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Figure 29: An example of high robustness to the tolerance value used: The estimated A/P/C compo-
nents obtained from the Route A M3 model fitted to SSA female data.
- Baseline: tolerance value = 10−8. Alternative 1: tolerance value = 10−6. Alternative 2:
tolerance value = 10−10.
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Figure 30: An example of medium robustness to the tolerance value used: The estimated A/P/C
components obtained from the Route A full Plat model fitted to SSA female data.
- Baseline: tolerance value = 10−8. Alternative 1: tolerance value = 10−6. Alternative 2:
tolerance value = 10−10.
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Figure 31: An example of low robustness to the tolerance value used: The estimated A/P/C compo-
nents obtained from the Route A M2 model fitted to SSA female data.
- Baseline: tolerance value = 10−8. Alternative 1: tolerance value = 10−6. Alternative 2:
tolerance value = 10−10.
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6.2.3 Changes in the Calibration Window

Here we test the robustness to changes in the calibration window. We consider three calibration
windows, which have the same length but different starting years (1968, 1978, and 1988, respectively).
This set-up mimics the situation when the models are updated every five years. The following table
summarizes the calibration windows under consideration:

Starting Age Ending Age Starting Year Ending Year Length of
Calibration Window

Baseline
20 95

1968 2004 37 years
Alternative 1 1973 2009 37 years
Alternative 2 1978 2014 37 years

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 136.3% Low 62.0% Low
M3 11.1% Medium 9.8% High
M6 5.2% High 9.2% High
M7 24.9% Low 12.9% Medium
M8 5.8% High 31.6% Low

Full Plat 24.2% Low 75.8% Low
Simplified Plat 10.8% Medium 9.4% High

Figures 32, 33 and 34 illustrate high, medium, and low levels robustness to changes in the cali-
bration window, respectively.
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Figure 32: An example of high robustness to the calibration window used: The estimated A/P/C
components obtained from the Route A M6 model fitted to SSA male data.
- Baseline: ages 20 to 95, years 1968 to 2004. Alternative 1: ages 20 to 95, years 1973 to
2009. Alternative 2: ages 20 to 95, years 1978 to 2014.
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Figure 33: An example of medium robustness to the calibration window used: The estimated A/P/C
components obtained from the Route A M3 model fitted to SSA male data.
- Baseline: ages 20 to 95, years 1968 to 2004. Alternative 1: ages 20 to 95, years 1973 to
2009. Alternative 2: ages 20 to 95, years 1978 to 2014.
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Figure 34: An example of low robustness to the calibration window used: The estimated A/P/C
components obtained from the Route A full Plat model fitted to SSA female data.
- Baseline: ages 20 to 95, years 1968 to 2004. Alternative 1: ages 20 to 95, years 1973 to
2009. Alternative 2: ages 20 to 95, years 1978 to 2014.
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6.2.4 Changes in the Age Range

Here we test the robustness to changes in age ranges. The following age ranges are considered:

Starting Age Ending Age Starting Year Ending Year Number of Ages
Baseline 20 95

1968 2014
76

Alternative 1 30 85 56
Alternative 2 40 75 36

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 80.3% Low 120.0% Low
M3 11.1% Medium 16.4% Medium
M6 11.8% Medium 13.9% Medium
M7 13.0% Medium 19.4% Medium
M8 14.1% Medium 75.4% Low

Full Plat 27.4% Low 60.3% Low
Simplified Plat 11.1% Medium 13.9% Medium

Figures 35 and 36 illustrate medium and low levels of robustness to changes in the age ranges,
respectively. Note that none of the seven candidate models is classified as ‘high robustness’ in this
test.
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Figure 35: An example of medium robustness to the age range used: The estimated A/P/C compo-
nents obtained from the Route A simplified Plat model fitted to SSA female data.
- Baseline: ages 20 to 95, years 1968 to 2014. Alternative 1: ages 30 to 85, years 1968 to
2014. Alternative 2: ages 40 to 75, years 1968 to 2014.
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Figure 36: An example of low robustness to the age range used: The estimated A/P/C components
obtained from the Route A full Plat model fitted to SSA female data.
- Baseline: ages 20 to 95, years 1968 to 2014. Alternative 1: ages 30 to 85, years 1968 to
2014. Alternative 2: ages 40 to 75, years 1968 to 2014.
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6.2.5 Choice of Parameter Constraints

Here we examine the robustness to the choice of identifiability constraints. The baseline and alterna-
tive constraints for each candidate model are listed below.

• M2
Model structure: Z̃x,t = β

(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γt−x + ex,t

Baseline constraints:
∑

x β
(1)
x = 0,

∑
x β

(2)
x = 1,

∑
x β

(3)
x = 1,

∑
c ncγc = 0

Alternative constraints:
∑

x β
(1)
x = 0,

∑
x β

(2)
x = 1,

∑
x β

(3)
x = 1,

∑
c γc = 0

• M3
Model structure: Z̃x,t = β

(1)
x + κ

(2)
t + γt−x + ex,t

Baseline constraints:
∑

x β
(1)
x = 0,

∑
c γc = 0,

∑
c cγc = 0

Alternative constraints:
∑

x β
(1)
x = 0,

∑
c ncγc = 0,

∑
c nccγc = 0

• M6
Model structure: Z̃x,t = κ

(1)
t + κ

(2)
t (x− x̄) + γt−x + ex,t

Baseline constraints:
∑

c γc = 0,
∑

c cγc = 0
Alternative constraints:

∑
c ncγc = 0,

∑
c nccγc = 0

• M7
Model structure: Z̃x,t = κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γt−x + ex,t
Baseline constraints:

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0
Alternative constraints:

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc = 0

• M8
Model structure: Z̃x,t = κ

(1)
t + κ

(2)
t (x− x̄) + γt−x(xc − x) + ex,t

Baseline constraints:
∑

c ncγc = 0.
Alternative constraints:

∑
c γc = 0

• The full Plat model
Model structure: Z̃x,t = β

(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + γt−x + ex,t

Baseline constraints:
∑

x β
(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
t κ

(3)
t = 0,

∑
c γc = 0,

∑
c cγc = 0,∑

c c
2γc = 0.

Alternative constraints:
∑

x β
(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
t κ

(3)
t = 0,

∑
c ncγc = 0,

∑
c nccγc = 0,∑

c ncc
2γc = 0

• The simplified Plat model
Model structure: Z̃x,t = β

(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + γt−x + ex,t

Baseline constraints:
∑

x β
(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0.
Alternative constraints:

∑
x β

(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc =
0

The difference between the baseline and alternative constraints lies in the inclusion/exclusion of
nc, which represents the number of data points related to year-of-birth c. By including nc, the cohorts
about which we have more information are weighted more heavily in the parameter constraints.
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We emphasize that there are many other combinations of constraints that can be used to stipulate
parameter uniqueness. When very different constraints are used, the resulting A/P/C components may
be very different. Our goal here is to examine the impact of small changes in the constraints used only.

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 24.0% Low 129.5% Low
M3 1.6% High 4.0% High
M6 4.9% High 1.3% High
M7 11.9% Medium 6.1% High
M8 0.4% High 12.3% Medium

Full Plat 7.8% High 13.6% Medium
Simplified Plat 6.7% High 3.0% High

Figures 37, 38 and 39 illustrate high, medium and low levels of robustness to the choice of param-
eter constraints, respectively.
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Figure 37: An example of high robustness to the parameter constraints used: The estimated A/P/C
components obtained from the Route A M6 model fitted to SSA female data.
- Baseline:

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0
- Alternative 1:

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc = 0
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Figure 38: An example of medium robustness to the parameter constraints used: The estimated
A/P/C components obtained from the Route A M7 model fitted to SSA male data.
- Baseline:

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0
- Alternative 1:

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc = 0
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Figure 39: An example of low robustness to the parameter constraints used: The estimated A/P/C
components obtained from the Route A M2 model fitted to SSA female data.
- Baseline:

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0
- Alternative 1:

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc = 0
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6.2.6 Exclusion of the oldest/newest cohorts

Here we examine the robustness of the A/P/C components of each candidate model to the inclu-
sion/exclusion of the oldest and newest cohorts. The following three situations are considered:

• Baseline: All available data are used.

• Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.

• Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 38.7% Low 144.8% Low
M3 4.1% High 4.1% High
M6 4.7% High 6.1% High
M7 12.1% Medium 8.7% High
M8 2.7% High 15.4% Medium

Full Plat 8.3% High 15.3% Medium
Simplified Plat 7.9% High 7.1% High

Figures 40, 41 and 42 demonstrate high, medium and low levels of robustness to the inclu-
sion/exclusion of the youngest/oldest cohorts, respectively.
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Figure 40: An example of high robustness to the inclusion/exclusion of the youngest/oldest cohorts:
The estimated A/P/C components obtained from the Route A M6 model fitted to SSA
female data.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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Figure 41: An example of medium robustness to the inclusion/exclusion of the youngest/oldest co-
horts: The estimated A/P/C components obtained from the Route A M8 model fitted to
SSA female data.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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Figure 42: An example of low robustness to the inclusion/exclusion of the youngest/oldest cohorts:
The estimated A/P/C components obtained from the Route A M2 model fitted to SSA
female data.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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6.3 Analyzing the Standardized Residuals Produced by the Shortlisted Models

The table below summarizes the results of all robustness tests we performed.

Robustness Test M2 M3 M6 M7 M8
Full Simplified
Plat Plat

SSA males
Tolerance value Medium High High High High High High

Calibration window Low Medium High Low High Low Medium
Age range Low Medium Medium Medium Medium Low Medium

Parameter constraints Low High High Medium High High High
Exclusion of cohorts Low High High Medium High High High

SSA females
Tolerance value Low High High High Medium Medium High

Calibration window Low High High Medium Low Low High
Age range Low Medium Medium Medium Low Low Medium

Parameter constraints Low High High High Medium Medium High
Exclusion of cohorts Low High High High Medium Medium High

M2, M7, M8 and the full Plat model show low robustness in some tests. These models are therefore
not given further consideration.

We now analyze the standardized residuals produced by M3, M6 and the simplified Plat model,
which show high to medium levels robustness in tests performed in the previous section.

First, we perform the Anderson-Darling test, of which the null hypothesis is that standardized
residuals come from a standard normal distribution. The resulting p-values are presented in Table 1.
At a 5% significance level, we reject the null hypothesis if p-value is smaller than 0.05; that is, we
conclude that the standardized residuals do not follow the standard normal distribution if the p-value
is less than 0.05. The following conclusions are drawn:

1. The standardized residuals from M6 for SSA males and females do not pass the test.

2. The p-values indicate that the standardized residuals from the simplified Plat model are more
‘normal’ than those from M3 (the model used in the CMI-09 decomposition method).

Next, we calculate the standardized residuals’ descriptive statistics (mean, standard deviation,
skewness and kurtosis). If the standardized residuals follow a standard normal distribution, their
mean should be close to 0, standard deviation should be close to 1, skewness should be close to 0,
and kurtosis should be close to 3. The values of the descriptive statistics are provided in Table 1.
They also suggest that the simplified Plat model is more in line with the standard normal distribution,
compared to M3 (the model used in the CMI-09 decomposition method).

Finally, we consider the Q-Q plots of the standardized residuals from M3, M6 and the simplified
Plat models. A Q-Q plot is a plot of the quantiles of two distributions against each other. Here, we
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Dataset M3 M6
Simplified M3 with an

Plat age break at 55

p-value
SSA males 0.0890 0.0069 0.3886 0.6873

SSA females 0.0680 0.0258 0.4436 0.1136

Mean
SSA males −0.0008 0.0282 −0.0010 −0.0021

SSA females -0.0013 0.0293 −0.0005 0.0003

Standard deviation
SSA males 0.9896 1.0070 0.9902 0.9913

SSA females 0.9898 1.0256 0.9904 0.9905

Skewness
SSA males −0.0094 −0.0202 −0.0519 0.1116

SSA females 0.0182 −0.0275 −0.0337 0.0759

Kurtosis
SSA males 2.8572 2.7054 2.8789 3.2062

SSA females 3.4885 2.9974 3.1917 3.6635

Table 1: The normality test p-value, mean, standard deviation, skewness, kurtosis of the standardized
residuals: M3, M6, the simplified Plat model, and M3 with an age break point at 55.

compare the empirical distribution of the standardized residuals against the standard normal distribu-
tion. If the standardized residuals follow the standard normal distribution, the points in the Q-Q plot
should fall on the 45◦ line.

The left panels of Figure 43, 44, and 45 show the full picture of the Q-Q plots, while the middle and
right panels show the left and right tails of the Q-Q plots. The Q-Q plots indicate that the distribution
of the standardized residuals from M3 (the model used in the CMI-09 decomposition method) is quite
different from the standard normal distribution. The simplified Plat model performs the best for SSA
dataset.

Summing up, M3 and the simplified Plat model are the only two models that pass the Anderson-
Darling normality test, but M3 does not perform well in terms of the descriptive statistics and Q-Q
plots. We remark here that M3 does not perform as well as the simplified Plat model even if it contains
an age breakpoint at age 55 (see the last column of Table 1).

6.4 Concluding Remark

Before we conclude our work for Route A, let us revisit the heatmaps of standardized residuals. Figure
46 compares the heatmaps of standardized residuals obtained from M3 (the model used in the CMI-09
decomposition method), M3 with an age break at 55 and the simplified Plat model.

When M3 is used, large vertical clusters are found in the residual heat maps for U.S. males. This
problem is mitigated when an age breakpoint at 55 is introduced to M3. More importantly, it can also
be mitigated by using the simplified Plat model even if no age breakpoint is used. This outcome is
possibly because the simplified Plat model can pick up the interaction between age and period effect,
which cannot be captured by M3.

Overall, we conclude that when Route A is pursued, the simplified Plat model is the best suited
for modeling the smoothed mortality improvement rates for the U.S. population.
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Figure 43: The Q-Q plots of standardized residuals obtained from the Route A M3 model fitted to the
SSA dataset.
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Figure 44: The Q-Q plots of standardized residuals obtained from the Route A M6 model fitted to the
SSA dataset.
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Figure 45: The Q-Q plots of standardized residuals obtained from the Route A simplified Plat model
fitted to the SSA dataset.
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Figure 46: Heatmaps of the standardized residuals obtained from three Route A models: M3 (upper
panels), M3 with an age breakpoint at 55 (middle panels) and the simplified Plat model
(lower panels)
- Left panels: SSA males. Right panels: SSA females.
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7 Repeating the Analyses Using Data for Ages 55 to 95 Only

For the readers’ information, in this section we repeat the analyses using the data for ages 55 to 95
only. The table below presents the results of the robustness tests for each of the Route A models. The
baseline and alternative settings in these robustness tests are the same as before, except that when
testing robustness changes in age ranges we consider ages 55-95 (baseline), ages 60-90 (alternative
1) and ages 65-85 (alternative 2).

Robustness Test M2 M3 M6 M7 M8
Full Simplified
Plat Plat

SSA males
Tolerance value Medium High High High Low Medium High

Calibration window Low Medium Low High Low Low Medium
Age range Low Low Medium Medium Medium Low Medium

Parameter constraints High Medium Medium High Medium High Medium
Exclusion of cohorts Low Medium Medium Medium Low Low Medium

SSA females
Tolerance value High High High High High High High

Calibration window Low Medium Low Low Medium Low Low
Age range Low Low Medium Low Low Low Medium

Parameter constraints High Medium High Low High Low Medium
Exclusion of cohorts Low Medium Medium Low Medium Low Medium

We observe that all of the candidate models have at least one low robustness rating. The simplified
Plat model performs the best in the sense that it has only one low robustness rating. M3 and M6 are
the second best performers. We therefore shortlist these three models for further consideration.

Figure 47 compares the heatmaps of the standardized residuals obtained from the three shortlisted
models for ages 55 to 95. Residual clustering is observed in all heatmaps. However, the residual
clusters in the heatmaps for the simplified Plat model seem to be the smallest.
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Simplified Plat model, females
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Figure 47: Heatmaps of the standardized residuals produced by the shortlisted Route A models for
ages 55 to 95.
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8 Modifying the Smoothing Method

8.1 Motivation

The CMI-09 decomposition method involves two stages: (1) smoothing, and (2) estimation of an APC
model. A more rigorous approach is to integrate smoothing and estimation into one single process.
This may be achieved by the roughness penalty approach (Delwarde et al., 2007). Note that the new
CMI decomposition approach (proposed in the CMI Working Paper 90 released on June 22, 2016) is
also based on an integrated process of smoothing and estimation.

8.2 The Roughness Penalty Approach

We now examine how the age, period and cohort components may be different if the single-stage
roughness penalty approach is used. In the roughness penalty approach, a penalty term is applied to
each component of the APC model for the crude mortality improvement rates. When applied to the
APC model used in the CMI-09 method (equation (1)), the age, period and cohort components are
obtained by minimizing the following penalized sum of squared errors:

95∑
x=20

2014∑
t=1968

(Zx,t − ax − kt − gc)2 + ~a′Pa~a+ ~k′Pk
~k + ~g′Pg~g

where ~a, ~k and ~g are the vectors of ax’s, kt’s and gc’s,

Pa = πa∆
′
a∆a, with ∆a =


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
... . . . . . . . . . . . . ...
0 · · · 1 −2 1 0
0 · · · 0 1 −2 1


74×76

is the roughness penalty for the age dimension,

Pk = πk∆′k∆k, and ∆k =


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
... . . . . . . . . . . . . ...
0 · · · 1 −2 1 0
0 · · · 0 1 −2 1


45×47

is the roughness penalty for the time dimension, and

Pg = πg∆
′
g∆g, and ∆g =


1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
... . . . . . . . . . . . . ...
0 · · · 1 −2 1 0
0 · · · 0 1 −2 1


118×120
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is the roughness penalty for cohort dimension. In the above, πa, πk and πg are the smoothing param-
eters for ax, kt and gc, respectively. The specification of ∆ indicates that the degree of roughness
is measured by the sum of squared second-order difference (e.g., ax+2 − 2ax+1 + ax). The optimal
smoothing parameters are selected by a cross validation as described by Delwarde et al. (2007).
Further details concerning the smoothing procedure are provided in the Technical Appendix.

Figures 48 (males) and 49 (females) compare the estimated A/P/C components when different
smoothing methods are used. The two smoothing methods yield similar A/P/C components. However,
the positions of the troughs of the period component are changed if we replace the original method
with the roughness penalty approach.
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(a) U.S. Males: Dataset (i), HMD data
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(b) U.S. Males: Dataset (ii), SSA data

Figure 48: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
different smoothing methods are used, U.S. males.
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(a) U.S. Females: Dataset (i), HMD data
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(b) U.S. Females: Dataset (ii), SSA data

Figure 49: The estimated Age/Period/Cohort components obtained from the CMI-09 method when
different smoothing methods are used, U.S. females.
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9 Conclusion

The following are the major conclusions drawn in this volume of the project report:

1. The CMI-09 method may be applied to the U.S. data sets, but there is a major drawback. When
applied to the U.S. male data sets, large vertical clusters are found in the heat maps of the
standardized residuals. This outcome in an indication that the APC model structure used in
the CMI-09 method is unable to pick up some features that are specific to the U.S. historical
mortality experience. It is found that adding an age breakpoint ameliorates the problem, but
the use of an age breakpoint may result in inconsistencies between mortality projections for
younger and older ages.

2. The CMI-09 method is fairly insensitive to (1) changes in the calibration window, (2) changes
in the age range, (3) changes in the parameter constraints used, and (4) inclusion/exclusion of
the oldest/newest cohorts.

3. Among all seven Route A candidate model structures, the simplified Plat model is the most suit-
able for modeling the U.S. smoothed mortality improvement rates in terms of both robustness
and goodness-of-fit. The simplified model also eliminates the need for an age breakpoint.

4. A more statistically rigorous approach is to integrate smoothing and estimation into one single
process. When using the roughness penalty approach to combine smoothing and estimation,
the resulting age, period and cohort components remain roughly the same.

We conclude that if Route A is chosen, then it is the most appropriate to use the simplified Plat
model (without any age breakpoint) to model the smoothed mortality improvement rates for the U.S.
population. The A/P/C decompositions resulting from the Route A simplified Plat model are shown
in Figure 50 (males) and Figure 51 (females).

The next volume of the project report focuses on Route B. It also compares the optimal modeling
results from Routes A and B, and makes a final recommendation.

73



Age x
20 30 40 50 60 70 80 90

-
x(1

)

-0.02

-0.01

0

0.01

0.02

0.03

(21,0.0013)

(32,-0.0019)

(64,0.0035)

Year t
1970 1980 1990 2000 2010

5
t(1

)

-0.02

-0.01

0

0.01

0.02

0.03

 (1970,0.0048)

 (1975,0.023)

 (1988,0.0016)

 (1997,0.027)

 (2003,0.0066)

 (2008,0.021)

Year t
1970 1980 1990 2000 2010

5
t(2

)

#10 -4

-6

-4

-2

0

2

4

6

8

10

 (1973,0.00018)

 (1977,-7.3e-05)

 (1982,0.00028)

 (1989,-0.00068)

 (1997,0.00099)

 (2004,-0.00052)

 (2009,0.00038)

Year of birth t-x
1880 1900 1920 1940 1960 1980

.
t-

x

-0.02

-0.01

0

0.01

0.02

0.03

 (1878,0.0066)

 (1883,0.00028)

 (1887,0.0021)

 (1898,-0.0078)

 (1919,0.0058)

 (1936,0.0084)

 (1951,-0.017)

 (1964,0.014)

 (1977,-0.019)

 (1992,0.016)

Figure 50: The estimated Age/Period/Cohort components obtained from the Route A simplified Plat
model, U.S. males.
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Figure 51: The estimated Age/Period/Cohort components obtained from the Route A simplified Plat
model, U.S. females.
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Technical Appendix

This appendix provides further details on the roughness penalty approach used in Section 8.

In implementing the roughness penalty approach, we have specified ∆a, ∆k and ∆g in such a
way that the degree of roughness is measured by the sum of squared second-order differences of the
parameters. In effect, we are using a second-order polynomial as a standard of smoothness. The same
standard of smoothness is also adopted in the new (2017) CMI decomposition method. Although, in
principle, a third- or even fourth-order polynomial can be used instead, we choose to use a second-
order polynomial to maximize consistency with the new CMI method.

The degrees of smoothness in the estimates of the A/P/C components are determined by the
smoothing parameters πa, πk and πg. When the smoothing parameters are zero, the A/P/C com-
ponents are not smoothed at all and are identical to the ordinary least squares estimates. In the other
extreme when πa/πk/πg → ∞, the estimates of the A/P/C components follow perfectly linear pat-
terns. The smoothing parameters are carefully selected by a leave-one-out cross-validation, which
involves the following steps:

(i) Given the values of the smoothing parameters πa, πk and πg, re-estimate the A/P/C components
to a pseudo data set with one observation being intentionally left out; use the re-estimated model
to ‘predict’ the corresponding missing observation; record the ‘prediction error’:

(e−x,t)
2 = (Zx,t − â−x − k̂−t − ĝ−c )2,

where â−x , k̂−t and ĝ−c respectively represent the estimated values of ax, kt and gc that are calcu-
lated from the pseudo data set (in which the observations at age x and in year t are excluded)

(ii) Repeat step (i) by leaving out one other observation at a time until all observations in the full
data set have been considered. The sum of squared prediction errors (SPE) can be calculated by

SPE(πa, πk, πg) =
95∑

x=20

2014∑
t=1968

(e−x,t)
2

(iii) Repeat steps (i) and (ii) for different possible values πa, πk and πg; choose the value of πa, πk
and πg that leads to the smallest sum of squared prediction errors.
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