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Executive Summary

This volume of the report on the “Components of Historical Mortality Improvement” project docu-
ments the modeling work associated with Route B. It also compares the results from Routes A and B,
and draw a final conclusion. To recapitulate, in Route B, APC models are fitted to mortality rates and
the desired A/P/C decomposition of mortality improvement experience is obtained by transforming
the parameters in the chosen APC model. The steps involved in Route B are shown in the flow chart
below:

 

Step 1: Fit an APC 
model to the raw 
mortality rates. 

Step 2: Transform the 
parameters in the model.   

Step 3: The transformed 
model parameters gives 
the A/P/C decomposition 

of historical mortality 
improvement. 

Route B 

Route B encompasses the newer CMI method (the CMI-17 method), which is documented in the CMI
Working Papers 97, 98 and 99 (CMI, 2017a,b,c).

Section 1 of this volume summarizes the CMI-17 method. Sections 2 and 3 implement and eval-
uate the CMI-17 method the U.S. data sets. It is found that the CMI-17 method is reasonably robust
relative to (1) changes in the calibration window, (2) changes in the age range, (3) changes in the
parameter constraints used, and (4) inclusion/exclusion of the oldest/newest cohorts. However, when
applied to the U.S. male data sets, the CMI-17 method yields large residual clusters, which indicate
that the APCI model (on which the CMI-17 method is based) is unable to pick up some features that
are specific to the U.S. male mortality improvement experience.

Section 4 studies if the CMI-17 method may be improved by considering alternative, more so-
phisticated APC model structures for modeling mortality rates. Eight candidate model structures are
examined: M2, M3, M6, M7, M8, the full Plat model, the simplified Plat model and the APCI model
(on which the CMI-17 method is based).1 We first perform a range of robustness tests to shortlist a
smaller number of model structures that merit further consideration. We then examine the standard-
ized residuals produced by the shortlisted models to identify the most effective model. Highlights of
the model evaluation results are as follows:

• M2 and M8 show low robustness in some tests, and are therefore not given further consideration.
1We exclude M1 (the Lee-Carter model) and M5 (the Cairns-Blake-Dowd model), because these models do not incor-

porate cohort effects. We also exclude M4 as it does not explicitly decompose historical mortality into APC components.
Details concerning the models under consideration can be found in the papers by Cairns et al. (2009) and Plat (2009).
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• M6 and M7 perform the worst in the residual analysis. Large horizontal clusters are found in
the heat maps produced from these models, indicating that age effect is not adequately captured.

• Residuals clustering is significant in M3 and the APCI model for males. Large vertical clusters
are observed between mid-80s and mid-90s. Note that a similar problem is found in the M3 for
males when is Route A is used (see Volume 1 of the project report).

• The full Plat model performs the best in the residual analysis, closely followed by the sim-
plified Plat model. However, the simplified Plat model outperforms the full Plat model in the
robustness tests.

On the basis of the model evaluation results, the simplified Plat model appears to be the most effective
A/P/C decomposition model when Route B is pursued.

Section 5 repeats the analyses using the data for ages 55 to 95 only. The results suggest that the
simplified Plat model still performs well even when the data for younger ages are discarded.

Section 6 compares the optimal A/P/C decomposition results obtained from Routes A and B. The
two optimal decomposition results are not too different. We choose Route A simplified Plat model
as our final recommendation, on grounds that its smoothing parameters are optimized with a more
statistically rigorous approach. The recommended model implies that mortality improvement Zx,t for
age x and year t is driven by (1) a stand-alone age component, (2) a stand-alone period component,
(3) a period component that interacts with (a linear function) of age, and (4) a stand-alone cohort
component:

 
𝑍�𝑥,𝑡 = 𝛽𝑥

(1) + 𝜅𝑡
(1) + 𝜅𝑡

(2)(𝑥 − �̅�) + 𝛾𝑐 + 𝑒𝑥,𝑡 
 
 
 

The stand-alone 
age component 

The stand-alone 
period component 

The period 
component that 

interacts with age 

The stand-alone 
cohort component 

Residual 

The numerical values of the identified A/P/C components are provided in the accompanying Excel
workbook.
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1 A Summary of the CMI-17 Method

1.1 Model Structure

Let mx,t be the underlying central death rates at age x and in year t. The CMI-17 method is based on
the APCI model, which describes the logarithm of mx,t as follows:

ln(mx,t) = β(1)
x + β(2)

x (t− t̄) + κ
(1)
t + γc,

where

• t̄ is the mid-point of the sample period used (for the full data set under consideration, t̄ =
(1968 + 2014)/2 = 1991);

• β(1)
x is a stand-alone age-specific parameter;

• β(2)
x is an age-specific parameter that interacts with a linear function of time;

• κ(1)t is a stand-alone time-varying parameter; and

• γc is a cohort-related parameter.

1.2 The Estimation Procedure

As with what was done in the CMI Working Paper No. 98, we estimate and smooth parameters in
the APCI model simultaneously by minimizing a single objective function, which is formulated as
follows:

Objective = Deviance + Penalty(β(1)
x ) + Penalty(β(2)

x ) + Penalty(κ
(1)
t ) + Penalty(γc).

The deviance measures the goodness-of-fit. The smaller the deviance is, the better the goodness-
of-fit is. Let Dx,t be the number of deaths at age x and in year t, and Ex,t be the corresponding
number of exposures-to-risk. Assuming Dx,t is a realization of a Poisson distribution, i.e., Dx,t ∼
Poisson(Ex,tmx,t), the deviance can be calculated with the following formula:

Deviance = 2

x1∑
x=x0

t1∑
t=t0

[
Dx,t ln

Dx,t

Ex,tmx,t

− (Dx,t − Ex,tmx,t)

]
.

The other terms in the objective function are roughness penalty terms. The more jagged a pa-
rameter series is, the higher the penalty term for the parameter series is. The penalty terms can be
calculated with the following formulas:

Penalty(β(1)
x ) = λβ(1)

x1∑
x=x0

(
β(1)
x − 3β

(1)
x−1 + 3β

(1)
x−2 − β

(1)
x−3

)2
,
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Penalty(β(1)
x ) = λβ(1)

x1∑
x=x0

(
β(1)
x − 3β

(1)
x−1 + 3β

(1)
x−2 − β

(1)
x−3

)2
,

Penalty(κ
(1)
t ) = λκ(1)

t1∑
t=t0

(
κ
(1)
t − 2κ

(1)
t−1 + κ

(1)
t−2

)2
,

and
Penalty(γc) = λγ

∑
c

(
γt1−x0c=t0−x1 − 3γc−1 + 3γc−2 − γc−3

)2
,

where λ
β
(1)
x

, λ
β
(2)
x

, λ
κ
(1)
t

and λγc are penalty parameters which determine the degrees of smoothness
of the parameters.

The objective function is optimized by an iterative Newton’s method, in which parameters are
updated one at a time. The following parameter constraints are applied at the end of each iteration to
stipulate parameter uniqueness:

t1−x0∑
c=t0−x1

γc = 0,

t1−x0∑
c=t0−x1

cγc = 0,

t1−x0∑
c=t0−x1

c2γc = 0,

t1∑
t=t0

κt = 0,

t1∑
t=t0

tκt = 0.

1.3 Choosing the Smoothing Parameters

We select the smoothing parameters one at a time. The following procedure is used to select the
penalty parameter for β(1)

x :

1. Set all penalty parameters except λ
β
(1)
x

to zero.

2. Plot the estimated values of β(1)
x for λ

β
(1)
x

= 100, 101, 102, . . . , 1010.

3. The optimal value of λ
β
(1)
x

should be the one that removes the jaggedness and largely keeps the
shape of the unsmoothed series.

Similar procedures are used to select the penalty parameters for other parameter series. Further details
concerning the choice of smoothing parameters are provided in Section 4.2 where a general procedure
for choosing smoothing parameters in Route B models is presented.
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2 Implementing the CMI-17 Method

2.1 Fitted vs. Crude Death Rates

Figures 1 and 2 show the crude and fitted central death rates (in log scale) across ages for three specific
years-of-birth: 1930, 1950 and 1970.2 Two collections of fitted death rates are shown simultaneously:

• Fitted death rates that are not smoothed

They are calculated using the APCI model parameters that are optimized given

λ
β
(1)
x

= λ
β
(2)
x

= λ
κ
(1)
t

= λγc = 0.

• Fitted death rates that are optimally smoothed

They are calculated using the APCI model parameters that are optimized given the chosen
smoothing parameters

λ
β
(1)
x

= 106, λ
β
(2)
x

= 107, λ
κ
(1)
t

= 106, λγc = 106.

The comparisons made in Figures 1 and 2 indicates that the APCI model gives a satisfactory fit.
When the smoothing parameters are applied, the jaggedness is largely removed while the locations of
the peaks and troughs are retained. The results from the HMD and SSA data sets are quite similar.

Figures 3 and 4 show the raw and smoothed central death rates (in log scale) across years-of-birth
for three ages: 35, 65 and 95. As in Figures 1 and 2, we show both non-smoothed and optimally
smoothed fitted values. The rates from the HMD and SSA data sets are broadly in line, but at age
95 the SSA rates are notably higher. This distinction was noted in the previous volume of the project
report.

2Not all rates in the age range of 20 to 95 are available. For instance, as the data sets cover calendar years 1968 to
2014 only, for year-of-birth 1930 the available central death rates span age 38 (= 1968−1930) to age 84 (= 2014−1930)
only.
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Figure 1: The raw and fitted mortality rates of U.S. males born in year 1930 (upper panels), year 1950
(middle panels) and year 1970 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 2: The raw and fitted mortality rates of U.S. females born in year 1930 (upper panels), year
1950 (middle panels) and year 1970 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 3: The raw and fitted mortality rates of U.S. males at age 35 (upper panels), age 65 (middle
panels) and age 95 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 4: The raw and fitted mortality rates of U.S. females at age 35 (upper panels), age 65 (middle
panels) and age 95 (lower panels).
- Left panels: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panels: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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2.2 The Age/Period/Cohort Components of the Mortality Improvement Rates

The APCI model in the CMI-17 method implies that mortality improvement (in terms of the change
is log central death rates) can be decomposed as follows:

MIx,t = ln(mx,t−1)− ln(mx,t) = B(·)
x +K

(1)
t +Gc,

where

• B(·)
x = −β(2)

x is the age component;

• K(1)
t = κt−1 − κt is the period component;

• Gc = γt−x−1 − γt−x is the cohort component.

A positive value of MIx,t means that mortality at age x is smaller in year t than in year t− 1. Figures
5 and 6 show the estimated age, period and cohort components of historical mortality improvement
for U.S. males and females, respectively. As expected, the two data sets yield similar A/P/C decom-
positions.
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Figure 5: The estimated Age/Period/Cohort components of historical mortality improvement obtained
from the CMI-17 APCI model (U.S. males).
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Figure 6: The estimated Age/Period/Cohort components of historical mortality improvement obtained
from the CMI-17 APCI model (U.S. females).
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2.3 The Standardized Residuals

We now analyze the standardized residuals produced by the CMI-17 APCI models. The standardized
residuals are calculated using the following formula:

Dx,t − Ex,tm̂x,t√
Ex,tm̂x,t

,

where m̂x,t represents the fitted value of mx,t produced by the APCI model.

Because the APCI model is estimated using a Poisson death count assumption, the standardized
residuals are not necessarily normally distributed even if the model is adequate. As such, we cannot
apply normality tests and the ‘normal q-q plot’ here. However, we can still access the adequacy of the
APCI model by examining the heat map of its standardized residuals. If the model is adequate, then
the pattern its standardized residuals should be random with little clustering.

Figure 7 and 8 show the standardized residuals from the estimated APCI models for U.S. males
and females, respectively. For U.S. males, three large vertical clusters are observed in the age range of
20-50 from mid-80s and mid-00s, suggesting that the APCI model does not adequately the age-period
interaction for this particular population. For U.S. females, the standardized residuals look reasonably
random.

Note that the standardized residuals shown in Figure 7 and 8 cannot be directly compared and
contrasted with those shown in the previous volume, which are computed in a different manner.
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Figure 7: Heat maps of the standardize residuals calculated from the CMI-17 APCI model for U.S.
males.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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Figure 8: Heat maps of the standardized residuals calculated from the CMI-17 APCI model for U.S.
females.
- Left panel: Data set (i) (HMD, ages 20-95, years 1968-2014).
- Right panel: Data set (ii) (SSA, ages 20-95, years 1968-2014).
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3 Testing the Robustness of the CMI-17 Method

In this section, we perform several robustness tests on the CMI-17 APCI model. Specifically, we test
the robustness of the APCI model to (i) changes in the calibration window, (ii) changes in the age
range used, (iii) the parameter constraints used and (iv) the inclusion/exclusion of the oldest/newest
cohorts. The results shown in this section are based on SSA data set. The conclusions drawn from
HMD data set are very similar.

3.1 Changes in the Calibration Window

In this sub-section, we apply the APCI model to three different calibration windows. The calibration
windows have different starting and ending years, but have the same length of 37 years. This set-up
is to mimic the situation when the model is updated every 5 years. The following table summarizes
the calibration windows under consideration:

Starting Age Ending Age Starting Year Ending Year Length of
Calibration Window

Baseline
20 95

1968 2004 37 years
Alternative 1 1973 2009 37 years
Alternative 2 1978 2014 37 years

Figures 9 (males) and 10 (females) show the age, period and cohort components of the mortality
improvement rates in the APCI model when different calibration windows are used. The following
observations are made:

• Since we are shifting the starting and the ending year simultaneously, the lengths of the period
and cohort components remain the same.

• The overall shapes of the age, period and cohort components are quite insensitive to changes in
the calibration window.

• Among the three components, the age component appears to be the most sensitive to different
calibration windows.
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Figure 9: The estimated Age/Period/Cohort components of historical mortality improvement obtained
from the CMI-17 APCI model when three different calibration windows are used, U.S.
males.
- Baseline: ages 20 to 95, years 1968 to 2004 (covering years-of-birth 1873 to 1984).
- Alternative 1: ages 20 to 95, years 1973 to 2009 (covering years-of-birth 1878 to 1989).
- Alternative 2: ages 20 to 95, years 1978 to 2014 (covering years-of-birth 1883 to 1994).
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Figure 10: The estimated Age/Period/Cohort components of historical mortality improvement ob-
tained from the CMI-17 APCI model when three different calibration windows are used,
U.S. females.
- Baseline: ages 20 to 95, years 1968 to 2004 (covering years-of-birth 1873 to 1984).
- Alternative 1: ages 20 to 95, years 1973 to 2009 (covering years-of-birth 1878 to 1989).
- Alternative 2: ages 20 to 95, years 1978 to 2014 (covering years-of-birth 1883 to 1994).
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3.2 Changes in the Age Range Used

In this sub-section, we apply the APCI model to three different age ranges:

Starting Age Ending Age Starting Year Ending Year Number of Ages
Baseline 20 95

1968 2014
76

Alternative 1 30 85 56
Alternative 2 40 75 36

Figures 11 (males) and 12 (females) show the estimated age, period and cohort components of
historical mortality improvement obtained from the APCI model when different age ranges are used.
The following observations can be made:

• The lengths of the age and cohort components become smaller as the age range is shortened.

• As the age range window is shortened, the values of the age, period and cohort components
change, but the overall shapes of the components remain fairly the same.
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Figure 11: The estimated Age/Period/Cohort components of historical mortality improvement ob-
tained from the CMI-17 APCI model when different age ranges are used, U.S. males.
- Baseline: ages 20 to 95, years 1968 to 2014 (covering years-of-birth 1873 to 1994).
- Alternative 1: ages 30 to 85, years 1968 to 2014 (covering years-of-birth 1883 to 1984).
- Alternative 2: ages 40 to 75, years 1968 to 2014 (covering years-of-birth 1893 to 1974).
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Figure 12: The estimated Age/Period/Cohort components of historical mortality improvement ob-
tained from the CMI-17 APCI model when different age ranges are used, U.S. females.
- Baseline: ages 20 to 95, years 1968 to 2014 (covering years-of-birth 1873 to 1994).
- Alternative 1: ages 30 to 85, years 1968 to 2014 (covering years-of-birth 1883 to 1984).
- Alternative 2: ages 40 to 75, years 1968 to 2014 (covering years-of-birth 1893 to 1974).
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3.3 Parameter Constraints Used

In this subsection, we study the robustness of the APCI model relative to the choice of identifiability
constraints. The following sets of constraints are considered.

• Baseline: ∑
t

κ
(1)
t = 0,

∑
t

tκ
(1)
t = 0,

∑
c

γc = 0,
∑
c

cγc = 0,
∑
c

c2γc = 0,

These constraints ensures that both the period and cohort parameters fluctuate around zero and
exhibit no linear trend, and that the cohort parameter exhibits no quadratic trend.

• Alternative:∑
t

κ
(1)
t = 0,

∑
t

tκ
(1)
t = 0,

∑
c

ncγc = 0,
∑
c

nccγc = 0,
∑
c

ncc
2γc = 0,

Compared to the baseline constraints, the alternative constraint include the number of data
points related to year-of-birth nc. By including nc, the cohorts about which we have more
information are weighted more heavily in the parameter constraints.

Figures 13 (males) and 14 (females) show the estimated age, period, and cohort components of the
mortality improvement rates using the baseline and alternative constraints. The two sets of constraints
yield very similar estimates, indicating that the weights (nc) only have modest impact on the resulting
estimates.

It should be noted that there are many other combinations of constraints that can be used to stipu-
late parameter uniqueness. When very different constraints, the resulting A/P/C components may be
very different.
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Figure 13: The estimated Age/Period/Cohort components of historical mortality improvement ob-
tained from the CMI-17 APCI model when different parameter constraints are used, U.S.
males.
- Baseline:
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Figure 14: The estimated Age/Period/Cohort components of historical mortality improvement ob-
tained from the CMI-17 APCI model when different parameter constraints are used, U.S.
females.
- Baseline:

∑
t κ

(1)
t =

∑
t tκ

(1)
t =

∑
c γc =

∑
c cγc =

∑
c c

2γc = 0

- Alternative:
∑

t κ
(1)
t =

∑
t tκ

(1)
t =

∑
c ncγc =

∑
c nccγc =

∑
c ncc

2γc = 0
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3.4 Inclusion/Exclusion of the Oldest/Newest Cohorts

In this sub-section, we examine how the age, period and cohort components implied by the CMI-
17 APCI model may change when the oldest and newest cohorts are excluded. The following three
situations are considered:

• Baseline: All available data are used.

• Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.

• Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.

The resulting age/period/cohort components are shown in Figures 15 (males) and 16 (females).
It is found that the exclusion of the oldest and the newest cohorts has only a modest impact on the
estimation results.
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Figure 15: The estimated Age/Period/Cohort components of historical mortality improvement ob-
tained from the CMI-17 APCI model, with and without exclusion of the youngest/oldest
cohorts, U.S. males.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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Figure 16: The estimated Age/Period/Cohort components of historical mortality improvement ob-
tained from the CMI-17 APCI model, with and without exclusion of the youngest/oldest
cohorts, U.S. females.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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4 Improving the CMI-17 Method

It is found in the previous sections that the CMI-17 APCI model is somewhat robust to small changes
in different inputs. However, large vertical clusters are observed in the standardized residuals pro-
duced by the CMI-17 APCI model that is fitted to U.S. male data, suggesting that the CMI-17 APCI
model does not adequately capture the age-period interaction for this particular population.

In this section, we attempt to improve the CMI-17 method by considering alternative APC models.
These models are collectively known as Route B models, and are different from Route A models in
that they are estimated to mortality rates instead of mortality improvement rates.

4.1 The Candidate APC Model Structures

4.1.1 Definitions and Overview

The following are some general definitions that are used throughout the rest of this section.

• mx,t is the central death rate at age x and in year t;

• qx,t is the conditional probability of death at age x and in year t;

• [x0, x1] is the sample age range;

• [t0, t1] is the sample period;

• na = x1 − x0 + 1 is the number of ages covered by the sample age range;

• ny = t1 − t0 + 1 is the length of the sample period;

• c = t− x is the year of birth; note that within the data sample c ranges from t0 − x1 to t1 − x0;

• nc is the number of data points associated with year-of-birth c.

• x̄ = (x0 + x1)/2 is the mid-point of the sample age range;

• t̄ = (t0 + t1)/2 is the mid-point of the sample period;

• (x̄− x)+ = max(x̄− x, 0) is the maximum of x̄− x and 0;

In Route B, we estimate APC models to mx,t or qx,t. These models are composed of the following
collection of elements:

• β(i)
x , i = 1, 2, 3, are age-specific parameters:

– β
(1)
x is a stand-alone age-specific parameter,

– β
(2)
x is an age-specific parameter that interacts with a time-varying parameter,
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– β
(3)
x is an age-specific parameter that interacts with a cohort-related parameter,

• κ(i)t , i = 1, 2, 3, are time-varying parameters:

– κ
(1)
t is a stand-alone time-varying parameter;

– κ
(2)
t is a time-varying parameter that interacts with an age-specific parameter or a linear

function of age;

– κ
(3)
t is a time-varying parameter that interacts with a non-linear function of age.

• γc is a cohort-related parameter.

We may interpret parameters β(i)
x , κ(i)t , and γc as the age, period and cohort components of historical

mortality rates. These parameters are to be transformed to obtain A/P/C decompositions of historical
mortality improvement rates.

For ease of exposition, the following symbols are defined to represent the A/P/C components of
historical mortality improvement rates:

• B(i)
x , i = ·, K,G are the age components of the mortality improvement rates:

– B
(·)
x is a stand-alone age component,

– B
(K)
x is an age component that interacts with a period component,

– B
(G)
x is an age component that interacts with a cohort component;

• K(i)
t , i = 1, 2, 3, are period components of the mortality improvement rates:

– K
(1)
t is a stand-alone period component;

– K
(2)
t is a period component that interacts with an age component or a linear function of

age;

– K
(3)
t is a period component that interacts with a non-linear function of age.

• Gc is the cohort component of the mortality improvement rates.

Section 4.1.4 details how B
(K)
x , B(G)

x , K(1)
t , K(2)

t , K(3)
t , and Gc are obtained from the estimated

models.

The following flow chart summarizes the process undertaken in terms of the symbols defined
above.
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• Estimate APC models (defined in Section 4.1.2) to historical 
death rates (𝑚𝑥,𝑡 or 𝑞𝑥,𝑡). 

• Obtain parameters in the death rate model 
(𝛽𝑥

(1),𝛽𝑥
(2),𝛽𝑥

(3), 𝜅𝑡
(1),𝜅𝑡

(2), 𝜅𝑡
3 , 𝛾𝑐) by optimizing the objective 

function (explained in Section 4.1.3). 

• Calculate the A/P/C components of historical mortality 
improvement rates (𝐵𝑥

𝐾 ,𝐵𝑥
𝐺 ,𝐾𝑡

1 ,𝐾𝑡
2 ,𝐾𝑡

3 ,𝐺𝑐) using the 
parameters from the previous step (detailed in Section 4.1.4). 

4.1.2 Mortality Rate Models

We consider eight candidate APC models in Route B, including M2, M3, M6, M7, M8, the full Plat
model, the simplified Plat model and the APCI model (on which the CMI-17 method is based). These
models are used to fit historical mortality rates (mx,t’s or qx,t’s).

The mathematical definitions of the eight candidate models are provided below. For all of the
candidate structures, identifiability constraints are needed to stipulate parameter uniqueness. The
identifiability constraints used for each candidate model are also given below.

• M2 – The Renshaw-Haberman Model (Renshaw and Haberman, 2006)

lnmx,t = β(1)
x + β(2)

x κ
(2)
t + β(3)

x γc

Identifiability constraints:∑x1
x=x0

β
(1)
x = 0,

∑x1
x=x0

β
(2)
x = 1,

∑x1
x=x0

β
(3)
x = 1, and

∑t1−x0
c=t0−x1 ncγc = 0.

• M3 – The Age-Period-Cohort Model (Osmond, 1985; used in the current CMI decomposition
method)

lnmx,t = β(1)
x + κ

(1)
t + γc

Identifiability constraints:
∑x1

x=x0
β
(1)
x = 0,

∑t1−x0
c=t0−x1 γc = 0, and

∑t1−x0
c=t0−x1 cγc = 0.

• M6 – The CBD Model with a Cohort Effect (Cairns et al., 2009)

ln
qx,t

1− qx,t
= κ

(1)
t + κ

(2)
t (x− x̄) + γc

Identifiability constraints:
∑t1−x0

c=t0−x1 γc = 0 and
∑t1−x0

c=t0−x1 cγc = 0.

26



• M7 – The CBD Model with Quadratic Age and Cohort Effects (Cairns et al., 2009)

ln
qx,t

1− qx,t
= κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γc

Identifiability constraints:
∑t1−x0

c=t0−x1 γc = 0,
∑t1−x0

c=t0−x1 cγc = 0, and
∑t1−x0

c=t0−x1 c
2γc = 0

• M8 – The CBD Model with an Age-Dependent Cohort Effect (Cairns et al., 2009)

ln
qx,t

1− qx,t
= κ

(1)
t + κ

(2)
t (x− x̄) + γc(xc − x)

Identifiability constraints:
∑t1−x0

c=t0−x1 ncγc = 0. Note: xc is an estimated constant.

• The Full Plat model (Plat, 2009):

lnmx,t = β(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + γc

Identifiability constraints:∑x1
x=x0

β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1
t=t0

κ
(3)
t = 0,

∑t1−x0
c=t0−x1 γc = 0,

∑t1−x0
c=t0−x1 cγc = 0, and∑t1−x0

c=t0−x1 c
2γc = 0.

• The Simplified Plat model (Plat, 2009):

lnmx,t = β(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + γc

Identifiability constraints:∑x1
x=x0

β
(1)
x = 0,

∑t1
t=t0

κ
(2)
t = 0,

∑t1−x0
c=t0−x1 γc = 0,

∑t1−x0
c=t0−x1 cγc = 0, and

∑t1−x0
c=t0−x1 c

2γc = 0.

• The APCI model (CMI, 2017a,b,c):

ln(mx,t) = β(1)
x + β(2)

x (t− t̄) + κ
(1)
t + γc,

Identifiability constraints:∑t1−x0
c=t0−x1 γc = 0,

∑t1−x0
c=t0−x1 cγc = 0,

∑t1−x0
c=t0−x1 c

2γc = 0,
∑t1

t=t0
κt = 0 and

∑t1
t=t0

tκt = 0.

4.1.3 Parameter Estimation

As with what was done in the CMI Working Paper No. 98, we estimate and smooth parameters simul-
taneously by minimizing a single objective function, which is formulated as follows:

Objective = Deviance +
∑
i

Penalty(β(i)
x ) +

∑
j

Penalty(κ
(j)
t ) + Penalty(γc). (1)

The deviance measures the goodness-of-fit. The smaller the deviance is, the better the goodness-
of-fit is. Let Dx,t be the number of deaths at age x and in year t, and Ex,t be the corresponding
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number of exposures-to-risk. Assuming Dx,t is a realization of a Poisson distribution, i.e., Dx,t ∼
Poisson(Ex,tmx,t), the deviance can be calculated with the following formula:

Deviance = 2

x1∑
x=x0

t1∑
t=t0

[
Dx,t ln

Dx,t

Ex,tmx,t

− (Dx,t − Ex,tmx,t)

]
.

The other three terms in the objective function are roughness penalty terms. The more jagged a
parameter series is, the higher the penalty term for the parameter series is. The penalty terms can be
calculated with the following formulas:

Penalty(β(i)
x ) = λ

β
(i)
x

x1∑
x=x0

(β(i)
x − 3β

(i)
x−1 + 3β

(i)
x−2 − β

(i)
x−3)

2,

Penalty(κ
(j)
t ) = λ

κ
(j)
t

t1∑
t=t0

(κ
(j)
t − 2κ

(j)
t−1 + κ

(j)
t−2)

2,

Penalty(γc) = λγc

t1−x0∑
c=t0−x1

(γc − 3γc−1 + 3γc−2 − γc−3)
2,

where λ
β
(i)
x

, λ
κ
(j)
t

and λγc are penalty parameters which determine the degrees of smoothness of the
parameters. The choice of penalty parameters is explained in Section 4.2.

4.1.4 A/P/C Components of Historical Mortality improvement

When using Route A (the previous volume), the following definition of mortality improvement was
used:

Zx,t = 1− qx,t
qx,t−1

.

When using Route B (this volume), alternative definitions of mortality improvement are needed
in order to obtain neat and interpretable parameterizations. Two versions of mortality improvement
are defined here.

The first definition is based on the change in log central death rates, and is given by

MIx,t = lnmx,t−1 − lnmx,t. (2)

In the CMI Working Papers, this definition of mortality improvement is known as the ‘M-style’ mor-
tality improvement. In Appendix 1 we show that on the basis of a first-order Taylor’s expansion,
MIx,t defined in equation (2) is approximately equal to Zx,t. We apply this definition of mortality
improvement to M2, M3, the full Plat model, the simplified Plat models and the APCI model, as they
are all created to model lnmx,t. The annual mortality improvement for these models can be expressed
as follows:

• M2
MIx,t = B(K)

x K
(2)
t +B(G)

x Gc,

28



where B(K)
x = β

(2)
x , K(2)

t = κ
(2)
t−1 − κ

(2)
t , B(G) = β

(3)
x and Gc = γc−1 − γc.

Comment: M2 implies that mortality improvement is driven by a period component, a cohort
component, and two age components which interact with the period and cohort components,
respectively.

• M3
MIx,t = K

(1)
t +Gc

where K(1)
t = κ

(1)
t−1 − κ

(1)
t and Gc = γc−1 − γc.

Comment: M3 implies that mortality improvement is driven by the sum of a period component
and a cohort component. There is no age component.

• The Full Plat model

MIx,t = K
(1)
t +K

(2)
t (x̄− x) +K

(3)
t (x̄− x)+ +Gc

where K(1)
t = κ

(1)
t−1 − κ

(1)
t , K(2)

t = κ
(2)
t−1 − κ

(2)
t , K(3)

t = κ
(3)
t−1 − κ

(3)
t and Gc = γc−1 − γc.

Comment: The full Plat model implies that mortality improvement is driven by three period
components and a cohort component. Among the period components, one is stand-alone, one
interacts with a linear function of age , and one interacts with a non-linear function of age.

• The Simplified Plat model

MIx,t = K
(1)
t +K

(2)
t (x̄− x) +Gc

where K(1)
t = κ

(1)
t−1 − κ

(1)
t , K(2)

t = κ
(2)
t−1 − κ

(2)
t and Gc = γc−1 − γc.

Comment: The simplified Plat model implies that mortality improvement is driven by two period
components and a cohort component. Among the period components, one is stand-alone and
one interacts with a linear function of age.

• The APCI model
MIx,t = B(·)

x +K
(1)
t +Gc

where B(·)
x = −β(2)

x , K(1)
t = κ

(1)
t−1 − κ

(1)
t and Gc = γc−1 − γc.

Comment: The APCI model implies that mortality improvement is driven by a (stand-alone)
age component, a period component and a cohort component. There is neither age-period nor
age-cohort interaction.

The second definition of mortality improvement is based on the change in logit-transformed3

conditional death probabilities:

MIx,t = ln
qx,t−1

1− qx,t−1

− ln
qx,t

1− qx,t
. (3)

In Appendix 2 we prove that on the basis of a first-order Taylor’s expansion, this specification of
MIx,t is are approximately equal to that specified in equation (2). We use this definition of mor-
tality improvement for models M6, M7 and M8, because all of these models are created to model
ln(qx,t/(1− qx,t)). The annual mortality improvement for these models can be expressed as follows:

3The logit transform of a quantity y is defined as ln(y/(1− y)).
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• M6
MIx,t = K

(1)
t +K

(2)
t (x− x̄) +Gc

where K(1)
t = κ

(1)
t−1 − κ

(1)
t , K(2)

t = κ
(2)
t−1 − κ

(2)
t and Gc = γc−1 − γc.

Comment: M6 implies that mortality improvement is driven by two period components and one
cohort component. One period component is stand-alone, while the other period component
interacts with a linear function of age.

• M7
MIx,t = K

(1)
t +K

(2)
t (x− x̄) +K

(3)
t ((x− x̄)2 − σ̂2

x) +Gc

where K(1)
t = κ

(1)
t−1 − κ

(1)
t , K(2)

t = κ
(2)
t−1 − κ

(2)
t , K(3)

t = κ
(3)
t−1 − κ

(3)
t and Gc = γc−1 − γc.

Comment: M7 implies that mortality improvement is driven by three period components and
one cohort component. Among the three period components, one is stand-alone, one interacts
with a linear function of age, and one interacts with a quadratic function of age.

• M8
MIx,t = K

(1)
t +K

(3)
t (x− x̄) +Gc(xc − x)

where K(1)
t = κ

(1)
t−1 − κ

(1)
t , K(2)

t = κ
(2)
t−1 − κ

(2)
t , K(3)

t = κ
(3)
t−1 − κ

(3)
t and Gc = γc−1 − γc.

Comment: M8 implies that mortality improvement is driven by three period components and
one cohort component. Among the three period components, one is stand-alone, one interacts
with a linear function of age, and one interacts with a quadratic function of age. The cohort
component interacts with a linear function of age.
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4.2 Selecting Penalty Parameters

The penalty parameters control the smoothness of the parameter estimates and hence the resulting
A/P/C components of the mortality improvement rates. Ideally, the selected penalty parameters should
remove the unwanted jaggedness in the parameter series and at the same time retain the troughs
and peaks in the unsmoothed parameter series. The penalty parameters selected for each Route B
candidate model are shown in Table 1.

Penalty parameter λ
β
(1)
x

λ
β
(2)
x

λ
β
(3)
x

λ
κ
(1)
t

λ
κ
(2)
t

λ
κ
(3)
t

λγc
M2 107 109 108 - 103 - 103

M3 106 - - 106 - - 107

M6 - - - 106 109 - 107

M7 - - - 106 109 1012 107

M8 - - - 106 109 - 109

Full Plat 106 - - 106 109 108 107

Simplified Plat 106 - - 106 109 - 107

APCI 106 107 - - - 106 106

Table 1: Selected penalty parameters for each Route B candidate model.

The following procedure is used to select the penalty parameter for β(1)
x :

1. Set all penalty parameters except λ
β
(1)
x

to zero.

2. Plot the estimated values of β(1)
x for λ

β
(1)
x

= 100, 101, 102, . . . , 1010.

3. The optimal value of λ
β
(1)
x

should be the one that removes the jaggedness and largely keeps the
shape of the unsmoothed series.

Similar procedures are used to select the penalty parameters for other parameter series.

As an example, let us consider the choice of the smoothing parameter for κ(1)t in M3. The follow-
ing describes how this smoothing parameter is chosen.

• When λ
κ
(1)
t

is set to 105 (the left panel of Figure 17), the pattern of κ(1)t still exhibit some
jaggedness, indicating that the parameter series is under-smoothed.

• When λ
κ
(1)
t

is set to 107 (the right panel of Figure 17), some features in the unsmoothed se-
ries (represented by circles in the diagram) between 1980 and 2000 are completely smoothed
out. The problem of over-smoothing can be more easily discerned in the pattern of K(1)

t (the
period component in the mortality improvement rates), shown in Figure 18. When the penalty
parameter is set to 107, the peaks and troughs of K(1)

t are somewhat dislocated.

• Therefore, we choose 106 as the optimal value for λ
κ
(1)
t

(see the middle panel of Figure 17).
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We have attempted to optimize the smoothing parameters using a cross validation (see Volume 1
of the project report) instead. Despite being more statistically rigorous, this method does not yield
reasonable empirical results for Route B.4
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Figure 17: The estimates of κ(1)t in the Route B M3 model for SSA males when different penalty
parameters are used.
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Figure 18: The values of K(1)
t (the period component of the mortality improvement rates) implied by

the Route B M3 model fitted to the SSA male data set, when different penalty parameters
are used.

4One possible explanation for this problem is that optimally smooth A/P/C parameters in the mortality rate model do
not necessarily guarantee that the implied A/P/C components of historical mortality improvements are adequately smooth.
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4.3 Robustness Tests

4.3.1 Defining the Robustness Measure

We define the following quantitative measure of robustness:

robustness =
maxi(maximum absolute change in the i-th model term of MIx,t)

maxx,t(MIx,t)−minx,t(MIx,t)
, (4)

where maxx,t(MIx,t) and minx,t(MIx,t) represent the maximum and minimum values of the historical
mortality improvement rates in the dataset5, respectively, and ‘the i-th model term’ refers to the i-th
term on the right-hand-side of the equation specifying MIx,t. The denominator maxx,t(MIx,t) −
minx,t(MIx,t) ‘standardizes’ the robustness measure by considering the variability of the data being
fed into the model.

To illustrate, let us use the metric to quantify the robustness of M3 to changes in the length of the
calibration window (on the basis of the SSA male data set). We consider three calibration windows,
which have the same length but begin in different years (1968, 1973, and 1978, respectively). The
following table summarizes the calibration windows under consideration:

Starting Age Ending Age Starting Year Ending Year Length of
Calibration Window

Baseline
20 95

1968 2004 37 years
Alternative 1 1973 2009 37 years
Alternative 2 1978 2014 37 years

The maximum and the minimum values of SSA male historical improvement rates are 0.1963 and
−0.1466, respectively. Therefore, the denominator of equation (4) is 0.1963− (−0.1466) = 0.3429.
The following steps are further taken to obtain the numerator of equation (4):

(1) Fit M3 using the baseline setting and obtain estimates of the two terms in the equation for MIx,t:
K

(1)
t and Gc.

(2) Re-fit M3 using Alternative 1 setting and obtain new estimates of the two terms in the equation
for MIx,t: K̃

(1)
t and G̃c.

(3) Compare the results from the baseline and Alternative 1 settings, and calculate the maximum
absolute change in each of the two model terms:

max
t=1974,1975,...,2004

|K(1)
t − K̃

(1)
t | = 0.0107;

max
c=1879,1880,...,1984

|Gc − G̃c| = 0.0079.

5For M2, M3, the full Plat model, the simplified Plat model and the APCI model, we calculate the historical mortality
improvement rates as lnmx,t−1 − lnmx,t; for M6, M7 and M8 models, the historical mortality improvement rates are
calculated as ln qx,t−1

1−qx,t−1
− ln

qx,t

1−qx,t
. This arrangement maximizes consistency with the way in which MIx,t is defined

for the models.
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(4) Re-fit M3 using Alternative 2 setting and obtain new estimates of the two model terms in the
equation for MIx,t: K̂

(1)
t and Ĝc.

(5) Compare the results from the baseline and Alternative 2 settings, and calculate the maximum
absolute change in each of the two model terms:

max
t=1979,1980,...,2004

|K(1)
t − K̂

(1)
t | = 0.0151;

max
c=1884,1885,...,1984

|Gc − Ĝc| = 0.0043.

(6) Compare the results from Alternative 1 and Alternative 2 settings, and calculate the maximum
absolute change in each of the two model terms:

max
t=1979,1980,...,2009

|K̃(1)
t − K̂

(1)
t | = 0.0079

max
c=1884,1885,...,1989

|G̃c − Ĝc| = 0.0026.

(7) Calculate the overall maximum absolute change in the each of the two model term of MIx,t:

max(0.0107, 0.0151, 0.0079) = 0.0151;

max(0.0079, 0.0043, 0.0026) = 0.0079.

(8) Set the maximum of the two values obtained in Step (7) as the numerator in equation (4), and
calculate the robustness:

max(0.0151, 0.0079)

0.3429
= 4.4%

In the following robustness tests, we rate the robustness of the candidate models using the follow-
ing criteria:

• High robustness: 0 ≤ robustness measure ≤ 10%

• Medium robustness: 10% < robustness measure ≤ 20%

• Low robustness: robustness measure > 20%
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4.3.2 Changes in the Tolerance Value Used in Optimizing Model Parameters

To obtain parameter estimates, the objective function specified in equation (1) is maximized using an
iterative Newton’s method. The iterations stop when the change in the value of the objective function
is smaller than a pre-specified tolerance value. In this section, we test the robustness of the candidate
models with respect to changes in the tolerance value. For all candidate models except M2 and M8,
the following three tolerance values are considered:

• Baseline: tolerance value = 10−8.

• Alternative 1: tolerance value = 10−6.

• Alternative 2: tolerance value = 10−10.

M2 and M8 require a special treatment because they do not converge when a tolerance value of
10−10 is used. We consider the following three tolerance values for these two models:

• Baseline: tolerance value = 10−6.

• Alternative 1: tolerance value = 10−8.

• Alternative 2: tolerance value = 10−4.

The result of this robustness test is summarized in the following table:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 29.3% Low 25.1% Low
M3 0.0% High 0.0% High
M6 0.0% High 0.0% High
M7 0.0% High 0.0% High
M8 0.0% High 0.0% High

Full Plat 0.0% High 0.0% High
Simplified Plat 0.0% High 0.0% High

APCI 0.0% High 0.0% High

Figures 19 and 20 illustrate high and low levels of robustness to changes in the tolerance value,
respectively. In each diagram, the black, blue and red lines represent the resulting A/P/C components
of mortality improvement rates that are obtained using different tolerance values. For the M3 model
fitted to SSA male data (high robustness), the three lines overlap one another. For the M2 model fitted
to SSA male data (low robustness), the three lines appear to be quite different.

The low robustness for M2 may be attributed to the convergence problem. For instance, when ap-
plying M2 to the SSA female data set, it takes 50,222 iterations to reach the tolerance value of 10−8.6

6Typically, it takes less than 100 iterations to reach convergence.
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In addition, we have to bound the absolute value of γc in this model, or otherwise the optimization
may never converge.
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Figure 19: An example of high robustness to the tolerance value: The estimated A/P/C components
of historical mortality improvement obtained from the Route B M3 model fitted to SSA
female data.
- Baseline: tolerance value = 10−8.
- Alternative 1: tolerance value = 10−6.
- Alternative 2: tolerance value = 10−10.
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Figure 20: An example of low robustness to the tolerance value: The estimated A/P/C components
of historical mortality improvement obtained from the Route B M2 model fitted to SSA
male data.
- Baseline: tolerance value = 10−6.
- Alternative 1: tolerance value = 10−8.
- Alternative 2: tolerance value = 10−4.
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4.3.3 Changes in the Calibration Window

Here we test the robustness to changes in the calibration window. We consider three calibration
windows, which have the same length but different starting years (1968, 1973, and 1978, respectively).
This set-up is to mimic the situation when the models are updated every five years. The following
table summarizes the calibration windows under consideration:

Starting Age Ending Age Starting Year Ending Year Length of
Calibration Window

Baseline
20 95

1968 2004 37 years
Alternative 1 1973 2009 37 years
Alternative 2 1978 2014 37 years

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 7.1% High 8.8% High
M3 4.4% High 3.4% High
M6 6.2% High 11.3% Medium
M7 9.1% High 6.5% High
M8 8.2% High 8.5% High

Full Plat 4.3% High 12.9% Medium
Simplified Plat 4.1% High 5.2% High

APCI 5.1% High 3.8% High

Figures 21 and 22 illustrate high and medium levels of robustness to changes in the length of the
calibration window, respectively.
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Figure 21: An example of high robustness to the calibration window: The estimated A/P/C compo-
nents of historical mortality improvement obtained from the Route B simplified Plat model
fitted to SSA male data.
- Baseline: ages 20 to 95, years 1968 to 2004.
- Alternative 1: ages 20 to 95, years 1973 to 2009.
- Alternative 2: ages 20 to 95, years 1978 to 2014.
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Figure 22: An example of medium robustness to the calibration window: The estimated A/P/C com-
ponents of historical mortality improvement obtained from the Route B M6 model fitted
to SSA female data.
- Baseline: ages 20 to 95, years 1968 to 2004.
- Alternative 1: ages 20 to 95, years 1973 to 2009.
- Alternative 2: ages 20 to 95, years 1978 to 2014.
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4.3.4 Changes in the Age Range Used

Here we test the robustness to changes in age ranges. The following age ranges are considered:

Starting Age Ending Age Starting Year Ending Year Number of Ages
Baseline 20 95

1968 2014
76

Alternative 1 30 85 56
Alternative 2 40 75 36

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 38.5% Low 27.2% Low
M3 5.2% High 4.9% High
M6 12.7% Medium 10.2% Medium
M7 7.8% High 14.1% Medium
M8 26.9% Low 59.8% Low

Full Plat 7.8% High 10.0% Medium
Simplified Plat 5.7% High 5.6% High

APCI 2.3% High 3.2% High

Figures 23, 24 and 25 illustrate high, low and medium levels of robustness to changes in the age
ranges, respectively.
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Figure 23: An example of high robustness to the age range used: The estimated A/P/C components
of historical mortality improvement obtained from the Route B simplified Plat model fitted
to SSA male data.
- Baseline: ages 20 to 95, years 1968 to 2014.
- Alternative 1: ages 30 to 85, years 1968 to 2014.
- Alternative 2: ages 40 to 75, years 1968 to 2014.
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Figure 24: An example of low robustness to the age range used: The estimated A/P/C components
of historical mortality improvement obtained from the Route B M8 model fitted to SSA
male data.
- Baseline: ages 20 to 95, years 1968 to 2014.
- Alternative 1: ages 30 to 85, years 1968 to 2014.
- Alternative 2: ages 40 to 75, years 1968 to 2014.
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Figure 25: An example of medium robustness to the age range used: The estimated A/P/C compo-
nents of historical mortality improvement obtained from the Route B M7 model fitted to
SSA female data.
- Baseline: ages 20 to 95, years 1968 to 2014.
- Alternative 1: ages 30 to 85, years 1968 to 2014.
- Alternative 2: ages 40 to 75, years 1968 to 2014.
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4.3.5 Choice of Parameter Constraints

Here we examine the robustness to the choice of identifiability constraints. The baseline and alterna-
tive constraints for each candidate model are listed below.

• M2
Model structure: lnmx,t = β

(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γt−x

Baseline constraints:
∑

x β
(1)
x = 0,

∑
x β

(2)
x = 1,

∑
x β

(3)
x = 1,

∑
c ncγc = 0

Alternative constraints:
∑

x β
(1)
x = 0,

∑
x β

(2)
x = 1,

∑
x β

(3)
x = 1,

∑
c γc = 0

• M3
Model structure: lnmx,t = β

(1)
x + κ

(2)
t + γt−x

Baseline constraints:
∑

x β
(1)
x = 0,

∑
c γc = 0,

∑
c cγc = 0

Alternative constraints:
∑

x β
(1)
x = 0,

∑
c ncγc = 0,

∑
c nccγc = 0

• M6
Model structure: ln qx,t

1−qx,t = κ
(1)
t + κ

(2)
t (x− x̄) + γt−x

Baseline constraints:
∑

c γc = 0,
∑

c cγc = 0
Alternative constraints:

∑
c ncγc = 0,

∑
c nccγc = 0

• M7
Model structure: ln qx,t

1−qx,t = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γt−x

Baseline constraints:
∑

c γc = 0,
∑

c cγc = 0,
∑

c c
2γc = 0

Alternative constraints:
∑

c ncγc = 0,
∑

c nccγc = 0,
∑

c ncc
2γc = 0

• M8
Model structure: ln qx,t

1−qx,t = κ
(1)
t + κ

(2)
t (x− x̄) + γt−x(xc − x)

Baseline constraints:
∑

c ncγc = 0.
Alternative constraints:

∑
c γc = 0

• The full Plat model
Model structure: lnmx,t = β

(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + κ

(3)
t (x̄− x)+ + γt−x

Baseline constraints:
∑

x β
(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
t κ

(3)
t = 0,

∑
c γc = 0,

∑
c cγc = 0,∑

c c
2γc = 0.

Alternative constraints:
∑

x β
(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
t κ

(3)
t = 0,

∑
c ncγc = 0,

∑
c nccγc = 0,∑

c ncc
2γc = 0

• The simplified Plat model
Model structure: lnmx,t = β

(1)
x + κ

(1)
t + κ

(2)
t (x̄− x) + γt−x

Baseline constraints:
∑

x β
(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0.
Alternative constraints:

∑
x β

(1)
x = 0,

∑
t κ

(2)
t = 0,

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc =
0

• The APCI model
Model structure: ln(mx,t) = β

(1)
x + β

(2)
x (t− t̄) + κ

(1)
t + γc
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Baseline constraints:
∑

c γc = 0,
∑

c cγc = 0,
∑

c c
2γc = 0,

∑
t κ

(1)
t = 0 and

∑
t tκ

(1)
t = 0.

Alternative constraints:
∑

c ncγc = 0,
∑

c nccγc = 0,
∑

c ncc
2γc = 0,

∑
t κ

(1)
t = 0 and∑

t tκ
(1)
t = 0

The difference between the baseline and alternative constraints lies in the inclusion/exclusion of
nc, which represents the number of data points related to year-of-birth c. By including nc, the cohorts
about which we have more information are weighted more heavily in the parameter constraints.

We emphasize that there are many other combinations of constraints that can be used to stipulate
parameter uniqueness. When very different constraints, the resulting A/P/C components may be very
different. Our goal here is to examine the impact of small changes in the constraints used only.

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 10.5% Medium 23.5% Low
M3 0.4% High 0.2% High
M6 0.7% High 0.0% High
M7 1.1% High 1.1% High
M8 0.0% High 18.5% Medium

Full Plat 1.8% High 1.4% High
Simplified Plat 1.4% High 0.7% High

APCI 0.1% High 0.7% High

Figures 26, 27 and 28 illustrate high, medium and low levels of robustness to the choice of param-
eter constraints, respectively.
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Figure 26: An example of high robustness to the parameter constraints used: The estimated A/P/C
components of historical mortality improvement obtained from the Route B M6 model
fitted to SSA female data.
- Baseline:

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0
- Alternative:

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc = 0
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Figure 27: An example of medium robustness to the parameter constraints used: The estimated
A/P/C components of historical mortality improvement obtained from the Route B M8
model fitted to SSA female data.
- Baseline:

∑
c γc = 0

- Alternative:
∑

c ncγc = 0
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Figure 28: An example of low robustness to the parameter constraints used: The estimated A/P/C
components of historical mortality improvement obtained from the Route B M2 model
fitted to SSA female data.
- Baseline:

∑
c γc = 0,

∑
c cγc = 0,

∑
c c

2γc = 0
- Alternative:

∑
c ncγc = 0,

∑
c nccγc = 0,

∑
c ncc

2γc = 0
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4.3.6 Exclusion of the Oldest and Newest Cohorts

Here we examine the robustness to the inclusion/exclusion of the oldest and newest cohorts. The
following three situations are considered:

• Baseline: All available data are used.

• Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.

• Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.

The result of this robustness test is summarized in the table below:

SSA male SSA female
Model Robustness

Category
Robustness

Category
measure measure

M2 35.0% Low 23.4% Low
M3 2.9% High 3.7% High
M6 7.6% High 6.3% High
M7 8.9% High 6.7% High
M8 9.3% High 11.7% Medium

Full Plat 12.2% Medium 11.0% Medium
Simplified Plat 6.9% High 6.8% High

APCI 5.2% High 3.2% High

Figures 29, 30 and 31 demonstrate high, medium and low levels of robustness to the inclu-
sion/exclusion of the youngest/oldest cohorts, respectively.
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Figure 29: An example of high robustness to the inclusion/exclusion of the youngest/oldest cohorts:
The estimated A/P/C components of historical mortality improvement obtained from the
Route B M3 model fitted to SSA male data.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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Figure 30: An example of medium robustness to the inclusion/exclusion of the youngest/oldest co-
horts: The estimated A/P/C components of historical mortality improvement obtained
from the Route B full Plat model fitted to SSA male data.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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Figure 31: An example of low robustness to the inclusion/exclusion of the youngest/oldest cohorts:
The estimated A/P/C components of historical mortality improvement obtained from the
Route B M2 model fitted to SSA male data.
- Baseline: All available data are used.
- Alternative 1: The oldest and youngest five cohorts in the data sample are excluded.
- Alternative 2: The oldest and youngest ten cohorts in the data sample are excluded.
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4.4 Analyzing the Standardized Residuals Produced by the Shortlisted Models

The table below summarizes the results of the robustness tests we performed for the Route B candidate
models.

Robustness Test M2 M3 M6 M7 M8
Full Simplified

APCI
Plat Plat

SSA males
Tolerance value Low High High High High High High High

Calibration window High High High High High High High High
Age range Low High Medium High Low High High High

Parameter constraints Medium High High High High High High High
Exclusion of cohorts Low High High High High Medium High High

SSA females
Tolerance value Low High High High High High High High

Calibration window High High Medium High High Medium High High
Age range Low High Medium Medium Low Medium High High

Parameter constraints Low High High High Medium High High High
Exclusion of cohorts Low High High High Medium Medium High High

The models that exhibit medium to high levels of robustness are given further consideration. The
shortlisted models include M3, M6, M7, the full Plat, the simplified Plat model and the APCI model.

We now analyze the standardized residuals produced by the shortlisted models. The standardized
residuals are calculated using the following formula:

Dx,t − Ex,tm̂x,t√
Ex,tm̂x,t

,

where m̂x,t represents the fitted value of mx,t produced by the model being analyzed.

Because the models are estimated using a Poisson death count assumption, the standardized resid-
uals are not necessarily normally distributed even if the model is adequate. As such, we cannot apply
the ‘normal q-q plot’ and the normality test which we used when we pursue Route A. However, we
can still access the adequacy of a model by examining the heat map of its standardized residuals.
If a model is adequate, then the pattern of its standardized residuals should be random with little
clustering.

Figure 32 compares the heatmaps of standardized residuals obtained from M3, M6, M7, the full
Plat, the simplified Plat model and the APCI model. The following observations are made:

• M6 and M7 perform the worst in the residual analysis. Large horizontal clusters are found in
the heat maps produced from these models, indicating that age effect is not adequately captured.

• Residuals clustering is significant in M3 and the APCI model for males. Large vertical clusters
are observed between mid-80s and mid-90s. Note that a similar problem is found in the M3 for
males when is Route A is used (see Volume 1 of the project report).
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• The full Plat model performs the best in the residual analysis. The standardized residuals pro-
duced from the full Plat model appear to be the most random, although there still exist some
gentle diagonal patterns.

• The simplified Plat model is the second best performing model in the residual analysis. Com-
pared to those from full Plat model, the standardized residuals from the simplified Plat model
exhibit slightly more clustering.

Note that the standardized residuals shown in Figure 32 cannot be directly compared and contrasted
with those shown in Volume 1 of the project report, which are calculated in a different manner.

4.5 Concluding Remarks

Both the full Plat and simplified Plat models are reasonable choices for modeling the raw mortality
rates of the US population. We recommend the simplified Plat model for use in Route B for the
following reasons: (1) Although the full Plat model is the best performing model in the residual
analysis, it only wins the simplified Plat model by a narrow margin. (2) The simplified Plat model
outperforms the full Plat model in the robustness tests. The A/P/C decompositions resulting from the
Route B simplified Plat model are shown in Figure 33 (males) and Figure 34 (females).
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Figure 32: Heatmaps of the standardized residuals produced by the shortlisted Route B models.
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Figure 33: The estimated Age/Period/Cohort components obtained from the Route B simplified Plat
model, U.S. males.
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Figure 34: The estimated Age/Period/Cohort components obtained from the Route B simplified Plat
model, U.S. females.
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5 Repeating the Analyses Using Data for Ages 55 to 95

For the readers’ information, in this section we repeat the analyses using the data for ages 55 to 95
only. The table below presents the results of the robustness tests for each of the Route B models. The
baseline and alternative settings in these robustness tests are the same as before, except that when
testing robustness changes in age ranges we consider ages 55-95 (baseline), ages 60-90 (alternative
1) and ages 65-85 (alternative 2). We also remark that M8 does not converge (for all of the tolerance
values considered).

Robustness Test M2 M3 M6 M7 M8
Full Simplified

APCI
Plat Plat

SSA males
Tolerance value High High High High High High High High

Calibration window High High High High Low High High High
Age range Low High High High Low High High High

Parameter constraints High High High High High High High High
Exclusion of cohorts Medium High High High Low High High High

SSA females
Tolerance value Low High High High High High High High

Calibration window Medium High High High High High High High
Age range Medium High High High Low High High High

Parameter constraints Low High High High High High High High
Exclusion of cohorts Low High High High Low High High High

M2 and M8 show low robustness in some robustness tests, and are therefore not given further
consideration. Figure 35 compares the heatmaps of standardized residuals obtained from the short-
listed models: M3, M6, M7, the full Plat, the simplified Plat model and the APCI model. In terms
of goodness-of-fit (which is inversely related to the extent of residual clustering), the simplified Plat
model clearly outperforms M3, M6 and M7, and perform similarly to the full Plat and APCI models.
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Figure 35: Heatmaps of the standardized residuals produced by the shortlisted Route B models for
ages 55 to 95.
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6 Comparing Routes A and B

6.1 A Summary of the Modeling Work for Route A

The distinction between the two routes lies in the quantity to which the APC models are fitted. In
Route A, the APC models are fitted to mortality improvement rates. It entails the following steps:

 

Step 1: Calculate 
smoothed mortality 
improvement rates. 

Step 2: Fit an APC 
model to the smoothed 

improvement rates.  

Step 3: The parameters 
in the model gives the 

A/P/C decomposition of 
historical mortality 

improvemnt.  

Route A 

Seven candidate APC structures are considered for this route. The model selection process is summa-
rized in the flow chart below.

 

 
 

Analyze residuals 
Choose the most appropriate model: Simplified Plat 

Perform robustness tests 
Shortlist models that exhibit medium to high robustness: 

M3, M6 and Simplified Plat 

Estimate the entire collection of APC models to smoothed 
mortality improvement rates: 

M2, M3 (CMI-09), M6, M7, M8, Full Plat, Simplified Plat 

In Route A, the most effective model (the simplified Plat model) implies that mortality improvement
is driven by (1) a stand-alone age component, (2) a stand-alone period component, (3) a period com-
ponent that interacts with (a linear function) of age, and (4) a stand-alone cohort component:
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𝑍�𝑥,𝑡 = 𝛽𝑥

(1) + 𝜅𝑡
(1) + 𝜅𝑡

(2)(𝑥 − �̅�) + 𝛾𝑐 + 𝑒𝑥,𝑡 
 
 
 

The stand-alone 
age component 

The stand-alone 
period component 

The period 
component that 

interacts with age 

The stand-alone 
cohort component 

Residual 

Note that in the Route A simplified Plat model, mortality improvement is defined as the percentage
reduction in (smoothed) death probabilities: Z̃x,t = 1− q̃x,t

q̃x,t−1
, where q̃ denotes a smoothed one-year

death probability.
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6.2 A Summary of the Modeling Work for Route B

In Route B, the APC models are fitted to mortality rates. It entails the following steps:

 

Step 1: Fit an APC 
model to the raw 
mortality rates. 

Step 2: Transform the 
parameters in the model.   

Step 3: The transformed 
model parameters gives 
the A/P/C decomposition 

of historical mortality 
improvement. 

Route B 

Eight candidate APC structures are considered for this route. The model selection process is summa-
rized in the flow chart below.

 
 

Analyze residuals 
Choose the most appropriate model: Simplified Plat 

Perform robustness tests 
Shortlist models that exhibit medium to high robustness: 

M3, M6, M7,  Full Plat, Simplified Plat and APCI 

Estimate the entire collection of APC models to raw 
mortality rates: 

M2, M3, M6, M7, M8, Full Plat, Simplified Plat, APCI 
(CMI-17) 

In Route B, the most effective model (the simplified Plat model) implies that mortality improvement
is driven by (1) a stand-alone period component, (2) a period component that interacts with (a linear
function) of age, and (3) a stand-alone cohort component:
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𝑀𝐼𝑥,𝑡 = 𝐾𝑡

(1) + 𝐾𝑡
(2)(𝑥 −  �̅�) + 𝐺𝑐 

 
 
 
 
 
 
 
 
 
 
 
 

The stand-alone 
period component 

The period 
component that 

interacts with age 

The stand-alone 
cohort component 

Note that in the Route B simplified Plat model, mortality improvement is defined as the change in log
central death rates (known as M-style mortality improvement by the CMI): MIx,t = ln(mx,t−1) −
ln(mx,t), where m denotes a central death rate.
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6.3 The Final Conclusion

We conclude that the Route A simplified Plat model is the most appropriate model for identifying the
A/P/C components of the US gender-specific historical mortality improvements. The conclusion is
drawn on the following bases.

• We have argued previously that the simplified Plat model performs the best in both Routes A
and B. Figures 36 and 37 provide a side-by-side comparison between the A/P/C components of
historical mortality improvement derived from the two routes.7 The A/P/C components derived
from the two routes are not too different. However, the A/P/C components from Route B are
noticeably less smooth. The lack of smoothness is a concern, in part because the underlying
A/P/C components should in principle be free of noise (the noise should be captured by the
residual component) and in part because it would be more challenging (for the researchers of
the follow-up project) to link the A/P/C components to intrinsic factors if they are jagged.

• Also, one technical limitation of Route B is that the smoothing parameters for Route B mod-
els are chosen with a rather subjective approach instead of a more statistically rigorous cross
validation. Therefore, from a technical viewpoint, the Route A simplified Plat model is more
preferred than the Route B counterpart.

The numerical values of the A/P/C components identified from this model are provided in the
accompanying Excel workbook.

We emphasize that the conclusion drawn is data-dependent, applicable only to the data set under
consideration (US gender-specific, ages 20-95, years 1968-2014). Although the model selection pro-
cedures (Routes A and B) stands for any data set, the conclusion drawn can be (very) different when
a different population is considered.

We also emphasize that the conclusion might be different if we focus on a particular age range
(say, pensionable ages only). This point is manifested in the the analyses performed in Section 7 of
Volume 1: when applied to ages above 55 only, the advantage of the simplified Plat model over the
CMI-09 model (M3) becomes less apparent.

Furthermore, the selected model (Route A simplified Plat) is only the best currently. While the
robustness test results indicate that the conclusion is unlikely to change in the next few years, it is
entirely possible that the conclusion will change when a substantial volume of new data is added to
the analyses, for reasons such as structural changes in the underlying A/P/C components.

Finally, we fully acknowledge that this study focuses only on the overall US population, without
considering the possible differences in mortality improvements due to, for example, geographical
differences and differences in socioeconomic status. It is warranted to revisit this study using more
granular data when such data becomes available in the future.

7Note that the ‘stand-alone age component’ does not apply to Route B.

62



Age
20 30 40 50 60 70 80 90

S
ta

nd
-a

lo
ne

 a
ge

 c
om

po
ne

nt

-0.02

-0.01

0

0.01

0.02

0.03
Route A

Year
1970 1980 1990 2000 2010

S
ta

nd
-a

lo
ne

 p
er

io
d 

co
m

po
ne

nt

-0.02

-0.01

0

0.01

0.02

0.03
Route A
Route B

Year
1970 1980 1990 2000 2010

P
er

io
d 

co
m

po
ne

nt
 th

at
 in

te
ra

ct
s 

w
ith

 a
ge

#10 -4

-6

-4

-2

0

2

4

6

8

10 Route A
Route B

Year-of-birth
1880 1900 1920 1940 1960 1980

S
ta

nd
-a

lo
ne

 c
oh

or
t c

om
po

ne
nt

-0.02

-0.01

0

0.01

0.02

0.03
Route A
Route B

Figure 36: A comparison between the A/P/C components obtained from the most effective Route A
and Route B models, U.S. males.
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Figure 37: A comparison between the A/P/C components obtained from the most effective Route A
and Route B models, U.S. females.

64



7 Acknowledgments

The project team is grateful to all members of the Project Oversight Group, formed by Jennifer Haid
(Chair), Jean-Marc Fix, Zach Granovetter, George Graziani, Alla Kleyner, Dale Hall, Bob Howard, Al
Klein, Andy Peterson, Larry Pinzur, Erika Schulty, and Larry Stern, for their guidance and insightful
comments.

Appendix 1

In this appendix, we show that MIx,t = lnmx,t−1− lnmx,t ≈ Zx,t = 1− qx,t
qx,t−1

under the assumption
that the force of mortality between two consecutive integer ages is a constant.

Proof. First, we rewrite MIx,t as follows:

MIx,t = lnmx,t−1 − lnmx,t

= − ln
mx,t

mx,t−1

= − ln

(
1− mx,t−1 −mx,t

mx,t−1

)
.

Let f(y) = ln(y). Using the first order Taylor expansion, f(y+ dy) ≈ f(y) + d
dy
f(y)dy at y = 1, we

have

− ln

(
1− mx,t−1 −mx,t

mx,t−1

)
≈ − ln(1) +

mx,t−1 −mx,t

mx,t−1

=
mx,t−1 −mx,t

mx,t−1

.

Assuming that the force of mortality between two consecutive integer ages is a constant, we have
qx,t = 1− emx,t . Let f(y) = ey. Using the first order Taylor expansion at y = 0, we have

e−mx,t ≈ e0 + e0(−mx,t)

qx,t = 1− emx,t

≈ 1− (1−mx,t)

= mx,t

Therefore,

MIx,t ≈
mx,t−1 −mx,t

mx,t−1

≈ qx,t−1 − qx,t
qx,t−1

= 1− qx,t
qx,t−1

= Zx,t.
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Appendix 2

In this appendix, we show that lnmx,t−1− lnmx,t ≈ ln qx,t−1

1−qx,t−1
− ln qx,t

1−qx,t when the force of mortality
between two consecutive integer ages is a constant.

Proof. Let yx,t = ln qx,t
1−qx,t . We have

qx,t =
eyx,t

1 + eyx,t
.

Assuming the force of mortality between two consecutive integer ages is a constant, we have qx,t =
1− emx,t , which gives

mx,t = − ln(1− qx,t)

= − ln
1

1 + eyx,t

= ln(1 + eyx,t).

Using the first order Taylor expansion at 1, we have

mx,t ≈ ln(1) + eyx,t

= eyx,t ,

so that lnmx,t ≈ yx,t. Therefore,

lnmx,t−1 − lnmx,t ≈ ln
qx,t−1

1− qx,t−1

− ln
qx,t

1− qx,t
.
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