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Delta Boosting Machine with Application to 
General Insurance 

Abstract 

In this paper, we introduce Delta Boosting (DB) as a new member of the boosting family. Similar 

to the popular Gradient Boosting (GB), this new member is presented as a forward stagewise 

additive model that attempts to reduce the loss at each iteration by sequentially fitting a simple 

base learner to complement the running predictions. Instead of relying on the negative gradient, 

as is the case for GB, DB adopts a new measure called delta as the basis. Delta is defined as the 

loss minimizer at each iteration.  

We also show that DB is the optimal boosting member for a wide range of loss functions. The 

optimality is a consequence of DB solving for the split and adjustment simultaneously to 

maximize loss reduction at each iteration. In addition, we introduce an asymptotic version of DB 

that works well for all twice-differentiable strictly convex loss functions. This asymptotic behavior 

does not depend on the number of observations, but rather on a high number of iterations that 

can be augmented through common regularization techniques. We show that the basis in the 

asymptotic extension differs from the basis in GB only by a multiple of the second derivative of 

the log-likelihood. The multiple is considered to be a correction factor, one that corrects the bias 

toward the observations with high second derivatives in GB. When negative log-likelihood is used 

as the loss function, this correction can be interpreted as a credibility adjustment for the process 

variance. 

Simulation studies and the real data application that we conducted in this paper suggest that DB 

is a significant improvement over GB. The performance of the asymptotic version is less 

dramatic, but the improvement is still compelling. Like GB, DB provides a high transparency to 

users, and we can review the marginal influence of variables through relative importance charts 

and the partial dependence plots. We can also assess the overall model performance through 

evaluating the losses, lifts and double lifts on the holdout sample. 

Keywords: Boosting trees, Gradient boosting, Predictive modeling, Insurance, Machine learning 
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Section 1: Introduction 

Boosting methods are used to predict responses in supervised learning [16]. Mathematically, a 

data set contains entries with response variables, y, and corresponding predictive covariates, 

𝐱 = {x1, x2, … , xk}. The covariates and responses are assumed to be linked by an unobserved 

mapping F and a user-specified strictly monotonic link function g(⋅). The goal is to find an 

estimate function F∗ that minimizes a specified loss function Φ(y, g−1(F(𝐱))): 

F∗(𝐱) = argmin
F(𝐱)

 E𝐱[Ey(Φ(y, g−1(F(𝐱)))|𝐱)]. (1) 

The prediction of the response ŷ = g−1(F∗(𝐱)). 

Loss functions can be generic or specific to various types of problems. For example, the original 

random forest [4] uses squared error for all types of problems, whereas gradient boosting allows 

for Huber loss, deviance, absolute error and many others as loss functions [16]. 

Boosting and random forest belong to a family called ensembling, in which function estimation 

problems are based on an idea of combining many weak rules [27]. A weak rule ft
∗(𝐱) is a 

learning algorithm that performs only slightly better than a coin flip and aims to characterize 

“local rules” related to predictive variables: 

F∗(𝐱) = ∑ ft
∗T

t=1 (𝐱) = ∑ 𝛃𝐭,𝐚𝐭
T
t=1 h(𝐱; 𝐚t). (2) 

Although any weak rule alone would not be strong enough to make accurate predictions on all 

observations, it is possible to combine many of those rules to produce a highly accurate model. 

This idea is known as the strength of weak learnability [27].  

The introduction of AdaBoost [12, 13] is considered by the machine learning community to be 
the first major success in boosting algorithms. Breiman [1, 2] later explained the algorithm as a 
gradient descent approach with numerical optimization and statistical estimation. Friedman 
et al. [14] further extend the idea, introducing several variations. Since its introduction, many 
variations of Adaboost have been created, each with a different focus. RealBoost allows real 
values to be used as classifiers, compared to the requirement of binary responses in AdaBoost. 
GentleBoost builds on RealBoost by assigning a weight to the classifiers, which reduces the speed 
of updates of the weak rule [10, 11, 14]. This technique is considerably effective to stabilize the 
overall prediction [17]. MadaBoost [9, 31] is another algorithm that improves upon AdaBoost by 
utilizing the filtering framework. This makes MadaBoost more resistant to noise, a noted 
weakness for AdaBoost. BrownBoost, a reference to Brownnian motion, combines many weak 
learners to improve the performance of AdaBoost [11]. As an alternative to handle noisy 
datasets, BrownBoost gives less weight to training samples that are frequently misclassified. 
RankBoost modifies AdaBoost to solve problems in estimating rankings [10].  

Linear Programming Boosting (LPBoost) [25] and TotalBoost [30] are popular boosting 
techniques that are not derived from Adaboost. LPBoost uses a weighted linear combination of 
classifiers. At every iteration, a weak classifier is added and the weights of previous weak 
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classifiers are adjusted. LPBoost requires fewer iterations than AdaBoost but is more 
computationally costly. TotalBoost is a more robust form of LPBoost and requires even fewer 
iterations than LPBoost.  

Friedman [16] proposes a boosting method called a Gradient Boosting Machine (GB), which 
features solutions to both regression and classification problems. The algorithmic method 
successfully includes statistical elements, such as additive modeling and the maximum-likelihood 
estimation, which enable us to derive diagnostics assessing the quality of the predictions, the 
variable influence and marginal effect by variables. The features substantially blur the boundary 
between machine learning and traditional statistical modeling. It is also shown in Friedman 
et al. [15] and Lee and Antonio [22], using empirical examples, that GB is the top-tier predictive 
model among data-mining techniques. Xgboost [8] introduces a regularization function, in 
additional to the loss function, to mitigate the overfitting potential.  

In this paper, we propose a new booting method called Delta Boosting (DB) as a new member of 
the boosting family. It is similar to the popular Gradient Boosting but differs from GB in the way 
it derives the basis, partitions data and adjusts parameters at each iteration. Instead of finding 
the gradient suggested in GB, the new method attempts to solve for maximum loss reduction. It 
is done through partitioning data and adjusting parameters simultaneously. As the process is 
more synchronized, it shows an improvement in computing efficiency in each iteration. Further, 
since an optimal split is reached at each node, it takes fewer iterations to reach the same loss, 
another aspect of efficiency improvement. Empirical examples also reflect a substantial overall 
loss reduction for DB.  

The key elements of boosting and a walk through the algorithm of GB are explained in Section 2. 
The motivation of DB is then explained in Section 3, where we derive formulas and explain the 
fundamental concepts of the proposed method. A proof of the optimality of DB and the required 
condition are given. Optimality in this paper is defined to be maximum loss reduction at each 
iteration. In the situation where the requirement for DB to be optimal is not satisfied, Section 4 
introduces an extension of DB that is asymptotically optimal for all twice differentiable loss 
functions. The asymptotic version is identical to GB with a correction multiplier applied to the 
basis. In Section 5 we conduct simulation studies to illustrate the magnitude of improvement of 
DB over GB in a controlled environment. We further compare the boosting candidates in a real-
life data set capturing an insurer’s claim frequency activity in Section 6.  
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Section 2: Gradient Boosting 

Gradient boosting is one of many predictive modeling techniques. Other popular choices include, 
but are not limited to, generalized linear models, generalized additive models, classification and 
regression trees, bagging, random forests, boosting, support vector machines and artificial 
neural networks. Each choice differs somewhat from others in how the modeling problem is 
framed and how the prediction is derived. Support vector machines, for example, transform the 
original data space into a higher dimensional space so that the data are linearly decomposable. 
Classification and regression trees construct decisions through simple branch-type flow charts. 
Bagging, boosting and random forests ensemble base learners into predictive models. Artificial 
neural networks attempt to mimic how a neural system would process the information. The 
flexible use of loss functions and base learners are two key features that differentiate GB from 
the other aforementioned predictive modeling techniques.  

2.1. Loss Functions 

GB allows the freedom to choose loss functions. Squared error is a plausible, and the most 
popular, loss function used for regression and classification problems. However, situations may 
be found in which other loss functions are more appropriate. For instance, binomial likelihood is 
far more robust than exponential loss in noisy settings where the Bayes error rate is not close to 
zero, or in situations where the target classes are mislabeled [18]. Similarly, the performance of 
squared error significantly degrades in long-tailed error distributions or in data with the presence 
of outliers. In such situations, other functions such as absolute error or Huber loss are more 
appropriate. If losses are bimodal or multimodal, users may consider the likelihood of mixtures 
of Erlang distributions [23, 24] as the loss function. To summarize, loss functions can be defined 
uniquely to reflect the specific purpose of the modeling.  

In this paper, we limit our focus on the following class of loss functions:  

Definition 1. A loss function, Φ(y,g−1(F(x))), of interest satisfies all the following conditions:  

1. Identifiable: if Φ(y,g−1(F1(x))) = Φ(y,g−1(F2(x)))  ∀y, F1(x) = F2(x).  
2. F-convex: Φ(y,g−1(F(x))) is convex on F(x) and is strictly convex at Fmin(x) where  

Fmin(x) = Φ(y,g−1(F(x))). In the problem of function estimation, Fmin(x) = g(y).  

3. Closed: The set where Φ(y,⋅) is defined is closed. 

Condition 1 ensures identifiability, which is a property that a model must satisfy for precise 
inferences to be possible. Conditions 2 guarantees that the loss function Φ(y,y + a) is increasing 
for |a| and ensures the reasonableness of the optimal solution. Condition 3 is necessary to 
guarantee that the end points are included in the parameter space.  
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2.2. Base Learners 

As mentioned in Section 1, GB models the mapping F: x → y through combining predictions from 
base learners. A great variety of base learners are available in boosting algorithms. For reference, 
Table 1 shows a sample of commonly used base learners, including the formula and a description 
of at.  

 

Base Learner  Formula  Description  

Triangular wavelets  ht(x,at) = |at,1|−1∕2|x − at,2|  

at,1 is a scaling multiple, and at,2 is the 

center of a wavelet  

Normal wavelets  ht(x,at) = e− (x−a
t,2

)2∕a
t,1  

at,1 is a scaling multiple, and at,2 is the 

center of a wavelet  

Multivariate adaptive 

Regression splines  

ht(x,at) = max(0,x − at,2) − 

at,1 max(0,at,2 − x)  

at,1 is a scaling constant, and at,2 is the knot 

of a hinge  

Classification tree  ht(x,at) = 1x∈at  at is classification rule; e.g., Age ≥ 30  

Regression  ht(x,at) = at  at is a covariate; e.g., Age  

Smoothing splines  ht(x,at) = x1x∈at  

at is the knot of a covariate; e.g., Age ∈ 

[0,10),[10,30),[30,130)  

 

Table 1: A Subset of Popular Base Learners 

 

Bühlmann and Hothorn [7] adopt penalty splines, linear regressors and trees in various 
scenarios. Ridgeway [26] uses only trees as the base learners. Although strengths and 
weaknesses exist in all base learners, trees are the most commonly accepted base learner in 
ensembling techniques such as boosting. Trees have a very simple representation and can also 
be extended to high dimensions without significant modification of the mathematics and 
computation. Rigorous studies (Breiman [1], Breiman et al. [6], Friedman 
et al. [15], Friedman [17] and references therein) on improving statistical significance and 
reducing overfitting are abundant. The nature of trees also fits well the concept of weak 
learnability from boosting techniques: in each iteration, we need only a rule that is slightly better 
than a coin flip. GB using trees as the base learner is called Gradient Boosting Trees. In the rest of 
the paper, we will assume the use of trees as the base learners.  
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2.3. Notation  

To facilitate the discussion, all the key notations used in the paper are listed in Table 2.  

 

Notation  Description  

Φ(yi,g−1(Ft(xi)))  Loss function of observation i  

ri  Negative gradient of loss function for observation i  

δi  

 

Loss minimizer(delta) for observation i:  

δi = Φ(yi,g−1(Ft−1(xi) + s))  

Nj  Index set of observation in node j induced by at  

Mj  Number of observations in Nj  

Rj  Average of ri in node j: ∑ i∈Nj ri ∕Mj  

δj  Average of δi in node j: ∑ i∈Nj δi ∕Mj  

Δj  Loss minimizer for observations in node j: Δj =  

∑ i∈Nj Φ(yi,g
−1(Ft−1(xi) + s))  

Aj  Selected adjustment for observations in Nj  

NL  Partition that has a smaller Aj in the case of a two-node partition (Stunt)  

NR  Partition that has a larger Aj in the case of a two-node partition (Stunt)  

ΔL  Δ for observations in NL  

ΔR  Δ for observations in NR  

 

Table 2: Key Notation and Definitions in This Paper 
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2.4. Algorithms 

The estimation of the parameters, βt,at and at, in (2) is equivalent to solving the optimization 
problem:  

 

(3) 

Boosting adopts the forward stagewise method [16] that solves (3) by sequentially fitting a single 
weak learner and adding it to the previously fitted terms. The previously fitted terms are not 
readjusted as new terms are added into the model. This characteristic is commonly called 
adaptive and is outlined in Algorithm 1 [14].  

 

Algorithm 1. Forward Stagewise Additive Modeling 

1. Initialize F0(x)  
2. For t = 1 to T Do  

a. Estimate βt,at and at by minimizing ∑ i=1
MΦ(yi,g−1(Ft−1(xi) + βt,ath(xi;at)))  

b. Update Ft(xi) = Ft−1(xi) + βt,at h(xi;at) 
3. End For  

4. Output (xi) = FT (xi) 

 

From the definition of Δj in Table 2, we have βt,at = Δj for i ∈ Nj. The solution to Line 2a in 
Algorithm 1 is dependent on the loss function. As stated in Friedman [16], simultaneous 
estimation of both βt,at and at is generally difficult, and therefore the GB algorithm solves for the 
parameters separately. Specifically, at is first derived, and βt,at is then solved given the estimated 
at. To facilitate the comparison between DB and GB in later sections, we describe here the 
iterative GB approach in three steps, and the approach can be applied to any differentiable loss 
functions. The first step (Basis) involves calculation of the negative gradient of the loss function 
for each observation as a basis for the next steps. The second step (Regression) involves 
regressing the basis derived in the first step with the explanatory variables. For GBT, it is 
equivalent to finding the optimal split at by adopting the standard least-square approach. A J-
node partition induced by at will result. In the third step (Adjust), given the partitions at, the 
optimal βt,at is determined by minimizing the loss function. The approach can be described by the 
key action elements Basis, Regression and Adjust. The procedure is shown in Algorithm 2. 
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Algorithm 2. Gradient Boosting 

1. Initialize F0(x) to be a constant, F0(x) = ∑ i=1
MΦ(yi,g−1(β))  

2. For t = 1 to T Do  
a. Basis: Compute the negative gradient as the working response  

 

b. Regression: Fit a regression model to ri by least squares using the input xi and get 
the estimate at of βt,ath(xi;at)  

c. Adjust: Derive βt,at by minimizing ∑ i=1
M Φ(yi,g−1(Ft−1(xi) + βt,ath(xi;at)))  

d. Update Ft(xi) = Ft−1(xi) + βt,ath(xi;at) 
3. End For  

4. Output (xi) = FT (xi) 

 

For the squared-error loss, the negative gradient in Line 2a (Basis) reduces to the usual residuals 
yi − Ft−1(xi). With the absolute error loss, the negative gradient is the sign of the residuals. The 
algorithm then performs standard classification and regression tree split searching in Line 2b. 
After obtaining at from Line 2b (Regression), estimation of βt,at is then performed in Line 2c 
(Adjust). Separating the estimation of parameters substantially reduces the complexity of the 
modeling.  

In the Regression step, observations are partitioned into J-nodes. Trivially, group average Rj is the 
best estimate of ri within node j under least-squares approach. Thus, the overall square of error 
would be ∑ j=1

J ∑ i∈Nj {ri − Rj}2 = ∑ j=1
J ∑ i∈Nj {ri

2 − 2riRi + Rij2} = −∑ j=1
JMjRj

2 + C, where C = ∑ i=1
Mri

2. The 
goal of this step is to find at such that the square of error is minimized. Note that Rj is not used in 
the Adjust step when deriving βt,at.  

The gradient ri plays an important role in GB. Although it is not explicitly represented in Ft(x), it 
indirectly impacts the estimation of βt,at through at. Multiple theoretical and practical advantages 
can be found in adopting gradient descent; when the prediction and the response are close, the 
gradient is usually a good approximation of the loss minimizer. The average of the gradients is 
equal to gradients of the average because of the linearity of gradients. Thus, the partition at also 
optimizes the group gradient. Practically, the gradient can be calculated quite conveniently on a 
differentiable loss function. The gradient descent is also a standard practice in most function 
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estimation or optimization procedures [1, 2]. Since a gradient generally provides considerable 
accuracy in adjusting Ft(x), Bühlmann and Hothorn [7] propose to adopt the group mean as the 

adjustment. Mathematically, t,at = Rj for i ∈ Nj. Since the group mean Rj is calculated during the 
derivation of at, Regression and Adjust are essentially integrated, and run time can be saved.  

Section 3: Delta Boosting Modeling 

From the discussion above, we have strong motivation to use the gradient descent approach in 
GB. Friedman [16] explains that the three-step approach permits the replacement of the difficult 
function minimization in Equation (3) by least-square function minimization (Regression), 
followed by only a single parameter optimization. This paper finds the way to solve for the 
difficult function in Equation (3) simultaneously on trees as base learners. The approach can be 
easily adapted to other base learners. Compared to GB using both simulated and empirical 
examples, the new algorithm demonstrates a significant improvement of both computing 
efficiency and predictive accuracy. We first present the proposed DB boosting method in 
Algorithm 3 and walk through the DB mechanism by explaining the difference between that 
algorithm and Algorithm 2.  

 

Algorithm 3. Delta Boosting 

1. Initialize F0(x) to be a constant, F0(x) = ∑ i=1
MΦ(yi,g−1(β))  

2. For t = 1 to T Do  
a. Basis: Compute the individual loss minimizer as the working response  

 

Apply strictly monotonic transformation k(⋅) on δ if necessary.  

b. Regression: Obtain at = ∑ i=1
M ∑ i∈Nj Φ(yi,g−1(Ft−1(xi) + Δjh(xi;a))) with Δj 

defined in Table 2  
c. Adjust: It is integrated with Regression step with βt,at = Δj for i ∈ Nj.  
d. Update Ft(xi) = Ft−1(xi) + βt,ath(xi;at) 

3. End For  
4. Output (xi) = FT (xi) 
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3.1. Optimality of Gradient as the Basis 

The basis is used in the regression step to estimate h(x;at), which produces h(xi;at) mostly parallel 
to the basis. In turn, h(xi;at) dictates the estimation of βt,at. Thus, the choice of basis significantly 
impacts the predictive quality h(xi;at) and βt,at.  

In Algorithm 2, ri gives the best steepest-descent step direction in the N-dimensional data space 
at Ft−1(x). Steepest descent is one of the simplest of the frequently used numerical minimization 
methods and results in satisfactory results. However, the direction of ri can be far from the 
direction of adjustment needed when g−1(Ft−1(x)) is far away from yi.  

In DB, an individual loss minimizer is chosen as the basis. The choice should be intuitive because 
the aggregate loss is the sum of individual losses. Proposition 1 gives insight into why the 
individual loss minimizer serves as a competitive basis. In fact, we show that the individual loss 
minimizer is the optimal candidate in boosting application for many popular distributions to 
minimize the loss at any iteration. Since the loss minimizer is commonly addressed as delta, we 
call the proposed approach Delta Boosting (DB). We illustrate the formula in the case of trees as 
the base learner.  

Individual delta satisfies the following:  

 

Equation (4) is due to the definition of the link function and loss function. Intuitively, loss should 
be at a minimum when the prediction is equal to the response.  

at (partitions in the case of a tree) are dependent on the choice of basis. Using trees as the base 
learners for GB, the overall square of error ∑ j=1

J ∑ i∈Nj{ri − Rj}2 is evaluated at each split point at. 
The split points that result in minimal square error are selected for Adjust step. To prove that 
delta is the optimal basis in a given loss function, we prove that the loss can be improved by 
modifying, according to the suggestion by delta, the partition induced by any basis when the 
decision of the basis and delta do not agree. In the case of a two-node stunt, for any given basis 
that induces NL and NR and ∃i ∈ NL,k ∈ NR but δi > δk, a loss improvement will result through an 
element switch.  

Proposition 1. For all loss functions with given AL and AR with AR > AL (refer to Table 2 for 
definitions), there exists a threshold Ti such that the loss for observation i being assigned into NR 
will be smaller than that being assigned into NL if and only if δi > Ti. The threshold is unique if 
Φ(yi,g−1(F(xi))) is continuous on yi.  
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Proof. The loss function Φ(yi,g−1(Ft−1(xi) + δ)) can be rewritten as Φ(g−1(Ft−1(xi) + δi),g−1(Ft−1(xi) + 
δ)). It can then be transformed into Ψ(Ft−1(xi) + δi,Ft−1(xi) + δ) where Ψ(x,y) = Φ(g−1(x),g−1(y)). The 
new representation provides more clarity in interpreting the relation between the two 
parameters in the function. The loss function minimization procedure is attempting to get our 
prediction as close as the optimal prediction.  

We first prove the existence of Ti. Define ψ(s) = Ψ(Ft−1(xi)+s,Ft−1(xi)+AL)−Ψ(Ft−1(xi)+ s,Ft−1(xi) + AR). 
Using the convexity characteristic in Definition 1, ψ(s) < 0 if s ≤ AL. Similarly, ψ(s) > 0 if s ≥ AR. 
Further utilizing the convexity characteristic, ψ(s) is increasing when s ∈ [AL, AR]. Thus, there 
exists a Ti ∈ [AL, AR] such that ψ(s) < 0 if and only if s > Ti. Hence, the first part of the theorem is 
proved.  

The proof of uniqueness is trivial by using the mean value theorem on the strictly monotonic 
ψ(s). □  

Proposition 1 demonstrates the intuition of using delta as a basis. As long as δi is large enough, 
loss will improve with observation i moving to NR. On the other hand, the gradient descent 
approach does not guarantee the same characteristic. To prove that this mechanism is optimal, 
we first need to understand the impact of the grouping in loss reduction at each iteration.  

In the following three theorems, we give an optimality result for three major categories of loss 
functions.  

Theorem 1. Delta is the optimal basis for square deviation, absolute deviation, Huber loss and t-
distribution function.  

Proof. The first three loss functions can be found in Sections 4.1, 4.2 and 4.4, respectively, in 
Friedman [16]. From Friedman [16] and Huber [19], the Huber loss function attempts resistance 
to a long-tailed distribution and outliers while maintaining high efficiency for normally 
distributed errors. The representation of the Huber loss function is  

 

Φ(y,g−1(F)) can also be represented as m(|y − F|) for some strictly increasing function m(⋅) for all 
four loss functions. Thus, δi = yi − Ft−1(xi). Assume that there exists i ∈ NL and j ∈ NR such that δi > 
δk, then at least one of the two following cases is true and Φ(y,g−1(x)) can be improved by an 
element switch.  

Case 1. δi > (ΔL + ΔR) ∕ 2  

By switching element i to NR, we create a new partition and new β accordingly. Let the resulting 
loss function be Φ*:  
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The inequality (5) due to the right-hand side does not reflect the loss reduction after adjusting 
the β to minimize the aggregate loss function given by the new partition.  

Case 2. δk < (ΔL + ΔR) ∕ 2  

Using the same logic in case 1, it is trivial that switching element j to NL will result in a better loss. 
Cases 1 and 2 cover all the sets in the parameter space in which δi > δk.  □  

Theorem 2. Delta is the optimal basis for Bernoulli and K-class logistic regression and 
classification.  

Proof. The two loss functions can be found in Section 4.5 and 4.6, respectively, in Friedman [16]. 
Bernoulli is considered the most commonly used benchmark in comparing model performance. 
K-class logistic can be thought of as an extension to the Bernoulli. Interested readers can refer to 
[16] for more details.  

Since δ = ∞ when y = 1 and δ = −∞ when y = 0, δi > δk thus implies δi = ∞ and δk = −∞. The loss 
function will be improved if i ∈ NR and j ∈ NL.  □  

The above two theorems cover all listed distributions in Friedman [16]. The proposed basis in 
fact works perfectly in another major family as well, as shown in the following theorem.  

Theorem 3. Delta is the optimal basis for the Tweedie family using negative log likelihood as the 
loss function with log link (see Table 3).  

 

 

p  Distribution  

p = 0  Gaussian  

p = 1  Poisson  

2 > p > 1  Compound Poisson-Gamma distribution or simply called Tweedie  

p = 2  Gamma  

3 > p > 2  Positive stable distributions  
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p = 3  Inverse Gaussian  

p > 3  Positive stable distributions  

p = ∞  Extreme stable distributions  

Table 3: Members in Tweedie Family

 

Proof. Introduced in Tweedie [29] and elaborated in Jorgensen [21], the Tweedie family is an 
important subset of the exponential family. Below is the list of the members of the family.  

No known distribution is found for 0 < p < 1. The negative log likelihood of the Tweedie family 
with log link is in the following form:  

 

In all cases, δi = ln(yi ∕ eF
t−1

(x
i
))  

Assume ∃i ∈ NL and j ∈ NR such that δi > δk, then at least one of the two following cases is true 
and Φ(y,g−1(x)) can be improved by an element switch.  

Case 1:  

 

If δi satisfies the above inequality, then Φ(yi,g−1(Ft−1(xi) + ΔR)) < Φ(yi,g−1(Ft−1(xi) + ΔL)). The case 

where p {1,2} is used for illustration.  

Switching element i to NR and letting the resulting loss function be Φ*,  
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Case 2:  

 

Using the same logic, it is trivial that switching element j to NL will result in a better loss. Cases 1 
and 2 cover all the elements in the parameter space in which δi > δk. □  

From the above illustrations, we show that using δ as the basis yields optimal results in many 
popular distributions.  

3.2. Regression and Adjust  

Section 3.1 shows that delta acts as an excellent basis and, as shown in the Basis step of 
Algorithm 3, is the first key difference with GB. However, challenges must be overcome in 
adopting delta as the basis if the Regression and Adjust steps are not properly adjusted.  

 Nonlinearity of delta: Recall from the Regression step in Algorithm 2 that at is derived to 
solve the regression problem of J-node trees, that is, to minimize −∑ j=1

JMjRj
2. Thus, both 

the order and the magnitude of ri of ri impact the selection of at in the Regression step. 
Unfortunately, except for the square-error loss function, no loss function has the linearity 
property. It means is not necessarily in proximity to the Δj. Thus, using regression 
methods to obtain at is not likely to be desirable.  

 Undefined values of delta: Also, in the case of δi = ±∞, the average of the group will be 
undefined, and the occurrence of such a situation is not uncommon. All δi in Bernoulli 
and the K-class classification are infinite, and δi = −∞ when yi = 0 in Poisson with log-link. 
Considering that Bernoulli and Poisson are the most popular choices for counting 
distributions, the proposed approach cannot be used without the problem being 
attended to. 

To overcome the difficulty, we propose to transform δ into well-defined values. A strictly 
monotonic function preserving the order of δ’s is sufficient for the transformation. 
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Consequently, the transformation is loss function specific. For example, in Poisson, δi = ln(yi ∕ 

Ft−1(xi)). The transformation i = yi ∕ Ft−1(xi) is suggested because it serves the same purpose as 
δi as a basis shown in the previous subsection (only ordering matters) without encountering a 
computing issue when yi = 0.  

We also recognize that the goal is to minimize the aggregate loss function. Instead of solving the 
regression problem for the gradients and inducing at, we directly seek at to minimize the 
aggregate loss function. Along with the search for optimal at, we calculate the aggregate loss 

minimizer Δj instead of group average .jj  Since Δj is an immediate outcome, it implies that the 

Regression and Adjust steps are integrated as stated in the Regression and Adjust steps in 
Algorithm 3.  

This immediately leads to the paper’s most critical conclusion: The novel approach 
simultaneously solves for the optimal at and βt,at. Three significance aspects of the conclusion can 
be identified. First, we provide an answer to a difficult simultaneous estimation problem [16]. 
Second, the estimation is optimal. Not only is the individual delta the best basis, but the 
estimation of at and βt,at results in obtaining the global minimum loss based on the given base 
learner. Thus, DB is the best boosting method in boosting the family for most of the popular 
distributions in the loss reduction criterion as stated in Theorems 2, 3 and 4. Third, since at and 
βt,at are optimally integrated, the boosting algorithm becomes less computationally demanding 
and thus more efficient.  

For interested readers, the explicit Poisson, Normal, Tweedie and Bernoulli algorithms are shown 
in Appendix A.  

Section 4: Asymptotic Extension of DB 

Section 3 shows that DB is the optimal boosting mechanism for a wide variety of distributions. 
Readers can easily infer from Proposition 1 that the sufficient condition for delta to be optimal is 
that the distribution and link function of interest generate independence between Ti and F(xi). 
This ensures that in the case where i ∈ NL and j ∈ NR but δi > δk, an element switch will also result 
in a loss improvement.  

However, not every combination of distribution and link function offers the independence 
feature mentioned above. In particular, when Δ for some loss functions cannot be explicitly 
solved for, there exist cases where δi > δk but Φ(yi,g−1(Ft−1(xi) + δR)) > Φ(yi,g−1(Ft−1(xi) + δL)) and 
Φ(yk,g−1(Ft−1(xk) + δR)) < Φ(yk,g−1(Ft−1(xk) + δL)). Hence, an element switch does not necessarily 
result in a loss reduction. The distributions in Section 3 are immune to the above situations 
because the threshold Ti in Proposition 1 is independent of Ft(xi) and thus the same for all 
observations. In this section, we propose an asymptotic modification of DB to overcome the 
above-mentioned situation.  
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We first recognize that  

 

where means both sides are asymptotically equal when Δj → 0, implying the adequacy of the 
first-degree Taylor approximation on line 7. The error of the approximation becomes negligible 
when Δj is small. In most data-mining procedures, Δj has a diminishing pattern after enough 
iterations. The pattern is not significantly impacted by the size of the data; rather, it is 
dependent on the number of iterations. Lemma 1 proves that the convergence is guaranteed to 
result for large iterations.  

We now define the asymptotic basis δ* and adjustment factor Δ* to be as follows:  

 

We can also establish a relation between Δ* and δ* through  

 

From Equation (8), we can view Δ* as a weighted average of δ* with the convexity of the loss 
function. Note that δi

* and ri can be related by the following equation:  

 

From this perspective, we can interpret ri as capturing the direction of adjustment and δi
* as 

correcting for the magnitude needed to arrive at the optimal loss. Without the correction, the 
negative gradient approach will assign too much weight to observations with high second 
derivatives. In the case where the negative log likelihood of any distribution is used as the loss 
function, the above formula suggests that δ* is corrected for the corresponding variance.  

In the rest of the section, we will show the asymptotic behavior of this extension of DB.  
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Lemma 1. In DB, Ft(x) converges.  

Proof. Since Φ(y,g−1(Ft−1(x))) ≥ Φ(y,g−1(Ft(x)))∀t and Φ(y,g−1(Ft(x))) ≥∑ i=1
MΦ(yi,δi) where δi is the 

individual loss minimizer of observation i. limt→∞Φ(y,g−1(Ft(x))) exists according to the monotonic 
convergence theorem. Using the identifiability characteristic of Φ(y), Ft(x) converges to F(x). □  

Lemma 2. In DB, the loss improvement  

Φ(y,g−1(Ft−1(x))) - Φ(y,g−1(Ft(x))) ∑ j=1
J ∑ i∈NjΦ′′(yi,g−1(Ft−1(xi)))(δi

*− Δj
*)2∕2 + C,  

where C = −∑ iΦ′′(yi,g−1(Ft−1(xi)))δi
2∕2.  

Proof. From Lemma 1, Ft(x) → F(x) for some F(x). Thus, Δj
* will converge to 0. Using Taylor’s 

expansion on Φ(y,g−1(Ft−1(x))) for sufficiently large t, we have  

 

The second asymptotic equation is a consequence of Equation (6). Also,  

 

Combining, we have  

 

□  
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The representation offers a simple interpretation of the loss improvement in each iteration as a 
weighted square error between the δ* and Δ*.  

Theorem 4. Asymptotically, Δ* and δ* are the optimal boosting candidates.  

Proof. Assume there exists i ∈ NL and j ∈ NR such that δi
* > δj

*, and when t is sufficiently large, at 
least one of the two following cases is true and Φ(y,g−1(Ft(x))) can be improved by an element 
switch.  

Case 1: δi
* > (ΔL

* + ΔR
*) ∕ 2  

Let Φ* be the loss after an element switch. From Lemma 2,  

 

Case 2: δj
* < (ΔL

* + ΔR
*) ∕ 2.  

Using the same logic, it is trivial that switching element j to NL will result in a better loss. Cases 1 
and 2 cover all the elements in the parameter space in which δi

* > δj
*.  

Section 5. Simulation Studies 

In this section we conduct several simulation studies to compare the performance of DB and GB. 
We first generate simulated data using the procedures in Algorithm 4 for three distributions: 
Normal, Bernoulli and Poisson.  

 

Algorithm 4. Data Simulation and Modeling Procedures 
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1. The formula of the covariates: Z = α1 +α2 +α3 +α4  with defined 
below.  

2. For s = 1 to S Do  
a. Initialize the random seeds (100,000 + s)  
b. Generate α1,α2,α3,α4 from N(0,1)  
c. For i = 1 to N Do  

i. Generate Xi,1,Xi,2,Xi,3 from N(0,1) and create Xi,4 =  
ii. Standardize Xi,j’s by the formula  

= Xi,j ∕ (maxi(Xi,j) − miniXi,j) * 4 − 2 

iii. Zi = α1 + α2 + α3 + α4 
d. End For  
e. Standardize Zi by the formula Zi ← Zi ∕ (max(Zi) − minZi) * 4 − 2.  
f. Transform Zi to the mean through the link functions of the corresponding 

distributions; e.g., for Bernoulli, Zi ← (1 + e−Z
i)−1  

g. Simulate observations yi from the corresponding distribution and Zi; e.g., for 
Bernoulli, yi ~ B(Zi).  

h. Model the simulated data by GB and restart the random seed at (100,000 + m)  
i. Model the simulated data by DB and restart the random seed at (100,000 + m) 

3. End For 

 

We set the number of data trials M = 100. In each trial, the performance of GB and DB are 
compared. With a large number of trials, we eliminate the potential concern regarding the 
manipulation of the random seeds.  

The data are partitioned into three datasets: training, testing and holdout. The training dataset is 
used to estimate the underlying parameters, whereas the testing dataset is used to decide an 
optimal stopping time. The holdout dataset is used to perform model diagnostics. In each trial, 
we generate 80,000, 20,000 and 25,000 observations for the training, testing and holdout 
dataset, respectively.  

Overfitting is known to be an unwanted consequence of data mining. If left unattended, most 
models can fit the train dataset with high precision but provide poor predictive strength to 
independent data. Gradient boosting is not an exception, although Friedman [17] states that it is 
affected to a lesser extent. Friedman describes this phenomenon as slow overfitting.  

Nevertheless, Friedman [16, 17] further improves the performance of GB by injecting two 
regularization techniques, shrinkage and stochastic bagging (Breiman [1, 3, 5], Friedman [17] and 
references therein), to temper the overfitting issue. Noise suppression techniques are in general 
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compatible with each other and generate satisfactory results. In this paper, both regularization 
approaches are adopted to enhance the model performance.  

To compare the performance of predictive modeling techniques, generally accepted diagnostics 
such as overall losses, lifts and double lifts are adopted. Each diagnostic compares the 
performance given certain assumptions. The conclusion can thus be misleading if the 
assumptions made are not valid. If a model outperforms in all diagnostics, then the conclusion is 
robust to those assumptions and thus is more reliable. We describe the diagnostics used and the 
corresponding results in the rest of this section.  

5.1. Loss  

When a loss function is specified, the aggregate loss is the most relevant statistic to assess 
whether a predictive model performs in a desirable fashion. A high value of loss indicates poor 
performance of the model. For the distributions used, we used the negative log likelihood as the 
measure of loss.  

For a Normal distribution, the loss is (yi −g−1(F(xi)))2 + Ci
N for some constant Ci

N. The loss is 
dependent on only the difference but not the value of F(xi)). On the other hand, the loss for 
Poisson is λi − yi log(g−1(F(xi))) + log(yi!). The same amount of difference yi − g−1(F(xi)) will 
translate into a smaller loss for larger g−1(F(xi)), meaning that we have higher tolerance on a 
large difference if the predicted response is high. The tolerance is even higher for a Gamma 
distribution.  

Table 4 captures the summary of statistics regarding the loss on the holdout dataset. Unlike 
comparing the negative log likelihood on train dataset, requiring an adjustment for potential 
overfitting, the raw holdout negative log likelihood is the measure of assessing fitness. For the 
ease of comparison, all statistics below are based on the loss function of GB – the loss function 
of DB.  

 

Statistics  Poisson  Bernoulli  Normal  

Number of times the difference is positive  98  68  0  

Mean  62.81  3.82  0  

25th percentile  40.19  −0.77  0  

Median  65.71  4.17  0  

75th percentile  80.07  7.65  0  

 



   24 

 

 Copyright © 2016 Society of Actuaries 

Table 4: (Loss of GB − Loss of DB) in Test Dataset 

 

DB for Poisson clearly outperforms the corresponding GB version. The loss of DB is smaller than 
GB’s in 98 of 100 trials. The mean difference of losses is also large. Using the likelihood ratio test 
approach, GB needs to lose more than 99 degrees of freedom to have the deviance of 62.81 
deemed not significant at the 0.05 significance level. However, both models are using the same 
set of variables. Thus, DB is a better candidate in Poisson modeling.  

The difference is less dramatic in the case of Bernoulli, because there are more similarities in the 
algorithms. In Section 4 we showed that δ* is a closer proxy to r than δ. Both versions adopt the 
asymptotic Δ* for adjustment. The simulation results for Normal are for illustration only, because 
the algorithms for DB and GB are identical for a Normal negative log likelihood. With the same 
seed, the results should be identical as shown. Statistics for Normal are dropped in the 
remaining exhibits for the same reason.  

5.2. Lift 

We can also assess the performance of the candidates by utilizing the lift plot. Lift is a popular 
diagnostic tool in predictive modeling because of its intuition. To derive the measure, we sort 
the prediction and group the observations into 10 deciles. Lift is defined to be the ratio of the 
weighted mean of the response in the top decile and the weighted mean of the bottom decile. A 
high lift ratio implies a wider spread of prediction and hence the model’s ability to spot extreme 
observations. Readers should note that the lift rewards models that offer higher differentiating 
power but does not reveal the model’s accuracy.  

The fitness of the lift curve is an aspect that is usually overlooked. We can assess the fitness 
through R2 of the plot of average responses over average predictions for the deciles, or sum of 
squared difference between deciles’ average response and average predictions. If the points are 
aligned with the line y = x, the model has a high predictive performance. A R2 close to 1 indicates 
a high overall fit. Alternatively, one can use the sum squared difference between the prediction 
and response as a measure of accuracy.  

From Figure 1, we see that both DB and GB perform extremely well. The prediction and response 
are almost the same. R2 is 1 at four significant figures. The lift of GB and DB is 4.79 and 4.78, 
respectively.  

 



   25 

 

 Copyright © 2016 Society of Actuaries 

 

Figure 1: Lift Plot of GB and DB for Poisson Negative Log Likelihood 

 

Table 5 summarizes the statistics regarding the lift plot in 100 trials.  

 

Statistics  Poisson  Bernoulli  

Mean  1.002  0.995  

Number of times the ratio is greater than 1  54  45 

25th percentile  0.990  0.972  

Median  1.001  0.995  

75th percentile  1.013  1.023  

 

Table 5: Lift of DB/Lift of GB 

 

The results suggest that GB and DB perform similarly, with much less contrast compared to the 
inference from loss analysis. The difference comes from the lift focusing on the extremes and 
thus favors the squared loss, instead of models that penalize tail behavior. In Poisson, variance is 
proportional to the expectation. Thus, DB gives observations less weight at the right tail. In GB, 
the negative gradients are ri = yi − E(Y i|xi) for all three distributions, resembling the behavior of 
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squared loss. It makes GB a more favorable candidate for good lifts. R2 values for both modeling 
techniques are generally high, with an average of 98.5%.  

5.3. Double Lift 

Double lift on holdout data provides a direct comparison between the performance of two 
models, DB and GB in this case. Observations are sorted in the ratios of DB prediction over GB 
prediction and are grouped by the intervals to which they belong (ratio of 0.99 ∈ (0.95,1]). For 
each bucket, we calculate the ratio of total response over total GB prediction and ratio of total 
DB prediction over total GB prediction. Blue and red lines show the trend for the ratios, 
respectively. A positive correlated trend indicates that a portion of the residual from GB can be 
explained by DB. If both lines overlap, this indicates that boosting explains a high portion of 
residual power and thus outperforms GB. If no trend is observed, it indicates that the ratio 
distributes randomly, and thus the performance of both models is similar. On the other hand, a 
double lift plot with a negative trend would indicate DB is inferior to GB.  

A rephrasing of the above in an actuarial context may help. Consider DB as a new costing 
algorithm, GB as the current one and response as the claims amount. The ratio of the prediction 
by the new algorithm over the current prediction is called dislocation. Correspondingly, the ratio 
of the third over the second is the loss ratio. For a bucket with high dislocation, say, (1.11, 1000], 
we should expect the loss ratio should be high to justify the rate change and accept the strength 
of the new algorithm over the current. If the loss ratio is constant (no trend), it indicates the new 
algorithm is not better. The case for reversing the trend can be easily deduced. A dislocation 
exercise is essential for pricing actuaries because a rate increase will likely drive lapse rate, 
whereas a rate decrease will indicate a conceiving of profits. Thus, rate change of both sides has 
to be intensively studied, and normally a rate capping is applied to temper extreme rate changes. 
Double lift can be considered a more comprehensive dislocation review exercise. With the 
double lift plot, actuaries have a robust tool to assess the new algorithm’s accuracy. Using (1.11, 
1000] again as the example, the average dislocation (rate change) for this bucket is 1.14 (from 
the red line), and the average loss ratio is 1.16, indicating that the proposed increase reflects the 
risks inherited from the policyholders.  

From Figure 2, we see a significant positive relationship between the Response/(GB prediction) 
and the dislocation from the red line. We can also deduce from the x-axis that the difference 
between DB and GB prediction is not significant. Most of the observations have a deviation of 
2%. For readers’ reference, the loss of DB and GB in this trial for training dataset is −2,052,687 
and −2,052,684, respectively.  
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Figure 2: Double Lift Plot of DB over GB for Poisson Negative Log Likelihood 

 

Table 6 captures the summary of statistics for the double lift plot in 100 trials. The conclusion 
from double lift analysis favors the adoption of DB because it is more capable of picking up the 
residual of GB than the reverse in the case of Poisson. Again, the difference between the 
asymptotic DB and GB in the case of Bernoulli is less significant.  

 

Statistics  Poisson Bernoulli 

(Slope)  D/G  G/D  D/G  G/D  

Mean  0.770  0.406  0.185  0.088  

Number of times D∕G ≥ G∕D  93 59 

25th percentile  0.709  0.205  0.091  0.003  

Median  0.807  0.350  0.169  0.108  

75th percentile  0.864  0.542  0.268  0.171  

 

Table 6: Double Lift 
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Section 6. Application to Insurance Data 

In this section we test Delta Boosting with an insurance claim data from a Canadian insurer. The 
data consists of policy and claim information at the vehicle level for collision coverage in a 
particular province. Collision coverage protects the insured from the cost of repairing or 
replacing their vehicle in the event that the covered vehicle collides with another vehicle or any 
object in or on the ground.  

The data set includes the experience for accident years 2001 to 2005. The response to be 
predicted is the claim frequency, the number of claims per vehicle year. Severity (average 
payment to a claim) and loss cost (the average payment per vehicle year) are also popular 
responses in actuarial pricing. However, generally accepted actuarial distributions (Gamma and 
Tweedie respectively) for those responses are not readily available in computing packages for 
some of the modeling techniques, so we will focus on claim frequency modeling. More than 
1,000 variables are available in the datamart in which the data are stored, including 
policyholders’, drivers’ and vehicles’ characteristics. The data includes 290,147 vehicle years, 
commonly called exposures, and an overall claim frequency of 4.414%. Although the frequency 
falls into the typical industry range of 4% to 8%, this represents an imbalanced or skewed 
distribution, which commonly hinders the detection of claim predictors and eventually decreases 
the model’s predictive accuracy [28]. Thus, a proper selection of modeling technique and loss 
function is required to guarantee an accurate estimation.  

Lee and Antonio [22] use the same data, with the deletion of an insignificant portion of 
observations with missing values, to compare performance of a few competing predictive 
modeling techniques. We randomly select 85% of the data for training and testing purposes. 
Model results are derived based on those data only. The rest is used as an independent holdout.  

We apply the same treatment using DB with identical parameters to GB suggested, with the 
exception of applying a different shrinkage factor to get comparable selected iterations. 
Interested readers can find a comprehensive treatment of data processing and modeling in the 
Lee and Antonio [22].  

Variable Importance: The models are different because they suggest different function forms of 
prediction F(x). Consequently, the same feature may not have the same influence in the models. 
For example, a variable with a strong exponential relationship with the response may not be 
considered a predictive variable in Generalized Linear Model (GLM). Studying the difference 
between the importance of each variable usually can offer actuaries insight into which variables 
should be selected and transformed to capture the missed predictive power.  

In boosting, the importance is derived based on the accumulated reduction of losses by the 
variables [16] and is normalized such that the sum of the importance equals 100. Any individual 
number can be interpreted as the percentage contribution to the overall model.  
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Figure 3 shows the 10 most influential variables. It is obvious that the ranking is not preserved 
between models. In fact, the magnitude of importance for some variables varies significantly. For 
example, the importance of renewal counts is 2.9 and 5.0 for GB and DB, respectively.  

 

 

Figure 3: 10 Most Important Variables by DB with Matching Importance from GB 

 

If we extend the comparison to other modeling techniques, the difference is more significant. 
We list the results of DB against GB, GLM, Generalized Additive Model (GAM) and elastic net as a 
comparison. In elastic net, a regularized GLM, we find the coefficients in the following:  

 

λ is chosen to be the biggest penalty factor such that its deviance is less than the smallest 
deviance through fivefold cross-validation; α is the corresponding weight to result in the 
deviance.  

The importance of the variable using GLM and elastic net is derived through the drop-in 
deviance approach. The deviance of the model that drops the variable is calculated and subtracts 
the deviance of the full model. The change of deviance offers an intuition of the importance of 
the variables. Again the numbers are normalized such that the total is 100 (see Table 7).  
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Variable  DBM  

DBM 

Rank(R)  GLM  GLM R  GBM  GBM R  EN  EN R  

         

Driver’s class  14.75  1  24.49  1  16.02  1  21.77  1  

Years licensed  13.82  2  4.26  9  14.68  2  4.33  8 

Ownership 

length  7.42  3  0.13  21  5.98  5  8.68  5  

Renewal count  6.54  4  7.13  4  3.16  11  8.09  6  

Deductible  6.53  5  14.31  2  4.75  7  12.43  2 

Rate group  5.52  6  5.74  6  5.45  6  2.20  12  

Credit score by 

region  5.31  7  2.86  11  6.40  4  2.86  10  

Age licensed  4.93  8  1.34  14  6.60  3  9.57  4  

Driver’s age  4.35  9  2.92  10  4.52  8  0  35  

Years since last 

conviction  4.06  10  12.77  3  4.21  10  10.03  3  

         

Table 7: Variable Importance by Model Candidates 

 

This comparison can provide actuaries insights on variable selection and enhance the base GLM 
models.  

Partial Dependence Plot: Actuaries can then dig deeper to understand how individual variables 
predict differently through a partial dependence plot. Defined by Friedman [16], a partial 
dependence plot is a visualization tool that views the partial dependence of the approximation 
F(x) on selected small subsets of the input variables. We can study the plots, or as commonly 
called, differential plots in actuarial science, for the variables for further investigation. As an 
illustration, the plots for years licensed and renewal counts are depicted in Figure 4.  
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Figure 4: Differential Plots for GB and DB 

 

The shaded bar indicates the portion of risk at the level, and the line indicates the differential. 
We observe that the difference between GBM and DBM is visible even at the levels with 
significant exposures. These differences contribute to the diverging predictions between both 
models. The curves for GLM and GAM are usually more dramatic because of the extrapolation of 
linearity, whereas DBM and GBM tend to have a flattened curve at the extreme. Elastic net 
attempts to minimize the overfitting by penalizing high coefficients.  

To further compare the performance between DB and GB, we adopt the loss, lift and double lift 
diagnostics suggested in Section 5.  

Negative log likelihood: Since we have an ex-ante belief that the claim count follows the Poisson 
distribution, Poisson negative log likelihood is used as the basis of loss. The assessment of 
appropriateness in using Poisson is outside the scope of this paper. However, despite the 
widespread adoption of Poisson in frequency modeling, readers are suggested to consult Ismail 
and Jemain [20] and references therein for the overdispersion issue in claims data and other 
suggested alternative distributions.  

The best model should have the lowest negative log likelihood among the candidates in the 
holdout data. Table 8 illustrates the negative log likelihood for all the candidate models.  

 

No.  Model  Holdout  

1  GLM  0.00  
2  GB  −135.80  
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3  DB  −139.50  

Table 8: Normalized Negative Log Likelihood of Competing Models 

 

We again focus on the raw holdout deviance as the measure of assessing fitness with GLM’s 
deviance serving as the benchmark. Using DB as an example, −139.5 = 2 * (negative log 
likelihood of DB − negative log likelihood of GLM). Based on the results shown in Table 8, we 
conclude that one can extract more information from the data using DB than GB.  

Lift: The lift plot for the holdout data suggests that the lift of DB at 8.32 is higher than GB lift of 
7.82.  

Figure 5 shows that all candidates predict the frequency fairly well on each decile because all 
points are close to the x = y line. DB has a higher lift than GB, which in turn has a higher lift than 
GAM and GLM. The result is consistent with what the likelihood table suggests. Since boosting 
and GAM perform better than GLM, it would be desirable if actuaries can use them to improve 
on the GLM model [22].  

 

 

Figure 5: Lift Plots for Holdout Data 

 

Double Lift Plot: We conclude the section with the double lift plot (see Figure 6).  
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Figure 6: Double Lift DB over GB 

 

It is obvious that the actual over GB (red) has a positive trend and is aligned to the DB to GB ratio 
(blue). It indicates that DB is capable of explaining the residual of GB. Based on the assessment 
of all diagnostics, we can conclude that DB outperforms GB in this actual claim count data.  

Section 7. Discussion 

The Delta Boosting Machine is presented as a forward stagewise additive model. It sequentially 
fits a relatively simple base learner to complement the running prediction. The model attempts 
to find the optimal adjustment on the prediction that reduces the loss to the maximum extent. 
Instead of relying on the negative gradient, we adopt delta as the basis. The motivation is 
intuitive: a higher delta requires higher adjustment to generate satisfactory loss improvement. 
Thus, it is more beneficial to have delta with similar magnitude partitioned together.  

Delta for some loss functions can be computationally undefined. We developed a mechanism 
that allows the use of any monotonic transformation of delta as the basis. With a suitable 
transformation, delta with well-defined values can be obtained for all loss distributions. This is 
made possible through removing the reliance of the magnitude of delta in deriving at. Instead, 
we integrate Regression and Adjustment steps and estimate at and βt,at simultaneously.  

Some common regularization techniques including bagging and shrinkage are adopted to help 
reduce the overfitting. Other techniques, such as conditional inference and pruning, may also 
work well when implementing the model.  
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Although DB cannot be proven to be optimal universally, it works very well in many common 
modeling situations. The asymptotic version helps us to understand that DB eventually 
outperforms other boosting members at later iterations. This asymptotic behavior does not 
depend on the number of observations, but, rather, it describes the behavior when Δ becomes 
small. Thus, a small shrinkage is desirable to help guaranteeing a better performance.  

Like GB, DB provides the ability to assess variable performance through measures such as a 
relative influence chart and the marginal plot [16]. We can also assess overall model 
performance through losses, lifts and double lifts on the holdout sample. With the help of these 
diagnostics, empirical tests have validated the theory and provide confidence in adopting DB.  

Application of DB to insurance pricing can bring substantial economic benefit to insurance 
companies. Retail insurance is in general highly competitive for the open market, and with the 
availability of premium aggregators, clients can easily pick the most attractive offering among 
insurers. It implies that not only does the pricing model have to be accurate overall or for coarse 
segments, but it has to be accurate for more refined customer groups. Otherwise, the 
underpriced segment will be attracted to the company, which will result in an operating loss, 
whereas the loss cannot be made up by the overpriced segment because those customers will 
be attracted to other companies. From this point of view, applying DB can significantly limit the 
selection problem, compared to other competing candidates mentioned in this paper, including 
GB.  

Going further, predictive models can be found to be influential in understanding the customer 
life cycle, including the conversion rate, renewal rate and lapse rate. A more accurate forecast 
for those components can help insurers to derive a strategy that improves their overall 
attractiveness and competitive edge.  
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Appendix A. GB and DB Algorithms for Bernoulli, Normal, Poisson and Tweedie 

distributions 

This appendix presents a head-to-head comparison between the two algorithms for Bernoulli, 
Normal, Poisson and Tweedie distributions.  

 

 ______________________________________   
 GBM–Bernoulli     
 _____________________________________     

1: F0 = ln( )     
2: For t = 1 to T Do     
3:    ri = yi - pi     
   pi = (1 + eF

t−1
(x

i
)) −1     

4:    Find the best split at to form J partitions  
based on ri using standard CART approach.     

5:    βt,at = ∀i ∈ Nj     
6:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     
7: End For     

8: Output (x) = FT(x)  
 

 _____________________________________   
 DBM–Bernoulli     
 _____________________________________  

1: F0 = ln( )     
2: For t = 1 to T Do     
3:    δi = (yi − pi)∕(pi(1 − pi))     
4:    pi = (1 + eF

t−1
(x

i
)) −1     

5:    Find the best split at to form J partitions  
based on δi using standard CART approach.     

6:    βt,at = ∀i ∈ Nj     
7:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     
8: End For     

9: Output (x) = FT(x)  
 

Algorithm 9: Algorithms for Bernoulli 

 

 

 

 

_______________________________________    
 GBM–Gaussian     
 ______________________________________    
1: F0 = ∑ i=1

Myi∕M     
2: For t = 1 to T Do     
3:    ri = yi - Ft−1(xi)     
4:    Find the best split at to form J partitions  
based on ri using standard CART approach.     
5:    βt,at = ∑ i∈Njyi − Ft−1(xi)∕M∀i ∈ Nj     
6:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     

_____________________________________   
 DBM–Gaussian     
 _____________________________________ 
1: F0 = ∑ i=1

Myi∕M     
2: For t = 1 to T Do     
3:    δi = yi - Ft−1(xi)     
4:    Find the best split at to form J partitions  
based on δi using standard CART approach.     
5:    βt,at = ∑ i∈Njyi − Ft−1(xi)∕M∀i ∈ Nj     
6:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     
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7: End For     

8: Output (x) = FT(x)  
 

7: End For     

8: Output (x) = FT(x)  
 

Algorithm 10: Algorithms for Gaussian 

 

 

_______________________________________ 
 GBM–Poisson     
 ______________________________________   

1: F0 = ln( )     
2: For t = 1 to T Do     
3:    ri = yi − eF

t−1
(x

i
)     

4:    Find the best split at to form J partitions  
based on ri using standard CART approach.     

5:    βt,at = ln ∀i ∈ Nj     
6:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     
7: End For     

8: Output (x) = FT(x)  
 

_____________________________________     
 DBM–Poisson     
 _____________________________________  

1: F0 = ln( )     
2: For t = 1 to T Do     

3:    δi =      
4:    Find the best split at to form J partitions  
based on δi using standard CART approach.     

5:    βt,at = ln ∀i ∈ Nj     
6:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     
7: End For     

8: Output (x) = FT(x)  
 

Algorithm 11: Algorithms for Poisson 

 

 

 

 _______________________________________   
 GBM–Tweedie     
 _______________________________________ 

1: F0 = ln( )     
2: For t = 1 to T Do     
3:    ri = yieF

t−1
(x)(1−p) − eF

t−1
(x)(2−p)     

4:    Find the best split at to form J partitions  
based on ri using standard CART approach.     

5:    βt,at = ln ∀i ∈ Nj     
6:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     

____________________________________   
 DBM–Tweedie     
 ____________________________________    

1: F0 = ln( )     
2: For t = 1 to T Do     

3:    δi =      
4:    Find the best split at to form J partitions  
based on δi using standard CART approach.     

5:    βt,at = ln ∀i ∈ Nj     
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7: End For     

8: Output (x) = FT(x)  
 

6:    Update Ft(x) = Ft−1(x) + βt,ath(x;at)     
7: End For     

8: Output (x) = FT(x)  
 

Algorithm 12: Algorithms for Tweedie 
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