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Section 1: Purpose and Acknowledgements

1.1 Purpose

Creating decrement rate tables from a comprehensive set of data is a lengthy and time consuming task.
Such tables often have numerous inputs (such as Age, Gender, Benefit Amount etc.) and the creation of
decrement tables, aside from the work of calculating the appropriate rate tables requires significant
effort to ensure that each possible combination of inputs results in a reasonable estimated decrement
rate.

We have found that by using the tree modeling capabilities available in most statistical packages (we used
R for this study), we were able to quickly develop recovery and mortality rates that appear to fit the data
extremely well. Additionally, the tree modeling methodology avoids the possibility of producing
unreasonable rates where a traditional approach could potentially be swayed by extreme values in the
data.

The use of Predictive Analytic techniques is rapidly expanding within the actuarial community. We hope
that this report provides additional insights into how these techniques can be used. We have also
provided the R code that was used to develop these models so as to simplify the learning curve for
anyone interested in further exploring these methods.

1.2 Scope

The 2004 — 2012 Group Long Term Disability (GLTD) Database provides a rich source of robust data
regarding the recovery and mortality experience of about 25 companies who insure Long Term Disability
business. This report details the results obtained from fitting a tree model to this data so as to estimate
recovery and mortality rates.

The most recent release of this database also included several new variables that were not previously
part of this database, namely:
Region
Case Size
Integration with Short Term Disability
Industry SIC Code
Taxability of Benefits
Indexed Monthly Salary
7. Company Size
We developed various models including these new variables to determine whether the new variables
would improve the predictive ability of the models.

I S

The bulk of this report is devoted to the modeling of non-maternity related recovery rates. However, the
text applies equally to mortality rates and maternity recovery rates — models for these are discussed
towards the end of the report.
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This study data relates to claims already incurred, and the ultimate recoveries and deaths associated with
these claims. The study does not review the incidence of disability claims.

1.3 Acknowledgements

| would like to thank Brian Holland and Rick Leavitt for their peer review of this report. Their comments
and insights added significantly to the report’s readability. | would also like to thank our Summer Intern
Alexis Berg for her help in developing and testing many of the results discussed in this report. Finally |

would like to thank Erika Schulty for her help in finalizing this report and getting it ready for publication.

Section 2: Background

2.1 Background

In 2011, the Committee Society of Actuaries published the 2008 Group Long Term Disability Experience
Table Report which detailed a mathematical model for determining recovery and mortality rates. The
data underlying this report was collected for calendar years 1997 to 2006.

The recovery rate model published in 2008 relied on 7 input variables:
1. Duration

Age

Gender

Disability Category

Own to Any Occupation Transition

Gross Indexed Benefit Amount

Elimination Period

Nk wN

Recovery rates for specific individual characteristics (Age, Duration, Gender etc.) are determined by
multiplying together various factors from the model.

The 2008 model overall gives a very good fit when measured against the 2004 to 2012 data. Various
webcasts (available under Professional Development on the Society of Actuaries website) have reviewed
the Actual to Expected performance of the 2008 model against the 2004 to 2012 data. We have not
focused on reviewing the areas in which the Actual to Expected’s (based on the 2008 model) differ —
rather this report looks at developing recovery and mortality rates from scratch, using this newer dataset.
We use the Expected recovery and mortality rates from the 2008 report (which are already included in
the data) as a baseline to test how well our model fits the data.

2.2 A Note on Terminology

Throughout this report, we refer to the Expected number of recoveries as being the number of recoveries
expected using the rates from the 2008 model, and multiplying them by the applicable exposure for the
record. As noted above, these expected recoveries are already calculated and in the data.

We use the term Predicted throughout this report to refer to the recovery and mortality rates developed

in this report. The Predicted number of recoveries / deaths is then the predicted recovery / mortality rate
multiplied by the applicable exposure.
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Section 3: Tree Models

3.1 Why Consider Tree Models?

Recovery rates have significant non-linearity and do not change monotonically due to transition periods —
such as the change from Own to Any Occupation and other policy features. These characteristics also
suggest that a linear model, even with the often-used logarithmic transformation of the dependent rates,
may not be flexible enough to fit the observed rates. As described in detail in this report, we found that
tree models appeared to give an excellent fit to the actual recovery rates.

As part of the modeling process, we tried fitting a Generalized Additive Model with various polynomial
expressions to the data, and also tried using a number of variable transformations so as to provide
additional flexibility to the fitting process. However, we found that tree models appeared to give a better
overall fit to the data.

3.2 Introduction to Tree Models

Numerous references are available describing the structure of tree models. For example, chapter 8 of An
Introduction to Statistical Learning (James, Witten, Hastie, & Tibshirani, 2013) provides a detailed
overview of constructing a tree model. (Chapter 9 of Elements of Statistical Learning (Hastie, Tibshirani, &
Friedman, 2008) is also a good reference, providing some different details.) Essentially the tree modeling
technique looks at the dependent variable (in this case, say the recovery rate), and considers how it can
segment the data based on the independent variables into two nodes in such a way as to get the greatest
separation in the mean recovery rates between the two nodes. This process is then repeated recursively
at each newly created node, and the user enters the parameters controlling how many times this process
will be repeated.

Specifically, tree models partition the data by considering the equation

1SS = T, wi O — 5)° (1

Here N is the total number of records included in the input data, w; is the weight (exposure) for the i'th
record, y;is the recovery rate for the i'th record and ¥ is the weighted mean recovery rate for all the
records.

The Total Sum of Squares (TSS) represents the magnitude of how much the individual observations differ
from their mean. (Conceptually this is similar to the variance of a random variable.) In order to create a
split into two new nodes, the model considers what variable segmentation, or combination of categorical
variable classes, will cause the greatest reduction in the TSS metric once the split has occurred. Essentially
the model calculates the TSS above for every possible segmentation of the input variables, and segments
the data by the variable that creates the greatest reduction. (For example, when constructing a tree for
recovery rates, a Duration of 8 months or less vs a Duration of 9 months or more provides the maximum
TSS reduction, so the first node splits recovery rates by this criterion. In the case of mortality rates,
Cancer claims are the most predictive of higher mortality, so the first tree nodes split the Cancer category
from the other disability categories. The software also considers combinations of categories at each split
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—not only individual categories - that would produce the greatest TSS reduction.) Hence this split can be
based on categorical variables such as Disability Category, or ordinal variables such as Duration. After the
data has been segmented, there will be 2 classes of recoveries, with two separate means. The table
below shows how segmenting the data between Duration less than or equal to 8 and more than 8
minimizes the TSS by Duration for the recovery rate data set used in this study.

Total Sum of Squares: All Records 37,393
Duration TSS <=Duration TSS >Duration Sum
2 1,251 34,842 36,093

2,234 32,890 35,124

4 5,064 26,948 32,012

5 6,917 23,048 29,965

6 8,385 20,511 28,896

7 10,278 18,112 28,390

8 11,813 16,533 28,346

9 13,051 15,418 28,469

10 14,139 14,531 28,670

11 15,087 13,854 28,941

This process is then repeated recursively at each new node of the tree. Various parameters control how
complex a tree is created and at which point the TSS reduction for splitting a node is no longer considered
worthwhile. Depending on the purpose, one my want more or less complex trees, but one should not
develop a tree of such complexity that it has been over-fitted to the data. (For a good discussion if
overfitting, see for example Chapter 2 of An Introduction to Statistical Learning.)

At each node of the tree, the Predicted recovery rate is simply the weighted mean recovery rate for the
actual observations in that node. Note that each data record includes an exposure count, as well as an
actual number of recoveries and deaths. The exposures are used as weights for all modeling developed in
this report.

3.3 Records with Zero Recoveries

One of the concerns with the GLTD data — even when summarized into less granular categories - is that
they may still contain a high percentage of records with zero recoveries. This can be a significant issue for
parametric models based on assumed distributions for the recovery rates since there is an
overabundance of records with zero recovery rates. Traditional statistical distributions do not typically
allow explicitly for such high levels of overabundance. This is discussed in detail in Lally & Hartman, 2016.

This overabundance of zero’s is not a concern for tree models. As described above, the model splits the

data by looking for the data segmentation that creates the largest possible reduction in the Total Sums of
Squares. Because the calculation is weighted by the exposure, the correct weighted mean for each tree
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split is calculated. Said differently, if one calculated the mean recovery rate for the newly created tree
branch by taking

Total Recoveries in branch

(2)

Total Exposure for the branch

then the results of such a calculation would equal the weighted mean calculated by the R routine in
determining the split. Hence the presence of a large number of zero-recovery records has no impact on
the ability of the R software to correctly determine the optimal variable split.

3.4 Implementation of Tree Models in R

We used the R Package “rpart” to prepare all the modelling modeling described in this report. This
package implements most of the functionality of the tree model as developed originally developed in
1984. (Breiman, Friedman, Stone, & Stone, 1984) A full listing of the R package can be found here:

https://cran.r-project.org/web/packages/rpart/rpart.pdf

Section 4: Overview of Data and Initial Modeling Considerations

4.1 Overview of Data

Figure 1 and Figure 2 show recovery rates contrasted against Duration and Age. Clearly both these
variables influence the recovery rates. Additionally, we note that the recovery rates for maternity claims
show a very different pattern from the other categories. In order to prevent maternity claims dominating
one branch of the tree, we have removed the maternity claims from initial modeling of the recovery rates
and have modeled those separately.

© 2015 Society of Actuaries



°>10

o Actual Recovery_Rate vs. Attained_Age
\ Disability_Category
N =—Back

) N —Cancer
| —Circulatory
0.35 f ——Diabetes

| — Digestive
——Iii-defined and Misc Conditions
—Injury cther than back
——Matemity

| \ —Mental and Nervous
0.30 1 ——MNervous System
[ \ — Other

\ ——Other Musculoskelstal

1 —Respiratory

Actual_Recovery_Rate

Attsined_Age

Figure 1. Comparison of recovery rates by Attained Age, including maternities.
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Figure 2. Comparison of recovery rates by Claim Duration, including maternities.

4.2 Data Consolidation and Training vs Test Data

The entire GLTD dataset contains over 46 million records. While the entire file can be read into R, running
models against the entire dataset proved to be too unwieldy. So as to speed execution times, we
extracted subsets of the data that contained the critical variables needed for the model. This generally led

© 2015 Society of Actuaries



to files with between 500,000 and 3,000,000 records, and analyses of these files was a lot more
manageable and produced good results. These smaller files captured all the exposures and recoveries
from the large dataset — they were just summarized sets of the data, similar to multidimensional pivot
tables in Excel.

After constructing these summary files, they were further split as follows:
- Maternity records were removed
- Atraining set for model development was created, using 70% of the data
- Atesting set for model testing was created with the remaining 30% of the data

Following standard modeling convention, the models were constructed based only on the training data,
without any consideration given to the testing data. The testing data set was then read into the model so
that the model could make recovery rate predictions based on the input variables included in the records
of the testing data. The models were then tested for goodness of fit only on the testing data. In this way,
the model is never tested for fit based on the same data that was used to construct the model. This
approach reduces the chances of overfitting the model.

4.3 Testing for Goodness of Fit

At each step of fitting the model, we compared the Mean Square Error (MSE) of the Predicted

Recoveries vs the MSE of the Expected Recoveries, using the testing data after fitting the model on the
training data. (Recall that Section 2.2 clarified the Predicted vs Expected terminology used here.) This is
straightforward to calculate because the Expected Recoveries are already computed and part of the GLTD
database.

MSE_Predict = %Zil (PredictedRecoveries; — ActualRecoveries;)?  (3)

MSE_Expected = %Zf’zl (ExpectedRecoveries; — ActualRecoveries;)? (4)

These Expected Recoveries are based on the 1997 to 2006 data: since the data being analyzed is now
more up to date, we would hope that the result of this modeling would give a substantially better fit than
the 2008 model.

Data Considerations and Testing the Fit

The consolidated data sets used for modeling vary by size depending on the number of variables (and
possible values for those variables). When the number of possible discrete combinations of variables and
their possible values gets larger, the Actual, Expected and Predicted Recoveries per combination
decreases. Per the MSE equations above, this will by necessity drive a lower MSE between different
models.

It would hence be a mistake to focus purely on the MSE value — one could reduce the model MSE purely
by generating a larger data set using variables that are not part of the final model, even if the fit was not
as good. (Note — the fit of the ultimate model and construction of the tree should not be impacted — it is
merely the comparison of different MSE’s that can be problematic. This occurs only because we are using
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summarized data which is not typical for most statistical applications.) Hence, in comparing different tree
models, we also considered the percentage reduction in the MSE calculated from the Predicted values vs
the MSE calculated from the Expected’s. Generally a model was seen as fitting better based on the
percentage reduction achieved by the Predicted MSE vs the Expected MSE, using the test data. Some
judgement was needed here, but this appeared to provide a good comparative basis.

We note that it may be valuable to explore some type of normalization of the MSE measures to make the
different models more directly comparable. This is an area for future research.

Section 5: Constructing the Model

5.1 Variable Selection

The 2008 report detailed that 7 variables noted above under Background (or derivations from them) were
critical variables impacting recovery rates. Additionally, the updated 2004 - 2012 data set includes 7 new
variables, namely
1. Region
Case Size
Integration with Short Term Disability
Industry SIC Code
Taxability of Benefits
Indexed Monthly Salary
Company Group

N kewN

Part of this study reviewed these new variables and how effective they were in improving the model! fit.
We also relied on the results of others who looked at which of the new variables were correlated with the
recovery rates (Davis & Correia, 2017).

In order to aid computation time and file manipulation, some summarization of the variables was needed.
For example, Figure 1 suggests that Age in 5 - year age groups should provide sufficient granularity to
adequately explain the observed recovery rate. However the steep decline in recovery rates by Duration
shown in Figure 2 implies that Duration without any grouping be used at least for the first 40 months. We
found that using Duration in integral months up to a maximum of 49 months provided sufficient
explanatory control to allow an excellent fit.

Independent Variables Included in the Final Model
A brief summary of the independent variables that are included in the model, as well as explanations for a
few exclusions, is provided below.

Duration. In every model we built, Duration was the most powerful predictor of recovery rates. We tried
Duration as supplied as well as (Duration — Elimination Period) and providing Elimination Period as a
separate variable. Our modeling found that Duration as supplied provided the best fit. Duration varies
from 2 to 579, with more than half of the exposures being for durations less than 50.
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Age. We found that the model fitted well with ages in quinguennial groups. Age proved to have a smaller
impact on the Predicted recovery rates than expected so we don’t think that preparing a model using
integral ages would provide an improved fit.

Integration with STD. This is one of the new variables in the dataset. A traditional calculation of the
recovery rate by the different STD categories clearly shows that the recovery rate is impacted by any STD
integration. Similarly an AE analysis, using the 2008 tables as the basis for the Expected’s, highlights that
this variable adds to the explanatory ability of the model.

Indexed Monthly Salary and Gross Indexed Monthly Amount. The 2008 study found that Gross Indexed
Monthly Amount impacted recovery rates. The new variable Gross Indexed Monthly Salary is also clearly
related to recovery rates (Davis & Correia, 2017). We tried running the model with each of these variables
included separately and in combination. We found that the Gross Indexed Monthly Amount provided the
largest improvement to the fit.

Disability Category. The recovery rates in the above charts show that this is clearly a significant variable in
determining recovery rates. We did not try to combine factors a priori — the rpart package automatically
looks at all combinations of categorical variables to determine the combination having the greatest
impact on the sum of square errors.

Own to Any Occupation Transition. An analysis of recovery rates by the Own Occ variable showed that the
greatest recovery rates were at OwnOcc + 0 and OwnOcc + 1. Accordingly we used these two values, and
set all the others to the same value.

Gender. Gender was included in the model, and reviewing predicted recovery rates from the model
shows a good fit between Predicted and Actual recovery rates when split by Gender. However, it should
be noted that Gender played a very minor role in the fitting process. (See Variable Importance below.)

Variables Excluded from the Final Model

The following variables did not significantly improve the predictions of the model so have not been
included in the final model produced.

Taxability of Benefits. An analysis similar to that described under Integration with STD shows that this
variable does help predict recovery rates. However, the highest recovery rates were associated with an
“Unknown” taxability category, while the recovery rates for the other categories were overall roughly
similar. Hence, this variable appears to have limited practical use, so has been excluded.

Elimination Period. Elimination Period is included into the model by proxy, but not directly. By including
Duration, there is some implicit recognition of the Elimination Period. (The Duration in the data starts one
month after the Elimination Period, so a claim with a 6 month Elimination Period would start with a
Duration of 7). Additionally, the inclusion of the Own to Any Occupation variable recognizes the Duration
since the end of the Elimination Period. As part of our modeling we constructed a variable Duration Since
Elimination Period, but this variable provided a poorer fit to the data than using the supplied value of
Duration.
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Region, Case Size, Industry, Company Group. The study by Davis & Correia (2017) showed some
relationship between some of these variables and the actual recovery rates. However, various attempts
to include these variables in the modeling did not materially improve the fit. Essentially the other
variables included in the model explained such a large part of the variations that these variables were
unable to meaninfully provide additional explanatory value. In addition to modeling Industry using the
provided SIC code, we also mapped SIC code to Collar color, but did not find an improved fit as a result of
this mapping. (Note that Collar did improve the fit for the mortality rate development shown later.)

5.2 Building the Tree

We setup the basic tree model parameters and then ran multiple iterations to increase the depth of the
tree and determine whether the increased depth provided a meaningful reduction in the MSE. Sample R
code for the models is shown in Appendix A.

We show the first 3 stages of building a tree model below. The MSE when comparing the Actual recovery
rates for each summarized record in the data against the Expected’s is 2.15 (Equation 4 above).To
calculated the MSE for the predicted number of recoveries prior to creating any splits in the tree, we note
that the mean recovery rate for all records in the database is 1.5% (shown in the root node of figure 3). If
we set the Predicted recovery rate for every record equal to 1.5% times the exposure in the record and
calculate the MSE, we get that the Predicted MSE for the entire dataset is 85.16 (Equation 3 above).

Figure 3 below shows the first split of the node — as shown, the variable that causes the greatest
reduction in the TSS is Duration. Specifically, splitting the data into durations less than or equal to 8
months and greater than 8 months causes the greatest TSS reduction. Given the rapid reduction in
recovery rates with increasing duration, this result is not surprising. The information below shows that
92% of the exposures have duration 9 or greater, and that the recovery rate for those records is 0.95%.
For the records with duration 8 or less, the recovery rate is 7.6%.

0.015
100%

Duration_12_49 >= 8.5

MSE Expected: 2.15
MSE Tree Model: 33.65

Figure 3. Tree model showing only the first node split
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Figure 4 illustrates how the model branches are created when a more complex tree is built. (The control
for the complexity of the tree is discussed below in rpart Parameters.) As noted, a relatively simple tree
has dramatically reduced the Mean Square Error (MSE). Most of the data variance has now been
explained by creating only 10 leaves (or ending nodes). Note that the left-most leaf, for Durations greater
than 32, still contains 58% of the exposures. The observations in that node have a recovery rate of only
0.25% versus a recovery rate of 27% shown for the leaf on the right hand side. (This leaf corresponds to
durations less than 3.5 and disability categories of Digestive, Injury other than Back, Other and Other
Musculoskeletal.)

Duration 12 49>=8.5

Duration 12 885=32 Disabilty_Category = Back Cancer,Circulatory, Diabtes, 1 nefnena;mmsacnnnmqnsMenmann Nervous Nervous System Respiratory
<3

OwnOceToAnyTransition 110D = Own+{,OwnOther Duration_12_49>=55
Ownd 8.

Duration wuwydcm@gnn, Cancer Cirulatory Diabees Digestivel-defined ang Misc Conditions Mental and Nervous Mervous System,Other Respiratory
Back,Ijury oher than back Other Musculoskeletal

016

Duration_17 48 =35
<3

0015 0032 0055 [3H I127

285 o 0% 03

Integraton_with_STD = MMW nfegrated with STO,U: Unknown
I Inegrated with e of Fullnsured STD

MSE Expected: 2.15
MSE Tree Model: 3.43

Figure 4. Development of a more complex tree with 10 leaves.

Continuing this process, we developed a very complex tree, as shown in Figure 5. This is the final model
we created before some minor pruning of the tree, as described below. The R code used to develop this
tree, and do the pruning, is shown in Appendix A. Developing a more complex tree than shown resulted in
an increase in the MSE calculated for the testing data — a clear sign that overfitting was becoming a
concern.

While interpretations off this tree are impossible given the complexity and difficulty of showing the labels,
we believe that the less detailed tree shown in Figure 4 provides more useful information for inference
purposes. Amongst the interesting observations from Figure 4, are that Age and Gender have not yet
provided significant enough information to be included in the split. (This does not mean Age and Gender
don’t have predictive utility — it means that other variables are more important, and have potentially
already explained some of the impact of Age and Gender. This is discussed below in Confounding and
Colinearity.)
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Figure 5. Complex tree before clear signs of overfitting begin to appear.

Figures 6 - 8 below demonstrate a few different views, including splits by Gender and Age Band, of the
final tree model. The graphs show the fit to the testing data, after building the model on the training data.
As shown, the Predicted recovery rates fit very closely to the actuals.

In the 3 figures below, and similar to Figure 2, there is a noticeable spike in recoveries at 27 to 28 months,
and 30 to 31 months. This arises in the actual recovery rates since most policies have an elimination
period of 3 months or 6 months, combined with an Own Occupation to Any Occupation limitation of 24
months. Accordingly, the Own to Any Occupation limitation begins to apply in most cases at 27 months
and 30 months. As noted above under Variable Selection, most recovery rates spike at the transition
month or the month after —i.e. months 27 and 28, or months 30 and 31.
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Mean(Actual RR) & Mean(Predicted RR) vs. D
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Figure 6. Comparison of Actual and Predicted recovery rates — testing data.
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Figure 7. Comparison of Actual and Predicted recovery rates split by Gender — testing data
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Mean(Actual RR) & Mean(Predicted RR) vs. D
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Figure 8. Comparison of Actual and Predicted recovery rates split by Age Band — testing data

5.3 rpart Parameters

rpart Has a number of parameters that control the structure of the tree. The key parameters are:
- maxdepth: This parameter sets the maximum depth of any node of the tree, with the root node
counting as zero.
- minsplit: the minimum number of observations for the software to attempt to split any node
- complexity parameter (cp): A split will only occur if the fit improves by the specified factor. In the
models described here, the value of R Squared must have increased by at least cp in order for the
split to occur.

In practice we found that the last parameter was the one that had the greatest impact on the fitted
model. Relatively small changes in the cp parameter would results in substantial changes in the MSE of
the final fit. Accordingly, it took some trial and error to settle on the value of cp so that it decreased the
MSE noticeably, whereas reducing the cp further had little impact (or possibly increased) the MSE using
the testing data. (An increase in the MSE on the testing data, which happened with smaller values of cp,
indicates overfitting to the training data.)

5.3 Variable Importance

rpart Provides information about the variable importance — it shows, as a percentage, how much each
variable contributed to the reduction in the MSE. For the final model, the variable importance was as
follows:
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Variable Importance (%)
Duration 63
Disability Category 17
Age Band
Own to Any Occ Transition
STD Integration
Gross Indexed Benefit Amount
Gender

R IN|UT|O O

The above results are somewhat surprising, given the traditional actuarial approach of starting analyses
based on Duration, Age and Gender.

Confounding and Collinearity

Figure 7 shows the Actual and Predicted results split by Gender so as to clarify a common interpretation
difficulty with models in general — not just tree models. The Gender importance of 1% needs to be
interpreted with care (as would a similar result with a GLM or other model). From Figure 7, it’s clear that
the Predicted and Actual rates by Gender show material differences. When constructing a mathematical
model on data such as this, it’s always possible for one variable to mask the impact of another. So Gender
differences in Disability Category, Gross Indexed Benefit Amount etc. may already influence the Predicted
recovery rates, so that the inclusion of Gender directly as a variable only explains a small residual amount
of difference. In some situations, this can be due to variable confounding, and in other situations, it can
be due to variable collinearity. Both of these create difficulty for the modeler, and require extra care
when interpreting results.

5.4 Pruning to Avoid Overfitting

Once a tree had been produced, we pruned the tree back, again using the rpart routine. Pruning is used
to avoid overfitting, while still providing almost the same level of fit as the original tree. The idea behind
pruning is discussed in James, Witten, Hastie, & Tibshirani, 2013.

Given the complex nature of the data that is being modeled, pruning did not significantly simplify the tree
beyond the one shown in Figure 5. However, since the pruning should reduce any overfitting of the
model, we consider this to be superior to the unpruned tree. The Mean square error did not change
meaningfully from that shown above.

5.5 Reviewing Results for Reasonability and Artifacts

Another way of looking at the reasonability of the results is to consider which records in the testing data
set have the largest deviations between the Actual number of recoveries and the Predicted number of
recoveries. These largest deviations would be expected to occur in records with higher exposures and
hence higher numbers of Predicted, Expected and Actual recoveries. For comparative purposes, we again
compare the Predicted model deviances with the Expected deviances shown in the data.
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Figures 9 shows, for each Duration modeled, a comparison over all variable combinations for that
duration of the maximum values of:

- |Predicted Recoveries — Actual Recoveries| and

- |Expected Recoveries — Actual Recoveries|
(This is the same as showing the square root of the maximum square error.) These comparisons are
shown for the testing data, after building the model on the training data.

The graph indicates that the Predicted recoveries appear to avoid significant prediction errors across all
durations, with no substantial shortcomings when compared against the Expected recoveries. This same
picture emerges if any of the other input variables are used on the X axis instead of Duration.

The 2008 model was constructed from older data, so it is not surprising that there are some larger
variances here versus the tree model which was constructed using the newer data (albeit a training set,
but still constructed from the same data.) The robustness of the tree method does make intuitive sense -
since the Predicted value is the mean of the observations in the applicable node, and by construction
these nodes must have a minimum number of observations, the possibility of extreme values being
predicted is virtually eliminated.
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Figure 9. Comparison of testing data differences between Expected (blue) and Predicted (red) recoveries,
by Duration.
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5.6 Reproducing Results

Appendix A contains the R code and links to the input data files that were used to generate the results
included in this report. By reading in the input files provided and running the R code in a suitable R
interface such as RStudio, those interested should be able to duplicate our results.

Section 6: Extracting Recovery Rates for Valuation or Other Use

6.1 Extracting Decrement Rates from the Model

In order for the tree model to have a more direct practical application, it needs to be able to provide rates
that can be used in other systems. Because there are 7 independent variables, there are a multitude of
possible variable combinations that impact the recovery rates. Each recovery rate is a function of the 7
variables discussed above under “Variables Included”.

In order to extract these rates, we developed a CSV file that included all possible combinations of these
variables. The code used to develop this CSV file is shown in Appendix A.4. It is then straightforward to
read this CSV file into R and have R calculate the Predicted recovery rate for every set of variable
combinations.

Figures 10 and 11 below show the recovery rates for a 12 sample individuals (one for each Disability
Category), assuming they became disabled at age 20. The graphs appear stable and free of strange
artifacts. This is not surprising given that the model always regresses to the mean in those areas where
there are fewer exposures. No graduation has been applied to these rates.

6.2 Graduation

There are numerous situations where an actuary may prefer to have graduated decrement rates. As
would be the case with any model for developing decrement rates, raw rates would first be generated
and then a suitable graduation technique applied. The tree model described here has developed these
raw rates; if graduation is desired, a suitable graduation technique could be applied to these rates.
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Figure 10. Recovery rates for 12 sample individuals who become disabled at age 20
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Figure 11. Same as figure 10, but focus on the first 50 months
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Section 7: Maternity and Mortality Models

7.1 Maternity Recovery Rates

We built a new recovery rate tree model, honing in only on maternity claims. The process was as
described above for recovery rates, but including only maternity claims in the data.

We found the following percentage measures of variable importance:

Variable Importance (%)

Duration 76
Age Band 12
Integration with STD 6
Gross Indexed Benefit Amount 5
Own Occ to Any Occ 2

The MSE for this model was 76.7 vs 122.2 for the Expected’s. (As noted in Section 4.3, these much larger
MSE’s than for the recovery model for the other categories does not necessarily mean the fit is worse.
The maternity category has more exposures per record (more concentration in age bands and durations)
so that the error per summarized record is larger, but the fit is not necessarily better or worse.)

We note too that given the substantially smaller number of exposures than when all disability categories
are combined, the model is more susceptible to smaller changes in the rpart parameters. We could get
some better and worse fits to the training data by adjusting some of the parameters; we show here a
model that produced middle-of-the-road fits.

7.2 Mortality Rates

We reviewed mortality rates by Age and Duration, and it was clear that these variables affect mortality
rates differently than recovery rates. Based on some preliminary modeling and analysis, we found that
the following variables, and groupings of those variables, appeared to give the best fit to the observed
mortality rates:
- Duration in integral months to 84, then in increments of 12 to a max of 264 (This was the
approach previously used for the 2008 Study).
- Agesin 5-year increments from 35 to 60, then integral ages thereafter. This choice was made
based on the steepening mortality curve after age 60.
- Collar mapped according to SIC codes, per standard industry mappings.

We found the following percentage measures of variable importance:

Variable Importance (%)

Disability_Category 73
Duration_12 20
AgeBand_3060 3
Gender 2
Collar 2
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The MSE for this model was 0.284 vs 0.413 for the Expected’s, so this new model demonstrates a
meaningful improvement in fit.

The final pruned tree is again complex. However, we thought it would be instructive to illustrate how far
back we would need to prune the complex tree so as to get the MSE for the Predicted values (0.403) to
approximate that of the Expected values (0.413). (Once can adjust the level of pruning by altering the
same cp parameter previously discussed.) We find it interesting and counter-intuitive that such a simple
tree, with only 12 leaves, can produce a MSE comparable with that of a much more complex table of
mortality rates. (D_12 refers to duration and AB_3 to age band).
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Figure 12. Mortality rate tree pruned back to the point where the Predicted MSE (0.403) approximates the
Expected MSE (0.413). This is not what we consider the final model — illustrative only of how a relatively
simple tree has surprisingly powerful predictive ability.
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Section 8: Addendum and Future Work

8.1 A Note on Random Forests

While preparing this study, we made numerous attempts to improve upon the results using Random
Forests. Their reputation suggests that they should be better at predictions than regular tree models.
(See for example Section 9.3 of Breiman, Statistical Modeling: The Two Cultures, 2001.) However, for this
purpose, we found that the Random Forest predictions did not fit the test data as well as the tree model.
We believe this is because we are working from a very large, robust set of data, with the number of
records about million-fold as great as the number of variables included in the data. As such, the
randomness of the Forest model is not needed to build a better predictor. Random Forests excel where
there are a large number of predictor variables with fewer observations. However, in this case there are
few predictor variables and comparatively many observations.

8.2 Areas for Additional Research

We believe the following areas could provide useful additional research:

- Stratify the data by calendar year and build a model on the earlier year’s data and apply it to the
later data (as opposed to a purely random selection of data, spread across all years). Initial work
in this area indicates that the improvement in the Predicted MSE to the Expected MSE is not as
large as shown in the above models, but still substantial.

- Develop a methodology to normalize the MSE comparators so that different models with
different numbers of possible variable values / combinations will be able to be compared directly

- Application of neural network algorithms to predict recovery / mortality rates
- Application of Gradient Boosting Machine algorithms

- Application of tree models to Actual to Expected rate analyses to highlight areas of maximum
divergence between the Actual’s and Expected’s
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Appendix A

The data required to run the R code below has been published together with this report. Two datasets
are provide — one for the recovery and maternity models (A.1 and A.2) and a separate input file for the
mortality model (A.3).

A.1 R Code to Construct Recovery Model (without Maternities)

library(rpart.plot)
library(rpart)

gltdWithMaternity=read.csv("filename&path") #Read data extracted from Appendix A.1 above
maternityYN<-as.logical(ifelse(gltdWithMaternity$Disability Category=="Maternity",0,1))
gltd<-gltdWithMaternity[maternityYN,] # Exclude Maternity records

# Select Training Data on 70% of data

set.seed(1)

Train<-sample(nrow(gltd),floor(0.7* nrow(gltd)),replace=FALSE) #Setup vector with random #'s representing 70% of gltd data
gltdTrain<-gltd[Train,]

gltdTest <-gltd[-Train,]

# Build model

rpart.fit<-rpart(Actual_Recovery Rate
~Disability_Category+AgeBand+Duration_12_49+OwnOccToAnyTransition_MOD+Integration_with_STD+Gender+Gross_Ind
exed_Benefit_Amount, data=gltdTrain,maxdepth=15, minsplit=110,cp=0.0000001, weights =
gltdTrainSExposures,method="anova")

# Prune back model to minimize cross-validation errors
fit.pruned<- prune(rpart.fit, cp = rpart.fitScptable[which.min(rpart.fitScptable[,"xerror"]),"CP"] )

# Write out details of R model to text file
sink(file=" filename&path .txt")
fit.pruned

print(" ")

summary(fit.pruned)

sink()

#Use rpart.plot to create tree plot
rpart.plot(fit.pruned, extra=100,cex=0.8,type=4,branch=0,fallen.leaves=FALSE,tweak=0.6,varlen=3, faclen=2,
space=0,compress=FALSE,ycompress=FALSE)

# Test model fit — calculated predicted recoveries in test data based on predicted recovery rates
PredictRpartOut<-predict(fit.pruned,newdata=gltdTest)
ExpectedRR<-gltdTestSExpected_Recoveries / gltdTestSExposures
PredictedRR<-PredictRpartOut

PredictedRecoveries<-PredictRpartOut * gltdTestSExposures

Modell 1Predictions_Pruned<-cbind(gltdTest,ExpectedRR,PredictedRR,PredictedRecoveries)

write.csv(Modell_1Predictions_Pruned ,file="filename&path ") #Write output to view in graphics package
#Calculate and print out expected and predicted Mean Square Errors

MSE_E<- sum((Modell_1Predictions_PrunedSExpected_Recoveries-Modell_1Predictions_Pruned$SActual_Recoveries)”2) /
nrow(Modell_1Predictions_Pruned)
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MSE_P<- sum((Modell_1Predictions_PrunedSPredictedRR * gltdTestSExposures -
Modell_1Predictions_Pruned$SActual_Recoveries)*2) / nrow(Modell_1Predictions_Pruned)

MSE_E

MSE_P

A.2 R Code to Construct Maternity Recovery Model

library(rpart.plot)
library(rpart)

gltdWithMaternity=read.csv("filename&path")#Read data extracted from Appendix A.1 above

maternityYN<-as.logical(ifelse(gltdWithMaternitySDisability_Category=="Maternity",1,0))
gltd<-gltdWithMaternity[maternityYN,] # Include Maternity records only #[maternityYN,]
maleYN<-as.logical(ifelse(gltdSGender=="1: Male",0,1)) # Exclude Male records — a few questionable data records
gltd<-gltd[maleYN,]

# Select Training Data on 70% of data

set.seed(1)

Train<-sample(nrow(gltd),floor(0.7* nrow(gltd)),replace=FALSE) #Setup vector with random #'s representing 70% of gltd data
gltdTrain<-gltd[Train,]

gltdTest <-gltd[-Train,]

rpart.fit<-rpart(Actual_Recovery Rate
~Disability_Category+AgeBand+Duration_12_49+OwnOccToAnyTransition_MOD+Integration_with_STD+Gross_Indexed_Be
nefit_Amount, data=gltdTrain,maxdepth=15, minsplit=100,cp=0.00001, weights = gltdTrainSExposures,method="anova")

fit.pruned<- prune(rpart.fit, cp = rpart.fitScptable[which.min(rpart.fitScptable[,"xerror"]),"CP"] )

# Write out details of R model to text file
sink(file=" filename&path .txt")
fit.pruned

print(" ")

summary(fit.pruned)

sink()

rpart.plot(fit.pruned,extra=100,cex=0.8,type=4,branch=0,fallen.leaves=FALSE, tweak=0.6,space=0,compress=FALSE,ycompress=F
ALSE)

# Calculate and print out expected and predicted Mean Square Errors

PredictRpartOut<-predict(fit.pruned,newdata=gltdTest)

ExpectedRR<-gltdTestSExpected_Recoveries / gltdTestSExposures

PredictedRR<-PredictRpartOut

PredictedRecoveries<-PredictRpartOut * gltdTestSExposures

Modell_1Predictions_Maternity<-cbind(gltdTest,ExpectedRR,PredictedRR,PredictedRecoveries)

write.csv(Modell_1Predictions_Maternity ,file="filename&path ")

MSE_E<- sum((Modell_1Predictions_MaternitySExpected_Recoveries-Modell_1Predictions_MaternitySActual_Recoveries)*2) /
nrow(Modell_1Predictions_Maternity)

MSE_P<- sum((Model1_1Predictions_MaternitySPredictedRR * gltdTestSExposures -
Modell_1Predictions_MaternitySActual_Recoveries)*2) / nrow(Modell_1Predictions_Maternity)

MSE_E

MSE_P
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A.3 R Code to Construct Mortality Model

library(rpart.plot)
library(rpart)

gltdWithMaternity=read.csv("filename&path") # Read in data extracted in A.4 above
gltdWithMaternitySActual_Death_Rate<-gltdWithMaternitySActual_Deaths / gltdWithMaternitySExposures

# Select Training Data on 70% of data

set.seed(1)

Train<-sample(nrow(gltdWithMaternity),floor(0.7* nrow(gltdWithMaternity)),replace=FALSE) #Setup vector with random #'s
representing 70% of gltd data

gltdTrain<-gltdWithMaternity[Train,]

gltdTest <-gltdWithMaternity[-Train,]

# Fit tree model

rpart.fit<-rpart(Actual_Death_Rate
~Disability _Category+AgeBand_3060+Duration_12+Gender+Collar+Indexed_Monthly_Salary_Mod,
data=gltdTrain,maxdepth=15,minsplit=120,cp=0.00001,weights = gltdTrainSExposures,method="anova")

#Prune back model to minimize cross validation errors
fit.pruned<- prune(rpart.fit, cp = rpart.fitScptable[which.min(rpart.fitScptable[,"xerror"]),"CP"] )

# Write out details of R model to text file
sink(file=" filename&path .txt")
fit.pruned

print(" ")

summary(fit.pruned)

sink()

# Plot tree
rpart.plot(fit.pruned,extra=100,cex=0.9,type=4,branch=0,fallen.leaves=FALSE, varlen= 2, faclen = 2,
tweak=0.6,space=0,compress=FALSE,ycompress=FALSE)

#Calculate and print out expected and predicted Mean Square Errors

PredictedDR<-predict(fit.pruned,newdata=gltdTest)

PredictedDeaths<-PredictedDR * gltdTestSExposures

ExpectedDR<-gltdTestSExpected_Deaths/gltdTestSExposures

Model3_1Predictions_Pruned<-cbind(gltdTest,PredictedDR,PredictedDeaths,ExpectedDR)

write.csv(Model3_1Predictions_Pruned ,file="filename&path")

MSE_E<- sum((Model3_1Predictions_PrunedSExpected_Deaths-Model3_1Predictions_Pruned$Actual_Deaths)*2) /
nrow(Model3_1Predictions_Pruned)

MSE_P<- sum((Model3_1Predictions_Pruned$SPredictedDeaths - Model3_1Predictions_PrunedSActual_Deaths)?2) /
nrow(Model3_1Predictions_Pruned)

MSE_E

MSE_P

A.4 Create CSV File for all Possible Variable Combinations for Recovery Model
Note: This code runs very slowly — expect to leave your machine running overnight.
Counter=0

MinDuration=1
MaxDuration=49
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#Variable definitions below exactly match original database; “1: Male” and “2:Female” are correct, not typo’s
TableOut<-data.frame(matrix("",ncol=7),stringsAsFactors = FALSE)
Gender<-c("1: Male","2:Female")
Disability category<-c("Back","Cancer","Circulatory", "Digestive", "lll-defined and Misc Conditions","Injury other than back",
"Mental and Nervous", "Nervous System", "Other", "Other Musculoskeletal", "Respiratory", "Diabetes")
GIBAs<- ¢("1: $ < 1000", "2: $1,000 - $1,999","3: $2,000 - $2,999", "4: $3,000 - $3,999", "5: $4,000 - $4,999", "6: $5,000 -
$9,999", "7:510,000 - $14,999", "8:515,000 - $19,999", "9:520,000 And Over")
Integration_with_STD <- c("I: Integrated with ASO of Fully-Insured STD", "N: Not Integrated with STD", "U: Unknown")
OwnOccToAnyTransition_MOD <- ¢("OwnOther", "Own+1", "Own+0")
colnames(TableOut)<-c("Duration","AgeBand","Disabiltiy_Category","OwnToAnyOcc","STD_Integration","Gender","GIBA")
for(ig in Gender) { print(ig)
for (Integration in Integration_with_STD) { print(Integration)
for(OwnOcc in OwnOccToAnyTransition_MOD ){ print(OwnOcc)
for (GIBA in GIBAs) { print(GIBA)
for(Disability in Disability_category) { print(Disability)
for(ia in seq(20,70,5)) {

for(id in MinDuration:MaxDuration) {

Counter=Counter+1

TableOut[Counter,]=c(id,ia, Disability, OwnOcc,Integration, ig, GIBA)

write.csv(TableOut, file="filename&path ")
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