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Abstract 

In this study, a hybrid portfolio that combines life and general insurance aspects is considered. There has 

been intense research on hedging of an insurance company’s portfolio when the risk is incoming from 

life insurance only or general insurance only, but little on both in the same portfolio. However, most 

large multiline insurance holding companies have separate legal entities that can and do issue both 

products. We assume there are one risk-free asset and one risky asset in the financial market, and the 

investor may choose the proportion of investments for each of them. In addition to the inflows and 

outflows from trading, the insurance cash flow account has inflows from premiums and outflows from 

losses of life and general insurance. Once the portfolio of the insurance company is set, the dynamic 

programming principle is applied to derive a partial differential equation for the optimal function, and 

the corresponding optimal trading strategy can be obtained. 

 

1. Introduction 
 

There has been intense research on hedging of an insurance company’s liability portfolio when the risk is 
incoming from life insurance only [4, 7, 8] or general insurance only [2, 5, 6]. In this report, we consider 
two insurance products, a life insurance and a general insurance, in a single liability portfolio. Most large 
multiline insurance holding companies have separate legal entities that can and do issue both products.  
 
The financial market in this study has one risk-free asset and one risky asset. We set up a portfolio with 
one life insurance product and one general insurance product. The life insurance product that we 
consider pays its premium as a single payment up-front, and the general insurance product has 
continuously paid premiums or up-front premiums. The up-front premium is used as an initial wealth of 
this portfolio, and it is invested in the financial market. The portfolio manager will decide the portions 
invested into each of the two asset investments supporting the two products (one stock and one bond). 
Our goal is to find the optimal allocation strategy1 to eliminate the risks from the insurance products in 
the portfolio, as well as the risk from the risky asset. 
 
There are three risks to consider: the risk from the trading assets, the risk from the general insurance, 
and the mortality risk from the life insurance product. The risk from the trading assets will be modeled 
with a Brownian motion, and the risk from the general insurance will be modeled using a limit of the 
classical Poisson process. The mortality risk will be modeled with a stochastic process introduced by 

                                                           
1 The optimization that we consider in this project is to find the trading strategy that maximizes the 
expected utility function. 
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Wang [7]; however, it can be considered as a deterministic process if a perfect diversification of the 
mortality is assumed.  
 
Once the dynamics of the portfolio value are set, the dynamic programming principle is applied to derive 

the partial differential equation, and the corresponding optimal trading strategy should be obtained. 

 

2. Model 

2.1 The Financial Market 

The financial market to consider is the so-called Black-Scholes model: There is one risky asset (stock) and 
one risk-free asset (U.S. Treasury bond). Suppose that at time t the risky asset price is S. For a small 

change in time dt, the asset price will change into S+dS. The return on the risky asset 
𝑑𝑆

𝑆
 can be 

decomposed into two parts. One is deterministic, and the other is random. It is modeled with the 
following stochastic differential equation: 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝐵1. 

The first term on the right-hand side, 𝜇𝑑𝑡, indicates the deterministic return with a rate of return 𝜇 > 0. 
The second term explains the unpredictable return with a volatility 𝜎 > 0, which measures the standard 
deviation of the returns. 𝐵1 is a standard Brownian motion, and 𝑑𝐵1is a random sample from a normal 
distribution, with mean 0.   
 
Assuming a deterministic rate of return r to be 0 < 𝑟 < 𝜇, the risk-free asset price P is modeled with the 
following differential equation: 

𝑑𝑃

𝑃
= 𝑟 𝑑𝑡. 

2.2 General Insurance Product 

The general insurance claims process can be complicated because of its uncertain frequency and 
uncertain severity. We will consider the model that is introduced by Promislow and Young [6] for 
simplicity. Let C be the claims process of a general insurance product, and we assume it follows  

𝑑𝐶 = 𝑎𝑑𝑡 − 𝑏𝑑𝐵2, 
where a and b are positive constants and 𝐵2 is a standard Brownian motion in a probability space 
(Ω, 𝐹, 𝑃) that is independent of 𝐵1. It is a limit of the classical compound Poisson model [3]. For 
example, if the claims process frequency follows a Poisson distribution with the mean 𝛼 and the claims 

size follows an exponential distribution with the mean 𝛽, then 𝑎 = 𝛼𝛽and 𝑏 = √2𝛼𝛽2.  
 
We first assume that the premium for this general insurance is being paid continuously at a constant 
rate 𝑐1 = (1 + 𝜃)𝑎 with a positive 𝜃, which is a relative security loading [5]. We can modify the 
premium for the general insurance to be an up-front payment if we set 𝜃 = −1, which will be discussed 
in Section 4.  
 
The surplus process 𝑈1 for the general insurance contract has an inflow from the premiums. For a small 
change in time (dt) the change in inflow is 𝑐1𝑑𝑡. The outflow of the surplus process is from the claims 
process, and the change in outflow is dC for a small change in time. The change in the surplus process 
𝑑𝑈1 for a small change of time dt is given by the following stochastic differential equation: 
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{
𝑑𝑈1 = 𝑐1𝑑𝑡 − 𝑑𝐶 = 𝜃𝑎𝑑𝑡 + 𝑏𝑑𝐵2,

𝑈0
1 = 𝑢0,

 

where 𝑢0 ≥ 0 is an initial surplus. 

 

2.3 Life Insurance Product 

For a life insurance product sold, we consider a level-term insurance. Suppose the policy holder pays an 
up-front premium and a prespecified benefit G will be paid to the heir at the time of death of the policy 
holder, provided death occurs before the end of a specified term T (in years).  
 
Let N be the fraction of individuals still alive at t (0 ≤ 𝑁 ≤ 1), and we use the model that is introduced 
by Wang [7] for its dynamics: 

{𝑑𝑁 = −𝜆𝑁𝑑𝑡 + 𝜖√𝑁𝑑𝐵3 − 𝑑𝐿,
𝑁 = 1 at time 0,

 

where 𝜖 ≥ 0 is small, 𝜆 ≥ 0 is the hazard rate of the insured population, 𝐵3 is a standard Brownian 
motion that is independent of 𝐵1 and 𝐵2, and L is the local time of N at 1. If we assume a perfect 
diversification of the mortality2, then this model is simplified as follows: 

𝑑𝑁 = −𝜆𝑁𝑑𝑡. 
We will develop an optimal trading strategy based on this model and extend it to the stochastic 
mortality model in the future. 
 
We normalize so that the total portfolio value at time 0 is 1 in the next section. Since the premium is 
paid at time 0, the change in surplus process for this life insurance product 𝑑𝑈2 has only the change in 
outflow due to the death of the policy holder: 

𝑑𝑈2 = 𝐺𝑑𝑁 = −𝜆𝐺𝑁𝑑𝑡. 
 
2.4 The Portfolio 
 
Let V be the value of the portfolio. We assume it is a self-financing portfolio; that is, no extra fund is 
being added or withdrawn from this portfolio. We also do not consider other additional costs such as 
operational costs or taxes. The initial wealth 𝑉 = 𝑣0 at time 0 from the premium of the life insurance 
product is invested into the risky asset and the risk-free asset in the financial market.3 Let 𝜋 be the 
proportion of V that is invested in the risky asset, then 1 − 𝜋 will be the proportion of the wealth that is 
invested in the risk-free asset. For a small change in time dt, the change in the value of the portfolio dV 
can be decomposed to four changes: from the risky asset, the risk-free asset, the general insurance 
surplus, and the life insurance surplus. It can be modeled with the following stochastic differential 
equation: 

𝑑𝑉 = 𝜋𝑉
𝑑𝑆

𝑆
+ (1 − 𝜋)𝑉

𝑑𝑃

𝑃
+ 𝑑𝑈1 + 𝑑𝑈2, 

𝑉 = 𝑣0 at time 0. 
 
Using the dynamics of the components introduced in the previous sections, we have 

                                                           
2 If the insurance company is able to sell enough contracts, then it can eliminate the fluctuations 
between actual and expected mortality rates. 
3 Here we assume the initial surplus of the general insurance 𝑢0 is 0. 



   5 

 

 Copyright © 2016 Society of Actuaries 

𝑑𝑉 = 𝜋𝑉(𝜇𝑑𝑡 + 𝜎𝑑𝐵1) + (1 − 𝜋)𝑉(𝑟𝑑𝑡) + 𝜃𝑎𝑑𝑡 + 𝑏𝑑𝐵2 − 𝜆𝐺𝑁𝑑𝑡

= [𝑟𝑉 + 𝜋(𝜇 − 𝑟)𝑉 + 𝜃𝑎 − 𝜆𝐺𝑁]𝑑𝑡 + 𝜎𝜋𝑉𝑑𝐵1 + 𝑏𝑑𝐵2.
 

 
3. The Hamilton-Jacobi-Bellman (HJB) equation 

 
The methodology that is used to derive a model partial differential equation is the dynamic 
programming principle, commonly used in stochastic control problems. To apply it, the problem must 
observe the principle of optimality (Bellman principle [1]); that is, whatever the initial state is, all 
remaining decisions must be optimal regarding the state following from the first decision. 
 
Suppose the portfolio manager wants to maximize the expected utility of the terminal portfolio value, 
and define the optimal function H(t,v,n) to be 

𝐻(𝑡, 𝑣, 𝑛) = 𝑠𝑢𝑝𝜋∈𝐴𝐸[𝑢(𝑉𝑇)|𝑉𝑡 = 𝑣, 𝑁𝑡 = 𝑛], 
where A is the set of admissible policies and 𝑢: 𝑅 → 𝑅 is a utility function, which is increasing, concave, 
and smooth.  
 
By applying the dynamic programming principle, we obtain the following HJB partial differential 
equation (PDE) for the optimal function H4: 

𝐻𝑡 + [𝑟𝑉 + 𝜃𝑎 − 𝜆𝐺𝑛]𝐻𝑣 − 𝜆𝑛𝐻𝑛 +
1

2
𝑏2𝐻𝑣𝑣 + 𝑚𝑎𝑥𝜋 [(𝜇 − 𝑟)𝑣𝐻𝑣𝜋 +

1

2
𝜎2𝑣2𝐻𝑣𝑣𝜋2] = 0. 

Since the maximum function is a quadratic function in 𝜋 and the concavity of the utility function u is 
inherited to the optimal function H, the maximum exists, and we have the optimal investment process  

𝜋 = −
(𝜇 − 𝑟)𝐻𝑣

𝜎2𝑣𝐻𝑣𝑣
. 

This gives a closed form PDE for H: 

𝐻𝑡 + [𝑟𝑉 + 𝜃𝑎 − 𝜆𝐺𝑛]𝐻𝑣 − 𝜆𝑛𝐻𝑛 +
1

2
𝑏2𝐻𝑣𝑣 −

[(𝜇 − 𝑟)𝐻𝑣]2

2𝜎2𝑣𝐻𝑣𝑣
= 0, 

𝐻(𝑇, 𝑣, 𝑛) = 𝑢(𝑣). 
 
We can simplify the derived PDE further by using a reduction of dimension, namely, introducing a new 

variable 𝑌 =
𝑉

𝑁
= 𝑒𝜆𝑉. The optimal function 𝐻(𝑡, 𝑦) = 𝐻(𝑡, 𝑣, 𝑛) satisfies the following HJB PDE: 

𝐻𝑡 + 𝐻𝑦[(𝜆 + 𝑟)𝑦 + 𝜃𝑎𝑒𝜆𝑡 − 𝜆𝐺] +
1

2
𝑏2𝑒2𝜆𝑡𝐻𝑦𝑦 −

[(𝜇 − 𝑟)𝐻𝑦]
2

2𝜎2𝐻𝑦𝑦
= 0, 

𝐻(𝑇, 𝑦) = 𝑢(𝑒−𝜆𝑇𝑦). 

 
4. Numerical Examples 

 
In this section, we solve (2) using a backward in time finite difference method. We adopt an exponential 
utility function as 

𝑢(𝑣) = −𝑒−𝑣, 
so that the terminal condition is 

𝐻(𝑇, 𝑦) = −𝑒−𝑒−𝜆𝑇𝑦. 
Since the terminal condition is given, we can solve the PDE (2) backward in time to obtain the solution at 
time 0, H(0,y). After computing H(0,y), we estimate the optimal strategy 𝜋 using (1). 

                                                           
4𝐻𝑞 is a partial derivative of H with respect to q = t, v, n.  
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We take the expiration time for the life insurance to be T and consider the domain to be (𝑡, 𝑣) ∈
[0, 𝑇] × [0,2]. We also take G = 1. The parameters in Table 15 are used as a basis case. 
 

Parameter a b 𝜃 r 𝜎 𝜆 
Value 1.5 0.5 0.1 0.04 0.2 0.1 

                                              Table 1: Parameters 

First, we consider T = 1 for simplicity, and the result (𝜋) is plotted in Figure 1 when 𝜇 = 0.05. For a very 
small value of the initial wealth, the model indicates to borrow money and invest all into the stock (𝜋 ≫
1). It also shows that the optimal trading strategy (𝜋) is a convex and decreasing function in terms of the 
initial wealth (𝑣0).  
 
We can interpret the meaning of 𝜋 as follows: Suppose the life insurance payoff is $1 million, and the 

expected number of claims for the general insurance is 18 with the expected claim size 
1

12
 million. The 

computed value of 𝜋 = 0.2194 when 𝑣0 = 1 means 21.94% of the initial wealth should be invested in 
the risky asset, and the remaining 78.06% should be invested in the risk-free asset. 

 
4.1 Effect of the Return Rate 𝜇 
 
To see the effect of the return rate of the stock, 𝜇, we compare the values of the optimal strategy 𝜋 at 
time 0 for various values of 𝜇 when 𝑣0 = 1 in Table 2. As expected, as the value of the return rate of the 
stock 𝜇 decreases, the model suggests less investment in the stock because of the lower return. 
 

𝜇 𝜋 
0.08 0.8950 

0.07 0.6724 

0.06 0.4487 

0.05 0.2225 

0.041 0.0225 
                             Table 2: Optimal strategy for various return rates of the stock 

 

                                                           
5 A = 1.5 and b = 0.5 imply that the expected number of claims is 18 per year, and the expected claims 

size is 
1

12
 for the general insurance product. 

Figure 1: Optimal strategy at time 0 when 𝜇 = 0.05 
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4.2 Effect of the Volatility 𝜎 of the Risky Asset 
 
Figure 2 shows that the proportion in the risky asset (𝜋) decreases as the value of the volatility (𝜎) 
increases. The volatility of the underlying risky asset is a measure of a risk. If it gets higher, but with a 
fixed rate of return 𝜇 in the risky asset, then investment in the risky asset is not preferable compared to 
investment in the risk-free asset. Conversely, if the volatility gets smaller, then investment in the risky 
asset yields the same return with less risk, and the portfolio manager would find it more attractive to 
invest in the risky asset. 

4.3 Effect of the Risk-Free Interest Rate r 
 
As observed in Figure 3, as the risk-free interest rate r increases, the investment in the risky asset 
decreases. With a fixed rate of return 𝜇 and a fixed risk measure 𝜎 in the risky asset, a higher risk-free 

Figure 2: Optimal strategy at time 0 for various values of 𝜎 

Figure 3: Optimal strategy at time 0 for various values of r 



   8 

 

 Copyright © 2016 Society of Actuaries 

interest rate means the portfolio manager does not have to take risk in the risky asset to yield a higher 
return. 
 
4.4 Effect of the Relative Security Loading 𝜃 
 
Figure 4 indicates that as the relative security loading 𝜃 increases, the investment in the risky asset 
decreases. If a higher security loading is imposed, then it yields a higher stable inflow from the 
premiums. That means the portfolio manager does not have to take much risk in the risky asset. It is 
more observable if the initial wealth is smaller. 
 

 
4.5 Effect of the Mortality Rate 𝜆 
 

To see the effect of the mortality rate, we set 𝑇 = 10, 𝑎 = 1.0, 𝑏 = √0.2, and 𝜇 = 0.06. This is when the 
expected number of claims is 10, and the expected claim size is 0.1. Table 3 shows that as the mortality 
rate increases, the proportion to invest in the risky asset decreases (the relative change is 4.07%). When 
the insurance company expects to have more payments to make due to a higher mortality rate, it needs 
to have a more reliable income from the risk-free asset. 
 

Mortality rate 𝜆 = 0.001 𝜆 = 0.01 

𝜋 0.35773 0.34373 
                                 Table 3: Optimal strategy for different mortality rates 

4.6 Effect of the Initial Surplus 
 
The proportion to invest in the risky asset 𝜋 is a decreasing function in terms of 𝑣0 in general, as 
observed in the previous figures. Since the existence of the initial surplus will have an effect of 
increasing the initial wealth, we observe less value of 𝜋 when there is a positive initial surplus. Table 4 

Figure 4: Optimal strategy at time 0 for various values of theta 
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shows an example that compares the value of 𝜋 with and without the initial surplus 𝑢0. As expected, the 
model suggests less investment in the risky asset when there are more resources to cover the risks. 
 

Initial surplus 𝑢0 = 0 𝑢0 = 0.2 

𝜋 0.34373 0.29712 
                                    Table 4: Optimal strategy for different initial surplus 

4.7 Effect of the Terminal Time of the Life Insurance 
 
We compare the values of the optimal strategy 𝜋 for different terminal times of the life insurance in 
Table 5. With all the other parameters fixed, two different terminal times are considered: T = 1 and T = 
10. The result suggests to put less money in the risky asset with the longer expiration date. 
 

Expiration date T = 1 T = 10 

𝜋 0.2384 0.1721 
                                  Table 5: Optimal strategy for different terminal time 

 
 
4.8 Effect of the Risk from the General Insurance 
 
To see the effect of the risk from the general insurance, we consider three different cases as in Table 6: 
First, we set the expected number of claims to be 10 and the expected claims size to be 0.1 as a base 
case (case A). If we increase the expected number of claims to 20 (case B), then the proportion to invest 
in the risky asset decreases (from 0.34374 to 0.22190). If we increase the expected claims size to 0.2 
(case C), then the proportion to invest in the risky asset also decreases (from 0.34373 to 0.11079). Case 
B and case C have the same number of total expected payments, but the effect is more significant in 
case C since it has a higher variability (b). This result shows that with more risk from the general 
insurance, the portfolio manager would want to have a more reliable income from the risk-free asset, as 
in the case with a higher mortality rate. 
 

Case Mean number of claims Mean claim size a b 𝜋 
A 10 0.1 1.0 0.4472 0.34374 

B 20 0.1 2.0 0.6325 0.22190 

C 10 0.2 2.0 0.8944 0.11079 
                                Table 6: Optimal strategy for different general insurance risks 

 
5. Conclusion 

 
In this report we derived a formula to estimate the optimal trading strategy of a portfolio with a general 
insurance product and a life insurance product. The initial cash account value of this portfolio is invested 
in the financial market with one risky asset and one risk-free asset. The derived formula for the optimal 
trading strategy depends on partial derivatives of an optimal function, whose solution satisfies a 
Hamilton-Jacobi-Bellman–type partial differential equation.  
 
Numerical examples show that the computed optimal trading strategy follows the general theory of the 
financial market: 
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 Invest more in the risky asset if the return rate of the risky asset is higher. 

 Invest less in the risky asset if the volatility of the risky asset is higher. 

 Invest less in the risky asset if the risk-free interest rate is higher. 

 Invest less in the risky asset if the continuous premium rate from the general insurance is 
higher.  

 Invest less in the risky asset if the mortality rate is higher. 

 Invest less in the risky asset if the expiration date of the life insurance is longer. 

 Invest less in the risky asset if the risk from the general insurance is higher. 
 
 

6. Future Research 
 
We can extend the model in this report to include a more realistic models, for example, explore how the 
optimal strategy changes as time progress with a periodic installment of the premium for general 
insurance. Monte Carlo simulation should be a suitable tool for the computations. Another extension 
can be done in terms of the mortality model. We assumed a simple deterministic mortality model with a 
constant force of mortality in this study, but it should be interesting to study with other mortality 
models. Gompertz’s law of mortality or a stochastic mortality model can be employed. 
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Appendix A 
 
Let us consider the premium for the general insurance to be paid periodically at prespecified times 𝑇0 =
0, 𝑇1, … , 𝑇𝑛. The surplus process in Section 2.2 is now 

{
𝑑𝑈1 = −𝑑𝐶 = −𝑎𝑑𝑡 + 𝑏𝑑𝐵2,

𝑈0
1 = 𝑢0.

 

We also normalize so that the initial surplus is 1 (𝑢0 = 1). It has an effect of having the initial wealth as 
𝑣0 = 2. First, we set the domain to be (𝑡, 𝑣) ∈ [0, 𝑇1] × [0,4] and solve (2) with 𝜃 = −1 using the same 
method in Section 4. Once we reach the time 𝑇1, we can adjust the initial wealth as the value of V at 
time 𝑇1 plus the periodic premium, and then solve (2) on the domain [𝑇1, 𝑇2] × [0,4] to compute the 
optimal strategy 𝜋 at time 𝑇1. By repeating this, one can find the optimal strategy for each event time. 
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Appendix B 
 
In Section 2.4, we assume the portfolio has one life insurance product and one general insurance 
product. In this appendix we assume the portfolio manager can allocate different proportion of life 
insurance and general insurance products in the portfolio.  
 
Let V be the value of the portfolio. Suppose the portfolio manager decides to have 𝛼 (0 ≤ 𝛼 ≤ 1) life 
insurance product and 1 − 𝛼 general insurance product in the portfolio. Then the value process follows 

𝑑𝑉 = 𝜋𝑉
𝑑𝑆

𝑆
+ (1 − 𝜋)𝑉

𝑑𝑃

𝑃
+ (1 − 𝛼)𝑑𝑈1 + 𝛼𝑑𝑈2, 

𝑉 = 𝛼𝑣0 at time 0. 
Note that the initial wealth depends on 𝛼, since the portfolio is self-financing and the initial wealth is set 
up as the premium of the life insurance product 𝑣0. 
 
The corresponding HJB equation becomes  

𝐻𝑡 + 𝐻𝑦[(𝜆 + 𝑟)𝑦 + (1 − 𝛼)𝜃𝑎𝑒𝜆𝑡 − 𝛼𝜆𝐺] +
1

2
(1 − 𝛼)2𝑏2𝑒𝜆𝑡𝐻𝑦𝑦 −

[(𝜇 − 𝑟)𝐻𝑦]
2

2𝜎2𝐻𝑦𝑦
= 0, 

𝐻(𝑇, 𝑦) = 𝑢(𝑒−𝜆𝑇𝑦), 

and the optimal strategy 𝜋 has the same formula as in (1). 
 
The computation result of 𝜋 is presented in Table 7 using the parameters in Table 1. As 𝛼 increases, we 
observe that the allocation to the risky asset 𝜋 decreases. The main reason for that phenomenon is that 
𝜋 for different 𝛼 is computed for different initial values, since the initial wealth depends on 𝛼 too. As 𝛼 
increases, the initial wealth 𝛼𝑣0 also increases. Table 7 shows that 𝜋 is a decreasing function in V, hence 
𝜋 decreases as 𝛼 increases. 
 

𝛼 𝜋 
0.1 2.3807 

0.3 0.7426 

0.5 0.4353 

0.7 0.3105 

0.9 0.2415 
                                  Table 7: Optimal strategy for different values of 𝛼 


