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Thomas N. Herzog 
Abstract 

This paper shows how discrete multivariate analysis (or 

multidimensional contingency table methods) may be applied to 

data arising in actuarial work. A brief introduction to the 

theory is followed by two detailed examples of its application. 

Finally, the concluding remarks indicate how the procedure 

could be incorporated into a complete rate-making procedure. 

* This work was performed for the U.S. Department of Housing and Urban 
Development. 
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We will describe a procedure which is one of a number of 

methods generally described as (multidimensional) contingency 

table, or discrete multivariate analysis. These methods have 

received considerable attention in the recent statistical 

literature, and a number of specific algorithms for implement-

ing them has been developed and programmed. The recent book 

of Bishop, Fienberg, and Holland [1] gives an excellent over-

all account of the field and provides extensive references to 

the literature. Fienberg [2] provides a less sophisticated 

treatment of this topic. The specific approach discussed here 

was developed by Professor Solomon Kullback of The George 

Washington University (see [3]) and is an information-

theoretic approach to contingency table analysis. C. Terrence 

Ireland directed the implementation of an algorithm for this 

procedure in both APL and PL/I. Documentation of the algorithm 

and examples of its application are found in [3 and 4]. Other APL 

and FORTRAN programs are available from Fox (see [5]) and Goodman 

(see [6, especially page 468]), respectively. 

The paper is divided into four parts. In the first part, 

we present a brief introduction to the theory of discrete multi­

variate analysis. In parts II and III, we discuss two applications 

of the procedure. Finally, in the last part we indicate how this 

technique could be incorporated into a complete rate-making 

procedure. 
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I. THEORY 

1. Introduction 

Contingency table methods are appropriate for data that 

have been cross-classified by a number of variables of 

interest. Each variable is required to be categorical 

(i.e., discrete), so that each observed data point can 

be placed into exactly one of a finite number of 

categories of each variable. The restriction to cate­

gorical data is not prohibitive, since data measured 

on a continuous scale (such as mortgage amount) can be 

easily categorized (for example, by partitioning the 

range of mortgage amounts into $5,000 intervals). 

When all variables are considered simultaneously, 

they determine a cross-classification into cells. 

The number of cells, M, is equal to the product 

of the number of categories in each variable. For 

example, if there are three variables of interest, 

with 3, 2, and 5 categories, respectively, then the 

cross-classification (or contingency table) defined 

by them has M = 3·2·5 = 30 cells. 

The reader should be familiar with two-dimensional 

tables such as the following table which cross-classifies 

the income of actuaries by their academic record. 
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Income of Actuaries versus 
Academic Record 

Academic Income 
Record Low Medium 

Low 5 17 

Medium 16 38 

High 9 15 

High 

18 

26 

6 

Since there are three income classifications and three 

academic record classifications, the table consists of 

3•3=9 cells. The procedure we are concerned with involves 

a generalization of the well-known 2-dimensional table to 

a higher number of dimensions. 

In contingency table analysis, the data are assumed to obey 

an underlying multinomial distribution over all M cells. To 

each cell is associated the probability that a data point 

selected at random will be classified in that cell. The two 

goals of contingency table analysis are: (1) to describe the 

observed data as simply as possible and (2) to obtain as good 

a fit as possible. By "a simple description" we mean that we 

can model the underlying multinomial distribution with rela-

tively few parameters (i.e., main effects and higher order 

interaction terms). Often the two goals are in conflict 

because the fit usually increases along with the complexity 

of the model. Thus, the data analyst must balance the 

trade-off between the simplicity of the structural model 

and the closeness of the fit. 
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The results of the contingency table analysis are: 

(1) a model which attempts to maximize 
both structural simplicity and 
goodness-of-fit, 

(2) estimated frequency counts (under 
the model) for each cell, 

(3) an overall measure of fit of the 
model, 

(4) an analysis of which variables and 
interactions are present in the 
model and which are not, and 

(5) a measure of the relative importance 
of the variables and interactions used. 

2. Log-linear Structure 

The analysis begins with a log-linear model for the under-

lying multinomial distribution1 that is, the logarithms 

of the cell probabilities are expressed as linear 

functions of the main effects and interactions of the 

variables. For purposes of illustration, we consider a 

data set with 3 variables, I, J, and K. We suppose that 

variable I has 2 categories (identified as i = 1 or 2), 

variable J has 3 ( j = 1, 2, or 3) , and variable K has 

2 (k = 1 or 2). Thus the total number of cells is 

M = 2 • 3 • 2 = 12. Let p( i ,j ,k) denote the underlying 

probability that a data point selected at random will 

be classified in cell (i,j,k). The log-linear model 

represents each p(i,j,k) in the following form: 
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I .T K IJ IK JK IJK 
log p(i,j,k) = u + ai + aj + ak + aij + aik + ajk + aijk 

where i = 1, 21 j = 1, 2, 31 k = 1, 21 and log is the natural 

logarithm. The 8 terms have the following interpretations: 

u is a general (or overall) mean. 

af measures the effect of the variable I alone on the 

probability p(i,j,k). Since these terms measure 

deviations from the general mean, they must sum to 0 

I I over all values of i : a1 + a 2 = 0. Thus, there is 

only one independent parameter af. The ag and a~ terms 

measure similar main effects for the J and K variables. 

af~ measures the interaction of variables I and J. 

Again these measure deviations from the effects of the 

variables I and J alone, so that af~ + a~g = 0 for any j 

(and similarly for i). 

a+.:rKk measures the 3-variable interaction of all 3 
~J 

variables. 

. IJK + aiJK = 0 f . (. k) Aga~n, aljk 2 jk or any pa~r J, • 

Thus the complete description of all probabilities p(i,j,k) 

requires 12 independent parameters: 

1 general mean; 

4 main effects (1 for I, 2 for J, and 1 for Kl1 

5 2-variable interactions (2 for IJ, 1 for IK, and 

2 for JK) 1 

IJK IJK 
2 3-variable interactions a111 and al21 

All of the other parameters can be calculated from 

these, since their sum across any single variable is 0. 

Since the data require M = 12 cells, the system is 

completely determined. 
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The goal of the analysis may now be expressed in terms of 

the a-parameters. A structural model for the data is 

specified by assuming that a certain set of the a-parameters 

will be used to estimate the probabilities p(i,j,k) (and 

thus that the main effects and interactions represented 

by these parameters will be used in the model) and that 

all other a-parameters will be assumed to be 0 (so that 

these main effects and interactions are assumed not 

to exist). If the model fits the data well, then it 

partitions the main effects and interactions into two 

groups: those which are important in describing the data 

and those which are not. 

The contingency table models are hierarchical models in 

the sense that if a particular higher-order interaction 

term is included in the model, then so are all lower-

order interaction terms. For example, if the term 

a~-! 
l.J appears in the model, then so do ai 

Typical models are defined as follows: 

and a-! 
J 

(1) The only parameter used is the general mean u. 

The model says that log p(i,j,k) = u for each p(i,j,k). 

Thus none of the variables has any effect, and the 

observed data points can be assumed to be distributed 

uniformly over the M cells. 

(2) Only the general mean and the main effects are used. 

Now log p(i,j,k) = u + ar + a~+ a~: the logarithm of 
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each cell probability is the sum of the general mean 

and a main effect from each variable. If both sides 

of the equation are exponentiated, it is seen that 

each cell probability is the product of four factors, 

one being the ngeneral meann and the other three 

being the main effects of each of the variables. This 

is the classical independence model. 

(3) The general mean, all main effects, and a single 

2-variable interaction effect are used. If the JK 

interaction is the one present, then log p(i,j,k) 
I J K JK 

.. u + ai + aj + ak + ajk• 

The interpretation of this model is that the variable I 

is independent of the various combinations of J and K. 

(4) The general mean, all three main effects, and two 

2-variable interactions--IJ and JK--are used. 
I J K IJ JK 

log p(i,j,k) ,. u + ai + aj + ak + aij + ajk • 

This is a conditional independence model: given variable J, 

variables I and K are independent. 

3. The Algorithm 

The algorithm CONTAB, which was used to implement the log­

linear modeling procedure, employs an iterative fitting 

scheme. Each model to be fit specifies that certain 

interactions among the variables are to be included. 

Using the phrase nmarginal totaln to mean a sum across 

one or more variables, we may restate the previous 

statement as follows: 
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The specified marginal totals of the fitted table must agree 

with the corresponding marginal totals of the original 

table. For instance, in the 3-variable example considered 

previously, let x(i,j,k) denote the observed count in 

cell (i,j,k). Thus the IJ marginal is Lkx(i,j,k) and is 

written as x(i,j,.), where the dot replaces the variable 

which has been summed. Similarly, the K marginal is 

L .. x(i,j,k) =X(· ,.,k). In example (3) above the general 
l.J 

mean, all main effects, and the JK interaction are to be 

present in the model. This means that the grand total 

N = x(•,•,•), all of the !-variable marginals x(i,• ,·), 

X(•, j,. ), and x(.,•, k), and the 2-variable JK 

marginals X(• ,j,k) are fixed by the model to have the 

same values as in the original data. 

The algorithm CONTAB begins with a uniform distribution 

of N observations over M cells, and successively adjusts 

the cell entries so that each of the marginals fixed by 

the model agrees with its specified value. Since the 

adjustment to fix one marginal will usually destroy the 

adjustment for the marginals previously considered, the 

process must cycle repeatedly through all marginals to be 

fitted. The algorithm does converge* (the individual cell 

entries each approach a limiting value)~ the iterative pro­

cess terminates when a cycle through all marginals changes 

the cell entries by less than a pre-specified amount. 

*See, for example, [1~ pages 85-86]. 
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4. Goodness-of-fit 

The goodness-of-fit of a model to the observed data is 

measured by the Information Statistic of Kullback (which is 

equivalent to the likelihood ratio statistic of [1]). Let 

x(i,j,k) be the observed count in cell (i,j,k), and let 

x*(i,j,k) be the count predicted by a structural model. 

The Information Statistic, which measures the fit 

of the predicted distribution x* to the observed 

distribution x, is 
~ x(i,j,k) 

I(x:x*) = £-ijk x(i,j,k) • log x*(i,j,k). 

Under the null hypothesis that the model is correct, the 

statistic 2I(x:x*) has a distribution which is asymptotically 

chi-square, with degrees of freedom equal to the number 

of cells in the table minus the number of independent 

parameters specified by the model. The value of this 

statistic can be compared to tables of the chi-square 

distribution in order to test the goodness-of-fit. 

The Information Statistic can be used to test a hier-

archical collection of models. Suppose that xr and 

x~ are the distributions predicted from two different 

structural models, and that all the a-parameters used 

in the model for xf are also used in the model for 

x~. Then the statistic 2I(x~:xfl satisfies the relation 

2I(x:xil = 2I(x:x~) + 2I(x~:xil. 
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The distribution of 2I(x2:xil is also asymptotically 

chi-square, with degrees of freedom equal to the 

number of independent parameters specified by x2 

which are not specified by xf. This statistic may 

be used to test the hypothesis that the parameters 

specified by x1 but not by Xi are statistically 

significant. 

5. An Alternative Measure of Fit: The r2-statistic 

In the remainder of this paper we will assume 

that there is one dependent variable (the result 

to be predicted) and that the other (say n) variables 

may be regarded as independent (or predictor) variables. 

We will now define an alternate measure of fit for 

this type of model. This alternative measure of 

fit for log-linear models is described by Goodman 

[7J p. 246] and Scheuren [BJ pp. 163-4], where it is 

referred to as the "I2 - statistic." 

As above, we let x denote the observed distribution of 

an (n+l)-dimensional table. We also let x*denote the 
0 

"basic" or "benchmark" distribution (or model) which 

usually assumes complete independence between the n 

"independent" variables and the single "dependent" 

variable. Thus, the basic model x*is formed using 
0 

only the n-way marginal totals of the n independent 
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variables and the one-way marginal totals of the 

dependent variable. For each model (or hypothesis), 

which we consider, we can interpret the quantity 
I2 _ I(x:x*) - I(x:xil 

- I~x:x~l 
to be the ratio of "explained variation" to "total 

variation." In other words, I 2 may be considered to 

be the proportion of variation explained by the addition 

of those interaction terms in model xithat are not 

* in model x0 • Since all of the interaction terms 

* * found in x0 appear in all alternative models, x1, 

* * 2 I(x:x0 ) 2 I(x:x1 ) ~ O: hence, 0 ~I~ 1. 

6. Odds of Observing Particular Outcomes of the Dependent 

Variable 

Consider the previous example involving the three 

variables I,J, and K. Suppose that K is the dependent 

variable and that I and J are independent variables. 

The variable K has two categories. One convenient 

way to predict the value of the variable K is to 

estimate the odds that K=l compared to K=2 for a 

given combination of values of I and J. For I=i and 

J=j, these odds are specified by the estimate of the 

ratio p(i,j,l)/p(i,j,2). Under the general model, 

the natural log of this estimated ratio is: 
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log 
p(i,j,l) 

p(i, j ,2) 

K IK JK IJK 
2a1 + 2ail + 2ajl + 2aijl 

2 [ .~ + ·~~ + ·~~ + ·~i~] 

Thus, only the interaction terms (or parameters) 

involving K are needed to specify the predicted odds. 
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II. FHA SINGLE-FAMILY MORTGAGES ENDORSED IN CALIFORNIA 
DURING 1974 

A. INTRODUCTION 

Our first example is based on some data arising from 

a class of FHA mortgages. 

The primary goal of this work is to determine which 

variables, if any, are useful in predicting the eventual 

default of such mortgages. The data consist of 19,230 

mortgages endorsed in California during calendar year 

1974. At the end of calendar year 1978, four hundred and 

two of these mortgages had already resulted in claim 

terminations. Thus, the overall claim termination rate 

was (402 ~ 19,230) or approximately 2.1 percent. 

The 19,230 mortgages were initially assigned to one of 

1728 cells of a 5-dimensional (2 by 3 by 6 by 8 by 6) 

contingency table. The following variables were 

employed in this table: 

1. mortgage status (claim termination or still in 

force). (2 levels) 

2. construction status (new, existing, or HUD 

acquired property). (3 levels) 
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3. mortgage amount* ($5,000 - 9,999; $10,000 -

14,999; $15,000 - 19,999; $20,000 - 24,999; 

$25,000 - 29,999; or~ $30,000). (6 levels) 

4. loan-to-value ratio** (missing; 0.0 - 89.9 percent; 

90.0- 94.9 percent; 95.0 - 95.9 percent; 96.0-

96.9 percent; 97.0 - 97.9 percent; 98.0 -

98.9 percent; or 99.0- 99.9 percent) (8 levels) 

5. office (Los Angeles, San Francisco, Sacramento, 

San Diego, Fresno, Santa Ana). (6 levels) 

We first cross-classified each of the four predictor 

variables with mortgage status, producing the following 

two-way tables of observed frequency counts: 

Mortgage Status versus Construction Status 

Construction Status 
New Exi~ting HUD Acquired 

Number of claim 
terminations 

Original number of 
mortgages written 

Claim termination 
rate 

11 

4,245 

0.003 

294 97 

13,155 1,830 

0.022 0.053 

There were no mortgages written for amounts under $5,000, 
or over $45,000. 

**This is the ratio of the loan amount to the estimated 
property value. 
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Mortgage Status versus Mortgage Amount 

Mortgage Amount 1 (in dollars) 

5,000- 10,000- 15,000- 20,000- 25,000-
9,999 14,999 19,999 24,999 29,999 > 30,000 

Number of claim 
terminations 0 72 140 141 34 15 

Original 
number of 
mortgages 
written 54 863 3,270 7,024 5,285 2,734 

Claim termination 
rate 0 0.083 0.043 0.020 0.006 0.005 

Mortgage Status versus Loan-to-Value Ratio 

Loan- to-Value Ratio 
(in Eercent) 

Total 
90.0- 95.0- 96.0- 97.0- 98.0- 99.0- Non-

< 90 .o 94.9 95.9 96.9 97.9 98.9 99.9 Missing Miss in<, 

~umber of claim 
terminations 6 61 26 28 30 6 9 166 236, 

)rig inal number 
of mortgages 
written 2,553 5,444 996 688 316 175 114 9,874 8,944: 

~I 
:laim termination 

0.026' rate 0.002 0.011 0.026 0.041 0.095 0.034 0.079 0.017 
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Mortgage Status versus Office 

Office 
Los San San Santa 

Anseles Francisco Sacramento Dieso Fresno Ana 

Number of 
claim 
terminations 189 23 22 25 l4 129 

Original 
number of 
mortgages 4,018 3,548 2,968 2,603 1,944 4,149 

Claim termination 
rate 0.047 0.006 0.007 0.010 0.007 0.031 

There are a number of important things to note from 

these four tables. First, there were virtually no 

claim terminations on new home mortgages. (We observed 

only ll claim terminations out of 4,245 mortgages 

written.) Of the 54 mortgages written for amounts 

under $10,000, there were no claim terminations. 

Thus, we can restrict our attention to those mortgages 

written for existing or acquired property having a 

mortgage amount of at least $10,000. 

As anticipated, the claim termination rate generally 

tends to increase as the loan-to-value ratio increases; 

however, the claim termination rate of mortgages whose 

loan-to-value ratio was missing was substantially 

higher (2.6 percent versus 1.7 percent) than for those 

whose loan-to-value ratio was available. This is a 
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potentially serious problem. Because of this bias, 

it is probably advisable to use special caution 

when using the loan-to-value ratio variable in sub­

sequent analysis of these mortgages. 

Finally, the claim termination rates were substantially 

higher for the Los Angeles and Santa Ana offices than 

for the other four California offices. 

In the rest of this section of the paper we will discuss 

our attempts to use contingency-table analysis methods to 

predict mortgage status. 

B. ANALYSIS OF EXISTING MORTGAGE DATA 

Since only two of the 97 observed defaults on acquired 

property mortgages had a loan-to-value ratio present, 

we decided to restrict our attention to mortgages on 

existing homes. We began by constructing a 4-dimensional 

contingency table in which we cross-classified mortgage 

status (2 levels ) by office (6 levels) by loan-to-value 

ratio missingness status (2 levels) (either missing or 

present) by mortgage amount (5 levels). Since there 

are no claim terminations under $10,000, we restricted 

attention to the five largest mortgage-amount classes. 

We first computed the overall claim termination rates. 

For mortgages with the loan-to-value ratio present 

the claim termination rate was (156/7726)=2.0 percent1 
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the others had a claim termination rate of 

(138/5429)~2.5 percent, or a rate somewhat higher 

than 2.0 percent. So, we next decided to test the 

(null) hypothesis that mortgage status is (conditionally) 

independent of the absence or presence of the loan-to-value 

ratio given the other two variables (office and mortgage 

amount). We observed a value of 37.2 for the appropriate 

test statistic. Since this statistic is asymptotically 

chi-square with 30 degrees of freedom, we were unable 

to reject the null hypothesis at the 10 percent level 

of significance. As a result we decided to include 

the loan-to-value ratio as one of our model's independent 

variables and thereby to restrict attention to those 

mortgages for which a loan-to-value ratio was present. 

The next step was to construct a (2 by 6 by 3 by 4) 

contingency table. Here the first two dimensions are 

as in the last table and the last dimension is based 

on the mortgage amount, the two highest mortgage amount 

classes being combined to reduce the number of such 

classes from 5 to 4. The remaining variable is the 

loan-to-value ratio which is partitioned as follows: 

(0.0-94.9%), (95.0-96.9%) and (97.0-99.9%). 
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A transposed version of the resulting contingency table 

constitutes Table I of the appendix. Contingency-table 

analysis resulted in the following table of values: 

Degrees Probability 
Information of of a 

Model Statistic times 2 I 2-value Freedom Larger Value 

Constant 
term only 254.1 71 0.00 

0 202.2 0.204 66 o.oo 

L 161.2 0.366 69 0.00 

M 154.9 0.390 68 0.00 

OL 97.4 0.617 54 0.00 

OM 83.0 0.673 48 0.00 

LM 106.9 0.579 60 o.oo 
OL,M 55.0 0.784 51 0.33 

OM,L 47.4 0.813 46 0.41 

LM,O 58.6 0.769 55 0.34 

OL,OM 34.6 0.864 36 0.53 

OL,LM 45.9 0.819 45 0.43 

OM,LM 38.4 0.849 40 0.54 

OL,OM,ML 23.4 0.908 30 0.80 

where 

0 represents office 

L represents loan-to-value ratio, and 

M represents mortgage amount 

For example, the OL model is the log-linear model which 

includes the office - loan-to-value ratio two-way interaction 

term. 
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Since we are only considering hierarchical models, 

the OL model also contains the office and loan-to-

value ratio main effect terms. 

The first model consisted only of the constant term. 

In this model the probability of a claim termination 

is assumed to be independent of the loan-to-value 

ratio, mortgage amount, and field office. The 

resulting information statistic times two is equal 

to 254.1--a fairly large value for a chi-square 

distribution with 71 degrees of freedom. 

From the last table, we also see that the mortgage 

amount, M, is the single variable which explains 

the most variation, i.e., 39.0 percent. The loan-to-

value ratio, L, and the office*, 0, variables explain 

36.6 percent and 20.4 percent respectively. The OM 

model involving the office-mortgage amount two-way 

interaction term explains the most variation among 

the class of models having a single two-way inter­

action term: specifically, this r2-value is 

67.3 percent. We found that the model involving the 

mortgage amount - loan-to-value ratio two-way interaction 

* The office variable should be considered to be a proxy 
for location and/or office procedure variables. 
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term was inferior to the other two models of this class, 

both of which included the office variable. Thus, it 

appears that the mortgage amount and the loan-to-value 

ratio are "explaining a lot of the same variation" 

compared to the office. 

We also considered the three models with one main 

effect and one two-way interaction term. The model 

with the office-mortgage amount interaction term 

appeared to be the best of these. 

We next examined the models having a pair of two-way 

interaction ter~s. There does not appear to be a 

standout among these models. Although the OL,OM model 

has the highest I2-value (specifically, 0.864), it 

also has the smallest number of degrees of freedom 

(36 versus 45 for the OL,LM model). 

Finally, we examined the model having three two-way 

interaction terms. This model has an I 2-value of 

0.908 based on 30 degrees of freedom. 

It is admittedly difficult to choose among these 

models. In our appendix, we have presented the pre-

dieted cell frequencies for the OL,OM and the OL,OM,ML 

models. These had the two highest I2-values. 
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C. WARNING ! ! 

The results of this contingency-table analysis should 

be treated with caution because 31 of the 144 observed 

cell frequencies were zero and 42 others were less 

than or equal to 5. In fact, only 7 of the 72 claim 

termination cells contained more than 5 claim 

terminations. Thus, the vast majority of the claim 

termination cells will have expected cell frequencies 

which are not substantially greater than 5. 
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III, AUTOMOBILE ACCIDENT DATA 

The second example is a manufactured example which has 

been constructed to demonstrate a potential use of 

contingency analysis in the automobile insurance risk 

classification process. The basic data constitute 

Table VI of the appendix. 

Our initial assumption is that there is one dependent 

variable and three predictor variables. The dependent 

variable is the accident indicator variable which indicates 

whether or not an individual was involved in at least one 

automobile accident during the most recent calendar year. 

The independent variables are sex, age (which has been 

partitioned into four categories), and location (which 

has been partitioned into three categories). 

Our goal is to determine which of the sex, age, and location 

variables are most useful in predicting the value of the 

accident indicator variable. We have considered a number 

of models and have summarized the results in Table VII. 

The first model consisted of the constant term only. Here 

the probability of at least one accident was constant over 

all combinations of sex, age, and location. For this model, 

the information statistic times two is equal to 413.3--a 

rather large value for a chi-square distribution with only 
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I 

~ 

j 

23 degrees of freedom. From the next three models, we 

see that location is the single variable which explains 

the most variation--62 percent--compared to 4 percent and 

36 percent for the sex and age variables, respectively. 

Of the models containing two main effect terms, the one 

containing age and location is clearly the best, explaining 

87 percent of the variation. 

For the models containing a single two-way interaction 

term, the age-location model stands out with an r2-value of 

93 percent. Yet, even the information statistic corresponding 

to this model is quite high1 i.e., it is still statistically 

significant at the 0.02 level. 

The next group of models considered consists of one two-way 

interaction term and a single main effect term. Here again 

the model containing the age-location interaction is the 

best. This model is a legitimate candidate for the best 

overall model because the value of its information statistic 

is relatively low and its r2-value is quite high. 

The last group of models considered each contained a pair 

of two-way interaction terms. The best one here consisted 

of the sex-age and age-location terms. This model is also 

a candidate for the best overall model because the product 

of two and its information statistic is less than 8, the 

number of degrees of freedom. It does, however, contain 

three more parameters than the AL,S model and so may not 

be preferred if a more parsimonious model is desired. 
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In Table VIII, we present the actual parameter estimates 
for the model containing the age-location two-way inter­

action term and the sex main effect term. Using these 

estimates we find that, under the AL,S model, the log 

odds of a 20-year-old urban male having at least one 

accident are 

p(l,l,l,l) 
I IS IA IL IALJ 2 1al +all +all +all + alll 

log 
p(2,1,1,1) 

2[-1.089 + 0.031 + 0.126 + 0.208 + 0.024] 

2[-0.7] -1.4. 

This corresponds to a probability of 

1 
----------- = 0.20 
1 + exp(l.4) 

of having at least one accident. 
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IV. CONCLUDING REMARKS 

I envision this procedure being used to help compute net 

premiums in the following manner. First, using the 

procedure just described, the variables (i.e., main 

effects and interaction terms) explaining a substantial 

portion of the total variation are identified and the 

corresponding estimated cell frequencies are produced. 

These yield estimated accident probabilities for each 

combination of the independent (or predictor) variables. 

Then using regression analysis, or an alternative pro­

cedure, a separate expected loss per accident is estimated 

for each combination. Multiplying each such expected loss 

by the corresponding accident probability, we obtain an 

initial estimate of the net premium for each combination 

of predictor variables. If desired, these estimates may 

be smoothed further, for example, by using empirical 

Bayes methods as discussed in Morris and van Slyke [9). 
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Table I -- Part 1 

Observed Number of Existing Mortgages Still in Force 
by Loan-to-Value Ratio, Office, and Mortgage Amount 

MORTGAGE AMOUNT (in dollars) 

Loan-to-Value 10,000- 15,000- 20,000-
Ratio Office 14,999 19,999 24,999 ~25,000 

Los Angeles 25 116 734 553 

San Francisco 3 36 397 809 

Sacramento 24 48 174 177 
<94.9% 

San Diego 3 26 210 585 

Fresno 15 160 203 82 

Santa Ana 38 80 445 583 

Los Angeles 11 223 228 61 

San Francisco 2 12 52 49 

Sacramento 19 62 67 33 
:::.~.0-96.9% 

San Diego 0 16 50 110 

Fresno 32 124 65 11 

Santa Ana 21 81 86 99 

Los Angeles 49 40 15 10 

San Francisco 0 4 11 12 

Sacramento 10 31 20 13 
97.0-99.9% 

San Diego 4 9 27 43 

Fresno 15 62 10 2 

Santa Ana 31 58 28 26 
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Table 1 -- Part 2 

Observed Number of Claim Terminations Among Existing Mortgages 
by Loan-to-Value Ratio, Office, and Mortgage Amount 

Loan-to-Value 
Ratio 

<94. 9%. 

95.0-96.9% 

97.0-99.9% 

Office 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

MORTGAGE AMOUNT (in dollars) 

10,000-
14,999 

1 

0 

0 

1 

0 

0 

5 

0 

1 

0 

0 

1 

13 

0 

0 

1 

0 

5 

207 

15,000-
19,999 

2 

0 

0 

0 

1 

2 

20 

2 

1 

0 

2 

2 

1 

1 

1 

0 

2 

9 

20,000-
24,999 

20 

5 

1 

3 

1 

7 

7 

5 

0 

3 

0 

4 

2 

1 

0 

1 

1 

1 

~5,000 

9 

2 

0 

4 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

2 



Table II -- Part 1 

Predicted Number* of Existing Mortgages Still in Force 
by Loan-to-Value Ratio, Office, and Mortgage Amount 

Under (OL, OM)-Model 

MORTGAGE AMOUNT (in dollars) 

Loan-to-Value 
Ratio Office 

10,000-
14,999 

15,000-
19,999 

20,000-
24,999 ~5,000 

Los Angeles 

San Francisco 

Sacramento 
<94. 9% 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 
95.0-96.9% 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 
97.0-99.9% 

San Diego 

Fresno 

Santa Ana 

*Rounded to one decimal place. 

22.9 

3.0 

23.8 

3.4 

15.0 

37.4 

12.6 

2.0 

19.5 

0.0 

32.0 

21.1 

49.5 

0.0 

9.7 

3.6 

15.0 

31.5 

208 

113.9 

35.3 

47.7 

26.0 

160.0 

80.7 

226.7 

12.3 

61.9 

16.0 

124.6 

79.7 

38.4 

4.3 

31.4 

9.0 

61.4 

58.5 

736.4 

396.9 

174.6 

208.9 

203.0 

446.1 

224.3 

52.2 

66.6 

51.2 

64.4 

87.1 

16.3 

10.8 

19.9 

26.9 

10.6 

25.9 

554.8 

809.7 

177.0 

585.7 

82.0 

581.8 

59.5 

48.4 

33.0 

108.8 

11.0 

99.1 

9.8 

11.8 

13.0 

43.5 

2.0 

27.1 



Table II -- Part 2 

Predicted Number* of Claim Terminations Among Existing Mortgages 
by Loan-to-Value Ratio, Office, and Mortgage Amount 

Under (OL, OM)-Model 

Loan-to-Value 
Ratio 

<94. 9% 

95.0-96.9% 

97.0-99.9% 

Office 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

*R d oun ed to one decimal place. 

MORTGAGE AMOUNT (in dollars) 

10,000-
14,999 

3.1 

0.0 

0.2 

0.6 

0.0 

0.6 

3.4 

0.0 

0.5 

0.0 

0.0 

0.9 

12.5 

0.0 

0.3 

1.4 

0.0 

4.5 

209 

15,000-
19,999 

4.1 

0.7 

0.3 

0.0 

1.0 

1.3 

16.3 

1.7 

1.1 

0.0 

1.4 

3.3 

2.6 

0.7 

0.6 

0.0 

2.6 

8.5 

20,000-
24,999 

17.6 

5.1 

0.4 

4.1 

1.0 

5.9 

10.7 

4.8 

0.4 

1.8 

0.6 

2.9 

0.7 

1.2 

0.1 

1.1 

0.4 

3.1 

~5,000 

7.2 

1.3 

o.o 

3.3 

o.o 

2.2 

1.5 

0.6 

o.o 

1.2 

o.o 

0.9 

0.2 

0.2 

o.o 

0.5 

o.o 

0.9 



Table III -- Part 1 

Predicted Number* of Existing Mortgages Still in Force 
by Loan-to-Value Ratio, Office, and Mortgage Amount 

Under (OL, OM, ML)-Model 

MORTGAGE AMOUNT (in dollars) 

Loan-to-Value 
Ratio Office 

io,ooo-
14,999 

15,000-
19,999 

20,000-
24,999 ~5, 000 

Los Angeles 

San Francisco 

Sacramento 
<94. 9% 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 
95.0-96.9% 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 
97.0-99.9% 

San Diego 

Fresno 

Santa Ana 

*Rounded to one decimal place. 

24.7 

3.0 

23.9 

3.6 

15.0 

37.8 

11.0 

2.0 

19.4 

0.0 

32.0 

20.6 

49.3 

0.0 

9.7 

3.4 

15.0 

31.6 

210 

115.3 

35.6 

47.7 

26.0 

160.2 

81.1 

224.9 

11.9 

61.9 

16.0 

124.4 

78.9 

38.8 

4.4 

31.4 

9.0 

61.4 

59.0 

734.3 

396.9 

174.4 

209.2 

202.8 

445.4 

226.4 

52.2 

66.7 

50.4 

64.6 

87.6 

16.3 

10.9 

19.9 

27.3 

10.6 

26.0 

553.7 

809.5 

177.0 

585.2 

82.0 

581.7 

60.7 

48.9 

33.0 

109.6 

11.0 

99.8 

9.6 

11.7 

13.0 

43.3 

2.0 

26.5 



Table III -- Part 2 

Predicted Number* of Claim Termination~ Among ~xistinq Mortqaqes 
by Loan-to-Value Ratio, Office, and Mortgage Amount 

Under (OL, OM, ML)-Model 

Loan-to-Value 
Ratio 

<94. 9% 

95.0-96.9% 

97.0-99.9% 

Office 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

Los Angeles 

San Francisco 

Sacramento 

San Diego 

Fresno 

Santa Ana 

*Rounded to one decimal place. 

l-10RTGAGE AMOUNT (in dollars) 

10,000-
14,999 

1.3 

0.0 

0.1 

0.4 

0.0 

0.2 

5.0 

0.0 

0.6 

0.0 

o.o 
1.4 

12.7 

0.0 

0.3 

1.6 

0.0 

4.4 
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15,000-
19,999 

2.7 

0.4 

0.3 

0.0 

0.8 

0.9 

18.1 

2.1 

1.1 

0.0 

1.6 

4.1 

2.2 

0.6 

0.6 

0.0 

2.6 

8.0 

20,000-
24,999 

19.7 

5.1 

0.6 

3.8 

1.2 

6.6 

8.6 

4.8 

0.3 

2.6 

0.4 

2.4 

0.7 

1.1 

0.1 

0.7 

0.4 

3.0 

~5,000 

8.3 

1.5 

0.0 

3.8 

0.0 

2.3 

0.3 

0.1 

0.0 

0.4 

0.0 

0.2 

0.4 

0.3 

o.o 

0.7 

0.0 

1.5 



Table IV 

Predicted Relative Frequency* of Claim Termination Among Existing 
Mortgages by Loan-to-Value Ratio, Office, and Mortgage Amount 

unaer (OL, OM)-Model 

MORTGAGE AMOUNT (in dollars) 

Loan-to-Value 10,000- 15,000- 20,000-
Ratio Office 14,999 19,999 24,999 ~5,000 

Los Angeles .120 .035 .023 .013 

San Francisco .000 .018 .013 .002 

Sacramento .010 .007 .002 .000 
<94.9% 

San Diego .154 .ooo .019 .006 

Fresno .000 .006 .005 .000 

Santa Ana .016 .016 .013 .004 

Los Angeles .214 .067 .046 .025 

San Francisco .000 .119 .084 .011 

Sacramento .025 .017 .006 .000 
95.0-96.9% 

San Diego .253 .000 .035 .010 

Fresno .ooo .011 .009 .000 

Santa Ana .039 .039 .033 .009 

Los Angeles .201 .063 .042 .024 

San Francisco .ooo .136 .097 .013 

Sacramento .027 .019 .007 .000 
97.0-99.9% 

San Diego .277 .000 .039 .012 

Fresno .ooo .041 .034 .000 

Santa Ana .126 .126 .107 .032 

*Rounded to three decimal places. 
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Table V 

Predicted Relative Frequency* of Claim Termination Among Existing 
Mortgages by Loan-to-Value-Ratio, Office, and Mortgage Amount 

Under (OL, OM, ML)-Model 

MORTGAGE AMOUNT (in dollars) 

Loan-to-Value 10,000- 15,000- 20,000-
Ratio Office 14,999 19,999 24,999 ~5,000 

Los Angeles .049 .023 .026 .015 

San Francisco .000 .010 .013 .002 

Sacramento .004 .006 .003 .000 
<94. 9% 

San Diego .099 .000 .018 .007 

Fresno .000 .005 .006 .000 

Santa Ana .006 .011 .015 .004 

Los Angeles .313 .075 .036 .004 

San Francisco .ooo .149 .084 .003 

Sacramento .031 .018 .004 .000 
95.0-96.9% 

San Diego .660 .000 .048 .004 

Fresno .000 .013 .006 .ooo 

Santa Ana .062 .049 .027 .002 

Los Angeles .205 .053 .041 .042 

San Francisco .000 .110 .093 .027 

Sacramento .027 .019 .007 .000 
97.0-99.9% 

San Diego .321 .000 .024 .016 

Fresno .000 .041 .033 .000 

Santa Ana .123 .120 .104 .055 

*Rounded to three decimal places. 
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Table VI 

Number of Insureds Having No 
Automobiie ~ccidents During 1977 

Sex 
Femaie 

Location 
~ Urban uburban Rura 

16-24 1600 850 460 1400 780 465 

25-39 1250 700 470 1300 670 375 

40-64 1050 750 940 1030 750 925 

~ 65 860 900 280 1350 1380 455 

Number of Insureds Having At 
Least One Automobi1e Accident During 1977 

Sex 
Maie Femaie 

ocat1on Locat1on 
~ Urban Suburban Rura Urban Suburban Rural 

16-24 400 150 40 300 120 35 

25-39 250 100 30 200 80 25 

40-64 150 50 60 170 50 75 

> 65 140 100 20 160 120 45 
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Table VII 

Probability 
Information 

r 2
-value 

o.t a Larger 
Model Statistic times 2 D. F. Value 

Constant 
term only 413.3 23 o.oo 

s 397.3 0.04 22 o.oo 

A 265.9 0.36 20 o.oo 

L 157.2 0.62 21 o.oo 

S,A 255.8 0.38 19 o.oo 

S,L 142.1 0.66 20 o.oo 

A,L 54.4 0.87 18 o.oo 

S,A,L 44.6 0.89 17 0.00 

SA 247.3 0.40 16 o.oo 

SL 133.8 0.68 18 o.oo 

AL 26.9 0.93 12 0.01 

SA,L 56.6 0.86 14 0.00 

SL,A 37.1 0.91 15 o.oo 

AL,S 17.3 0.96 11 0.10 

SA,SL 30.5 0.93 12 o.oo 

SA,AL 7.8 0.98 8 0.45 

SL,AL 11.5 0.97 9 0.24 
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Table VIII 

Parameter Estimates of the AL,S Model 

a I 
1 

-1.089 

a IS 
11 

0,031 

IA IA 
all 0,126 a 12 0,004 

n. n. 
0.011 au 0.208 a 12 

IAL 
0.024 

IAL 0.072 au1 a 112 

IAL 0,009 
IAL 0.079 a121 a 122 

IAL 
0.045 

IAL 0.118 al31 al32 

where I is the accident indiCator variable, S sex, A age, 

and L location. 
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