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APPLICATIONS OF MULTIDIMENSIONAL CONTINGENCY 
TABLES TO THE ANALYSIS OF TERMINATION COUNTS 

IN DISABILITY INCOME CLAIM DATA 

by 

Edward J. Seligman 

Log-linear analysis is applied to disability terminations, linking them 

to variables such as sex, age, region and maximum benefit period. Application 

to risk classification and underwriting are outlines. 
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APPLICATIONS OF MULTIDIMENSIONAL CONTTNC.ENCY 

TABLES TO THE ANALYSIS OF TERMINATION COllNTS 

IN DISABILITY INCOME CLAIM DATA 

Edward J. Seligman 

Introduction 

A contingency table is a set of counts or frequencies obtained by 

classifying observations in two or more different ways. The classes 

are called 'categories'. Within each classification the observations 

must be partitioned such that the categories are: 

1) Exhaustive - each observation must fall into some category 

2) Mutually Exclusive - an observation cannot fall into more 
than one category 

In other words, an observation must fall into one and only one category 

of each classification. The number of classifications is called the 

'dimension' .of the contingency table. An n dimensional table with ci 

categories within each classification is said to be a c
1 

x c
2 

x ... 

x en table (n>- 2, ci~ 2) 

Here is an example of a 2 dimensional (2 x 2) contingency table. The 

classifications are: 

1. Claim Status after 1 month duration 

Category 1 - Off claim 
Category 2 - On claim 

2. Sex 

TA6 /.£ I 

Category 1 - Male 
Category 2 - Female 

FErlALC 

C. LI\J 1-\ C 1.~ £.~.:- f1l C C:: 
Af-rfP (t)r.- (j,'·t'••.'l 
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The next example has 4 rows and 2 columns 

TA bL.f:. z. 

(ALII". 

tJ, y, 
/((:S'T 

(5JF 
(./. s. 

2&1 /T'/b 

2.'+2. 2.0H 

Sl'l Lfr53 

2..b<r3 3o3o~ 

C..L...A.rM f xP£ t<.:rE,Jc6 A h'LIP._ 
12.. MstJrH S 

Here is a 3 x 4 table giving counts of insured individuals on claim,_ 

classified by geographical location and by loss year 
Rr·;r 

C.ALrr N J' JJ Y e,r u~ · . .. 

/'JT7 47'-f fol7 1417 '6 '-16 ·; 

TABLE 3 
J'IU c.n 7Lf7 179:) /0 n .. o 

--
/9 7.f 93(, 926 2.1 3S /3 714 

Finally we have a 3 dimensional (2 x 4 x 2) table 

CALIF. 

tJ. J". 

N.Y. 
RCST 
Of 
iJ s. 

M A L£ 

(){'..} 

'-fo 

tf-4 

/30 

b $"3 
L---... 

FeMALE 
-

t9FF GN 6FF 

3/'2. 12.. I I a 
.. ----··· ---

3 F't 2.2. 
,, .. 
' t' '-· 

1--- ·-----
939 ~-(; 2.'/"i... 

f:,o 1 ff J'-h !G56 

C.L-,Al" ··-1 EX. PC t2.T£tJCE. 
/tfTFf-.... /?_ f'-1{ltJ1J-/:.::, 

Le:.2h't£At<.. /977 
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Testing the Hypothesis of Independence o[ Classific:ations. 

Within a hypothesis testing framework, we can test any contingency 

table for independence of classifications. The following definitions 

will be used, assuming a 2 dimensional table, with an obvious extensicn 

to the n dimensional case. 

Count in ith row, .th column xij J 

xi. Total count in ith rm~ (row i marginal) 

x.j = Total count in jth column (column j marginal) 

pij Probability that an observation falls into the cell 
in row i, column j 

pi. Probability that an observ:lt ion falls into row i 

P.j Probability that an observation falls into column j 

X = Total number of observations in the table 

The following relations are based on the foregoing definitions. 

xi. :E xij 
j 

x.j ~ xij 
i 

X z. xi. 2. x.j 2..2:.. X. • 

i i 1J 

X. 
1, 

Pi. X 

P.j 
~ 
X 

Prj 
:.u 
X 
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Now consider the null hypothesis (H
0

) that row and column classifications 

are independent. H0 implies the following 

The maximum likelihood estimator of pij under H0 can be obtained by 

maximizing L as a function of pij in the maximum likelihood equation 

L = II II pijxij 
i j 

with fixed row and column marginals. The estimator of xij under H
0 

is 

then computed by multiplying the estimated pij by x ••• 

We can also estimate xij under H0 for any 2-dimensional table by general 

reasoning. Consider again Table 1. If the classifications of sex and 

claim status are independent, then the knowledge of a claimant's sex give 

no information about claim status after one month on claim 

ON 

7'5 'f(, 
(15 li_'J ~) 

:L./ '-/I :J 
(Z 2.2.!<'/.2 .. ) 

--
15011 

/1'1100 

35Z 77 

The best estimate, then, of the probability that a male will be off claim 

before one month is 57166/155177, or the proportion of all claimants off 

claim before one month. Since the total number of males is 119900, the 

best estimate under H
0 

of the number of males going off claim before one 
57166 month is 155177 • 119900 = 44170.2. Looking at this result in another 

way, we see that the desired quantity can also be written as the row 

marginal for males times the column marginal for 'off claim' divided by 

the total observations. This result is the same as that obtained by 
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using the maximum likelihood estimator approach. In general, the 

estimated count for the cell in row i, column j is given by 

xi. • x. j 

X 

Approximations to the -x.2 variable 

The quantity 

'X2 
c 

is called the 'Pearson"X2 statistic', and is asymptotically (as each 

oo ) distributed as~2 with (r-1) • (c-1) degrees of freedom, xij -+ 

where r and c are the number of rows and columns in the contingency 

table. 

In recent years, the 'minimum discrimination information statistic' 

(sometimes called the 'likelihood ratio statistic') has begun to replace 

the Pearson)t2 statistic, because of its application to the construction 

of an appropriate log-linear model for multidimensional contingency 

tables. This statistic is also asymptotically distributed as -x.2 with 

(r-1) • (c-1) degrees of freedom, and is given by 

The definitions for~~ and~~ given here are for 2-dimensional tables, 

but the extension to a multidimensional table is quite easy; the 

summation is performed over all dimensions of the table and the degrees 

of freedom are calculated by extending the 2-dimensional product chain. 
2 2 

In most cases, ')tc and~ are close in value. 
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For reasons to be given later, hypothesis testing has application 

mostly to the analysis of 2-dimensional tables. For such tables which 

are bigger than 2 x 2, we can often proceed beyond the simple test of 
indep~ndence of the two classifications by partitioning the~2 

statistic. 

Consider the following 3 x 2 table. 

TI\BL£ (, 1171 II 03 9 vn 

111 0 !Z'ilS" 

1175' /'-12..3 flt,l~'t 

The~2 for this table is 35.8 (2d.f.), which is significant at the 1% e 
level, implying that the 12 month termination pattern is dependent on 

loss year. Suppose that we want to dissect the"2 statistic into c 
components which will show the source of the dependency of termination 
pattern on loss year 

TA6LE G~ )'176 II ?D 12-'i'd- 2 
1f_ ""' 2. I 

I'] 7S ICfZ3 /tU/i" 

·-
TI16LE b b t'.FF 

1171 
-x: 2

"" 3 3. 7 
I J o 3 

U./3 291/3 
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The~2 of the original table has bee~ partitioned into 2 components, 
c 

each with 1 degree of freedom. Each component is associated with a 

2 x 2 table. In general, an r x c table with (r-l)•(c-1) degrees of 

freedom can be partitioned into (r-l)•(c-1) 2 x 2 tables, each with 1 

degree of freedom. The justification and methods for partitioning are 

given by Lancaster (1949, 1950), Irwin (1949), and Kimball (1954). 

In our numerical example, we see that the dependence of termination 

pattern on loss year is almost entirely due to a different termination 

pattern emerging in 1977, compared with the combined 1975 and 1976 

experience. 

Drawbacks of l!rJ>_othesis Testing 

We can apply our tests of independence to contingency tables of any 

dimensi0n. However, the tests for independence between pairs of 

classifications wlthin n-dimensional tables are cumbersome to use 

when n > 2. Further, the estimates of expected cell countb (e1j) 

under H
0

, the hypothesis of inter-classification independence, can 

lead to maximum likelihood estimation equations with implicitly 

defined estimators. 

There is a temptation, when faced with a multidimensional table, to 

"collapse" it over one or more classifications to obtain a 2-dimen­

sional table which can then be easily analyzed. That this can be a 

dangerous practice is illustrated in the following hypothetical example 
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Inspection shows that for each of the two sexes, sickness and accident 

claims have the same termination pattern. Thus the classifications 

of claim status and type of disablement are independent. But if we 

had regarded the classification of sex as unimportant, and collapsed 

(summed) the male and female categories, the resulting 2 x 2 table 

would be 

Now we have reason to reject (but incorrectly) our null hypothesis of 

independence of classifications if we look only at the collapsed tahle. 

It has been shown (Bishop, Fienberg, and Holland (1975)), that we can 

collapse over one or more classifications only if those classifications 

are independent of ~t least one of the remaining classifications. This 

condition is not met in our hypothetical example, hence the false 

rejection of H
0

. 

Another limitation of the hypothesis testing analysis of contingency 

tables is inherent in hypothesis testing itself. Consider the 2 x 2 

table 

TAL3tE ~ ---

()('/ dFF fM=- o. 3oo 

MI\Lc 25Coi fF - 0. 3D 7 
SCJ70 

F='E!"lA u:: r/51 J(,~3 
, 

~)!__~ 
·v (),:; 

---------------··--
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The~2 statistic is not large enough to reject the null hypothesis of 
c 

independence of classifications. We can also consider another H0 , 

i.e., that the probability of termination is the same for maleb and 

females. Then the test is that of the equality of the parameters of 

two binomial populations, based on samples from each population. It 

is easy to show that the two tests are algebraically equivale,;t; thus 

this alternate test will also fail to reject its null hypothesis. 

Now look at this 'augmented' table 

'(fH3Lf; b'o.... l- (9f\/ ___ 
ClFf" fM 0, 3oD 

~5 b I 2. ~ 1$17 () j 'f MALE 
'fF I o. 305' 

FEMALE. L '75123 j //14.~3 
~"')[" /8', J ·-·- ----·-·-· -'\,) 

Both tests now reject their H
0
's, but the difference between the sample 

probabilities of going off claim is closer than what it was in the first 

table. The reason is that the greatly increased sample size in the 

second table has enabled us to detect a much smaller difference between 

the parameters of the two parent binomial populations. It is important 

that the phrase "statistically significant difference" not be confused 

with the phrase "significant difference". A difference between sample 

statistics which is significant at the 1% or 5% level may imply a differ­

ence between parent population parameters which is too small to be of 

any consequence to the actuary or accountant. It must be remembered 

that the power of a statistical test to reject the null hypothesis 

almost always increases with the size of the sample. 
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Analysis Using the Log-Linear Model 

We now look at the analysis of contingency tables as a problem in 

estimation. Instead of testing for the presence or absence of 

dependency among classifications, we now estimate the size of the 

dependency. In this way, we can rank the dependencies by their relative 

sizes. 

Consider the 2 x 2 table: 

()tJ GFF 

MALE r..,l 1-,2. 

F'G·\J\L E I "1-u I ""Xn L_ __ . .l._ _______ 

)(... ,:.,. 

Under H
0

, the expected value for the count in row i, column j is 

X. • X • 
~. . ] 

X 

Taking the log of both sides of the above gives 

in eij = in xi. + in x.j - in x 

The log of the expected value of any observation under H
0 

is linear 

in the logs of the row and column marginals; hence the name 'log-line~r 

model'. Now, ignoring H
0

, we will write in eij in the following form: 

u + ul(i) + u2(j) + ul2(ij) 
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where £2: in eij u i j 
r . c 

~ in e .. 
ul(i) j l.J - u 

c 

u2(j} 
fin eij 

- u r 

We can relate each of the U's to a quantity of interest. Consider U; 

it is the overall mean of the log expected value of each cell. The 

quantity Ul(i) is the difference between the mean of the log expected 

value of the cells in row i and the overall mean, while u2(j} has the 

same meaning for the cells in column j. Thus Ul(i) and u2(j} are the 

contributions to in eij of classification 1, category i; and classifi­

cation 2, category j, respectively. The term u12 (ij} is the one we are 

most interested in, since it measures the dependency between classi­

fication 1 and classification 2 for categories i and j. This may be 

explained by the following reasoning. If the deviation between 

in eij and U were exactly equal to the sum of the contributions of 

Ul(i) and u 2(j}' then u12 (ij} would be zero. This would imply that 

ul(i) and u2(j} act additively to give the deviation between the log 

expected value of a cell (in e
1
j) and the overall mean (U). The extent, 

then, to which u12 (ij) is not equal to zero is a measure of the non­

additivity of Ul(i) and u2(j} in their effect on (in eij - U). 
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The log-linear model is quite similar to the linear model of the analy~is 

of variance (ANOVA). For this reason, ANOVA terminology is commonly 

used, e.g., U is the 'grand mean', Ul(i) and UZ(j) are 'main effects', 

and u12 (ij) is an 'interaction'. One of the principal differences 

between log-linear contingency table analysis and ANOVA is that in the 

former we are interested only in the interaction term, since the main 

effects are an indication only of the relative sizes of the counts for 

individual classifications. 

An Application of the Log-Linear Model 

We will analyze a subset of the 3-dimensional contingency table already 

presented 

Tt\Blf. I 0 
( 01\SfD ~A) 
1At5LF lf) 

N.Y· 

/?.i:.s'l 
t.Jf 

\.), 5. 

r M A LC-
~-~----· 

N <9 f'F 

/30 q3'1 

L b53 {.,Ot2" 
--

FEMALE: 
1---

BN tJFF 

so Z.CJZ. 

lt.f-lo -/056 j 
---

The following model was used: 

u + ul(i) + u2(j) + u3(k) 

+ ul2(ij) + ul3(ik) + u23(jk) 

+ ul23(ijk) 
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where the subscripts 1, 2, and 3 represent sex, geographical region, 

and claim status. The terms in the model which are of interest to us 

are: 

u12 (ij) interaction of sex and geographical region 

u13 (ik) interaction of sex and claim status 

u23 (jk) = interaction of geographical region and claim status 

ul23(ijk) = interaction of ul2(ij) with claim status 

or interaction of u13 (lk) with geographical regi~n 

or interaction of u23 (jk) with sex 

The computation of the above quantities for i = j = k = 1 was done by 

using a program (ECTA), available from the Statistics Department of the 

University of Chicago. The results were: 

ul2(11) -0.078* 

ul3(11) 0.005 

u23 (ll) = 0.119* 

ul23(111) = - 0 · 046 

An asterisk (*) denotes significance of the statistic at the 1% level. 

From these numbers, we may conclude that: 

1. New York males are underrepresented in the claim population 

(the sign of u12 (ll) is neg2tive, thus implying underrepresentatiun.) 

. 2. Sex has no influence on terminations (note that Ul)(ll) is almost 

zero) 

3. New York has higher persistence than the rest of the U.S. (since 

u2J(ll) is positive) 
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Work in Progress 

We h~ve been using individual disability income claim files to construct 

multidimensional contingency tables with classifications chosen from: 

1. State or region 

2. Elimination Class 

3. Monthly Indemnity 

4. Sex 

S. Age on Claim 

6. Sickness or Accident 

7. Loss Year 

8. Claim Status after 1, 3, 6, and 12 months duration 

The analysis in progress has assessed the relative importance of classifi­

cations 1 through 7 on each other, and on classification 8. We have also 

begun work on a study of incidence; i.e., we are estimating the interactions 

of demographic classifications with the classification of active life/ 

disabled life based on policy files. 
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