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ABSTRACT Robert V. Hogg 

Users of statistical packages should be more aware of the 

influence that outlying data points can have on their sta-

tistical analyses. Robust procedures provide formal methods 

to spot these outliers and reduce their influence. While a 

few robust procedures are mentioned in this article, one is 

emphasized; and it is motivated by maximum likelihood esti-

mation to make it seerr. more natural. Use of it in regression 

problems is considered in some detail and an approximate error 

structure is stated for the robust estimates of the regression 

coefficients. A few examples are given. A suggestion of how 

these techniques should be implemented in practice is included. 
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Certainly the method of least squares and generaliza

tions of it have served us well for many years. Howe•~r, it 

is recognized that "outliers," which arise from heavy tailed 

distributions or are simply bad data points due to errors, 

have an unusually large influence on the least squares esti

mators. That is, the outliers pull the least squares "fit" 

towards them too much, and a resulting examination of the 

residuals is misleading because then they look more like 

normal ones. Accordingly, robust methods have been created 

to modify least squares procedures so that the outliers have 

much less influence on the final estimates. 

Since George Box (1953) coined the term "robustness," an 

enormous amount of material has been published on the subject. 

Certainly John Tukey's (1962) comments on spotty data in his 

"The future of data analysis" have spurred on these investiga

tions. Perhaps, the greatest contributions have been those of 

Peter Huber. Clearly his fundamental paper (1964) and later 

his Wald lectures, and the review articles (1972,1973) based 

on these talks, are milestones in this development. Also 

Frank Hampel's use of the influence curve in robust estimation 

is a central concept, but one beyond the scope of this article. 

Hence the reader interested in influence curves is referred to 

Hampel's 1974 paper. 
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Thus today's statisticians can find plenty of material 

on M-, R-, and 1-estimators and various generalizations, 

including adaptive versions of them. One survey of some of 

these procedures is that of Hogg (1974). In addition, a new 

paperback by Huber (1977) provides an excellent summary of 

many of the mathematical aspects of robustness. 

So, with all of these existing robust methods, we might 

think that the applications would be flooded with their use. 

But clearly this is not the case! Of course, some use of 

them has been made in practice, but most oersons continue 

to use only least squares techniques (or generalizations of 

least squares) that are associated with usual normal assump

tions. Yet if one studies the literature on robustness, it 

does seem as if there is some place for these newer tech

niques. Seemingly, today we should seriously question the 

dogma of normality in each analysis under consideration and 

truly be concerned about the influence of outliers and bad 

data points on our inferential statistics. This concern should 

range from simple cases with data that is not clearly out-of

line to multivariate situations in which it is extremely dif

ficult to detect spotty data. Thus we need formal proce

dures--like robust methods--to help find those outlying points 

and eliminate or reduce their effects. 

Exactly why is it that robust methods are not used more 

today? Possibly there are too many robust schemes, and the 

applied statistician simply does not know where to start. 
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Thus it seems to me that the "robustniks" should agree to 

support certain basic and understandable robust procedures 
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and then try to sell them to the statistical community. This 

does not mean that all research in this exciting area should 

be stopped. On the contrary, it should be encouraged and 

stimulated, with the understanding that recommendations made 

in future years will quite likely be different from those of 

today. But we should try to make a significant start in the 

introduction of robust estimation in statistical practice now; 

so the major purpose in writing this article is to generate 

some interest in robustness amonr- statistical users. 

Thus this article is not a survey of the many robust 

techniques. As a matter of fact, we will consider a very 

limited number of procedures and concentrate on only one 

type--incidentally one that, with some adaptations, can be 

used whenever "least squares" (or generalizations of it) is 

used: regression, ANOVA, multivariate analysis, discrimina

tion, etc. This proposed method is a very reasonable approach 

with fairly easy computations; thus I believe it should be 

the major one in use today. 

In the article, I will try to provide some background, 

beginning with maximum likelihood estimation of one parameter, 

that will hopefully make robust estimation seem natural and 

rather easy. Some approximate sampling distribution theory 

will be stated for these robust estimators; thus something will 

12 



4 

be known about the error structure so that statistical infer

ences can be made. Finally, I must emphasize here that I am 

not going to recommend that we discontinue using the method 

of least squares and all of the computer packages associated 

with it and its generalizations. On the contrary, I strongly 

urge that we continue to use these methods with which we are 

so familiar. But I also urge that, along with each such 

analysis, a robust one should also be made. Then if the two 

procedures are in essential agreement, report that fact and 

the usual (least squares) summary of the analysis. But if 

substantial differences exist in the two analyses, another 

hard look at the data must be taken, searching in particular 

for outliers or bad data points. And the robust procedures 

will, for all practical purposes, detect these spotty data 

points for you by recording low weights for large residuals 

from the robust fit. 

In a distribution described by the density f(x), let us 

introduce an unknown location (slippage) parameter e, obtain

ing the density f(x-6), - 00 <8< 00 • If x
1

,x2 , ... ,xn represents a 

random sample from this distribution, one popular method of 

estimating 8 is that of maximum likelihood. The logarithm 

of the likelihood function L(B) is 
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ln L(e) 

where p(x) = -ln f(x). If we can maximize by differentiating, 

we have 

d ln L(e) 
de 

where p' (x) = ~(x). The solution of 

0 

that maximizes L(e) is called the maximum likelihood esti-

mator of e and is frequently denoted by e. 

Three typical classroom examples of this process are given 

by the following distributions, the first of which provides the 

least squares estimate and the second, the "least absolute 

values" estimate. 

2 
(1) Normal: p(x) X 

2 + c, ~(x) x, 

n 
L: (x1 -e) 0 yields § x. 

i=l 

(2) Double exponential: p (X) = I X I + c ' H X) = {-ll ' X < 
0 

' , X> 0, 

n 
L: $(x.-e) = 0 yields e = sample median. 

i=l l 
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(3) Cauchy: p(x) = ln(l+x 2 ) + c, $(x) 2x 
l+x2 ' 

0 is solved by iterative methods. 

6 

It is interesting to note that the ~ functions of examples 

(2) and (3) are bounded and that of (3) even redescends and 

approaches zero asymptotically. We note that the solutions 

in (2) and (3) are not influenced much by outliers. On the 

other hand, the least squares estimator X of (1) is greatly 

influenced by extreme values. That is, it is well known that 

the least squares estimator X is not extremely good in situ-

ations in which the underlyinv. distribution has lonf. tails, 

for example, in the Cauchy case. Therefore, in robust esti-

mation, we look for estimators that are quite efficient 

(usually around 90 to 95 percent) if the underlying distribu-

tion is normal, but are also very efficient even though the 

underlying distribution has long tails. Sometimes the amount 

of efficiency lost under normal assumptions, say 5%, is 

referred to as the premium which we pay for the protection 

that we get in case we actually have a distribution that has 

longer tails than the normal one. 

For a certainfueoretical reason (actually minimizing the 

maximum asymptotic variance of the estimators associated with 

a certain class of distributions), Huber (1964) proposed that 

we use for our robust estimator the maximum likelihood esti-

mator of the location parameter associated with a density that 
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is like a normal in the middle but like a double exponential 

in the tails. In particular, Huber's p function is (except 

for an additive constant) 

lx I ~ k, 

k < lx I, 

so that the ~ function is 

r· X< -k, 

Hx) = X ' -k ~X~ k, 

k k < x. 

Of course, with this ~ function, the equation 

must be solved by iterative methods. An estimator of this 

type (not necessarily using this particular ~ function) is 

denoted by 9 and called an M-estimator, M for maximum 

likelihood. 

There is another feature of this M-estimator on which 

we should comment. Suppose a solution a was found for a 

particular sample x 1
,x 2

, ... ,xn, and then these items were 

replaced by some in which the deviations from a were tripled, 

for example. The new solution e, using this modified sample, 
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would not necessarily be the same. That is, the estimator is 

not scale invariant. To obtain a scale invariant version of 

this estimator, we could solve 

£ ~ ( x id-e ) o ' 
i=l 

where now d is a robust estimate of scale. While ad hoc, a 

popular statistic d used in this solution is 

d medianlxi -median(xi) j/(0.6745). 

(Sometimes the numerator of d is called the MAD, the median 

of the absolute deviations.) The divisor 0.6745 is used 

because then d ""o if n is large and if the sample actually 

arises from a normal distribution. Usually the sample stan-

dard deviation s is not used as a d value since it Is 

influenced too much by outliers and thus is not robust. 

This particular scheme of selecting d suggests appro-

priate values of the "tuning" constant k so that the effi-

ciency of e will be high if the underlying distribution is 

actually normal. In the normal situation, we would want most 

of the items to satisfy the inequality 

because then 

17 



9 

As a matter of fact, if all items enjoyed this inequality, 

then e = x which is the desired estimator in the normal case. 

Since d "'o, k is usually taken to be some number around 

1.5. When k = 1.5, we refer to this procedure (or the corre

sponding estimator) as a (1.5)Huber procedure (estimator). 

If a is known (that is, d is known), the asymptotic effi-

ciency of it, under normal assumptions, is greater than 95% 

(Huber, 1964); and, in most heavy tailed situations, it performs 

extremely well (Andrews et al., 1972). Thus our premium is small 

for much protection in nonnormal cases. However, a is usually 

unknown and it must be estimated; this does reduce that effici

ency only a very little when n:.:10; see Andrews et al. (1972). 

Other w functions that are commonly used are the following, 

along with suggested values of the respective tuning constants. 

(a,b,c) Hampel 

Hx) 
{ 

lx I , 

(sign x) ::~lxl 
a c-b 

0 

0,;; lx I< a, 

a,;; lxl<b, 

b,;;lxl<c, 

c ,;; I X I. 

Reasonably good values of the constants are ~ 

£. = 8.5. 
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(k)Wave of Andrews 

--{sin

0

(x/k) , 
~(x) 

lx I~ kn 

lx I >kn 

10 

with ~=1.5 or 2.0. Actually if the scale is known, ~=1.339 

requires a premium of 5%. 

(k)Biweight of Tukey 

~(x) 

I X I~ k, 

I X I> k, 

with ~=5.0 or 6.0. If the scale is known, ~=4.685 implies 

a premium of 5%. 

It should be noted that the Wave and Biweight procedures 

are very similar and are reasonable substitutes for each other. 

Since the p functions associated with these three redescend

ing ~ functions is not convex, there could be certain con

vergence problems in the iterative procedures, although this 

is not too likely. That is, these have been successful pro

cedures and should be used, but with some care. 

Suppose, by an iterative numerical method, we find the 

solution e to our equation; that is, let e be the M

estimator so that l:H(Xi-G)/d] = 0, for any bounded 'f func

tion which is odd. It is easy to approximate this last equa

tion by replacing the left-hand member by two terms of 
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Taylor's series, expanded about the true parameter value e. 

From this approximation, when d = o, it is a straightforward 

exercise to show 

and this expression has a limiting normal distribution with 

mean zero and variance 

Of course, since we do not know the underlying density, 

we must, in practice, approximate the expected values and the 

o that appear in this asymptotic variance. One approximation 

to the variance of Jn(e-e) is given by 

2r1 n .2(xi-a)] 
d L- L If -

n i=l d 

That is, for large n, Jn<a-e)/s 1 has an approximate stan

dardized normal distribution. An even better approximating 

distribution to Jn-l(S-6)/s
1 

can be found by using one mem

ber of the t-family, possibly one with n-1 degrees of 

freedom (or even one with somewhat smaller degrees of freedom 
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rhan n-1); see Huber (1970). With one of these approximate 

distributions, we can make statistical inferences about the 

unknown e. Gross (1976) explores confidence intervals based 

on this idea as well as those resulting from other schemes, and 

he finds robustness of validity(maintaining the 95% confidence 

coefficient) and of efficiency (establishing relatively short 

intervals). 

Robust R~~ressio~ 

Suppose that we have the linear model: 

where Y is a nxl random vector, X is a nxp design 

matrix of known constants such that X'X is of full rank, ~ 

is a pxl vector of unknown parameters, and E - is a nxl ran-

dom vector, whose elements are like a random sample from a dis-

tribution that is symmetric (but not necessarily normal) about 

zero. To parallel the approach used with the location parameter, 

we wish to minimize, with a robust p function, the summation 

where is the element of y, is the row 

of X and d is an estimate of the scale of the distribution 

associated with E. Equating the first partial derivatives 
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with respect to the elements of ~' say SJ' equal to zero, 

we see that this is equivalent to finding the maximizing solu

tion associated with the p equations 

o, j=l,2,···,p, 

where is the element in the column 

of X. 

Let us first concern ourselves with an initial estimate 

~O of ~; this is needed for two things: (a) a robust esti

mate d of scale and (b) a "start" in the iteration to find 

!· If it is easy to find the 1
1 

("least absolute values") 

estimators for the regression coefficients, these would be 

good and something like the median in the single sample case. 

Moreover, for the estimate of scale, we would then use the 

median of the absolute values of the nonzero residuals divided 

by 0.6745, as in the location case. Many statisticians, how-

ever, find it inconvenient to determine L1 estimators, and 

therefore let us consider an algorithm of Dutter (1977) for 

estimating ~ and scale simultaneously. It is described here 

only for the ~ function of Huber. This method, as will be 

seen, is then very close to least squares (and is only one of 

several suggestions listed in Dutter's article). 

Let us begin with some initial estimates, ~O and d 0 , 

which mir,ht very well be the usual estimates of ~ and scale. 

We proceed as follows: 
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1. Compute the residuals z1 =y1 -~i~' i=l,2,···,n. 

2. Find a new estimate of scale 

where E(~ 2 ) is the expected value of Huber's *2
(W), 

where W is a standardized normal random variable. 

For illustration, E(*
2

) = 0.7785 in the (l.5)Huber 

procedure. 

3. "Winsorize" the residuals; that is, determine 

i=l,2,···,n. 

Of course, the Winsorized residual ljl( zi/dl )dl equals 

if lzi/d 1 i s: k but is equal to kdi (-kdl) if kd 1 < zi 

(zi< -kd 1). For more on the general concept of Winsor-

izing, see Dixon and Tukey (1968). 

4. Find the least squares estimates of the regression 

coefficients as if the Winsorized residuals were the 

observations, namely 

5. Compute a new estimate of ~· namely 

Dutter round that ~ 8uitable choice of the factor q 
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is q = min[t(k)-ltC-k) , 1.9]. where t is the 

standardized normal distribution function. 

15 

With the new estimates, ~l and d1 , as the starting 

values, repeat steps 1-5. Continue this iteration process 

until (on the mth iteration), for all i=l,2,···,p, 

where e: > 0 
~i 

is an appropriate tolerance level, Tm is the 

component of .!.m, and xii is the i th diar,onal element of 

(!'!)-1
. At that point, stop the iterations and estimate ~ 

and the scale parameter using £m+l and dm+l' respectively. 

The ~eador should ~ute oxactly how cl0se this procedure is 

to least squares. Of course, step (4) is least squares on the 

Winsorized residuals and step (5) would provide the least square 

estimate of ~ in case q = 1 and ~O equals the vector of 

actual residuals (not Winsori~ed) for any initial estimate 

~o· It is also of interest to observe that (X'X)-l needs to 
~ ~ 

be computed only once in the iterative process and this is a 

definite computational saving. 

After obtaining good robust estimates of ~ and scale 

using Dutter's algorithm, least absolute values, or another 

scheme (some nonparametric methods might be quite suitable), we 

cnuld treat outliers more severely usinF these robust estimates 

as new "starts," say ~O and <I0 , with a redescending • func

tion such as a Wave or Biweight. In those cases, a "weighted 

least squares" procedure is a good algorithm to use. In this 
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method we replace the p equations 

L.x.>!J{ ~~ 
n ,yi- xi 13) 

i=l i,l \ d 
o, j=l,2,···,p, 

or, equivalently when y i -~i~ # 0, 

o, 

by the approximations 

n 
L. xi .(wiO)(yi-xi~) ""0, .i = 1,2,· .• ,p, 

i=l ,l ~ 

where 

~:y i -~i~O) 
\ ao 
Yi-zsiEo 

<ro 

16 

and wiO = 1, when yi = ZSi~o· In matrix notation, in which 

~O is the nxn diagonal matrix with w10 ,w20 ,···,wnO on the 

principal diagonal, the one-step estimator is 

The iteration requires that, en each step, we recompute the 

weights and thus the inverse (X'WX)-l j=O,l,2,···. How-
~ ~J~ , 

ever, with good estimates !o and d0 resulting from Dutter's 

procedure, only a few iterations are usually needed to obtain 

good redescending ~ estimates. 
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I 

What should be used for the error structure associated with 

the final estimate i? It is true (Huber, 1973) that under certain 

reasonable conditions (one is a known spread d =a), ~ has an 

approximate normal distribution with mean ~ and variance

covariance matrix 

cr
2

E j ~ 2 (~ )J <"f' V -l 

{ E [ W ' ( ~ )1} 2 

where Z represents an element of the random vector E. An 

approximation to this variance-covariance matrix is 

Of course, the weighted least squares program also automat!-

cally provides another estimate of this variance-covariance 

matrix. Two other suggestions are given by Welsch (1975), 

but there is not general agreement on which of these approxi-

mations is best. Nevertheless, whichever one we choose, we do 
~ 

have some idea about the error structure of ~· and we can thus 

make some approximate statistical inferences about ~ using 

the usual normal theory. 

Let us close this section on regression with a remark 

about the procedure when we do not have a linear model, but 

y h(§)+J2_, 
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where h(·) is a nonlinear function of ~· Let hi C£1) be 

h(£) which is associated with Yi. We wish to minimize 

where an estimate d of spread can be found using a prelimi-

nary estimate ~o· Equating the first partial derivatives to 

zero, we have 

0, j=l,2,···,p. 

With the preliminary estimate Eo &nd a weighted nonlinear 

least squares package, it is easy to solve 

n 
L: 

i=l 

where 

wCi-h~ cEol) 

Yi-hi([ol 
d 

0' j=l,2,···,p, 

and wi 0 =1, when yi =h1 ([
0
), i=l,2,···,n. In the non

linear case, the "weighted least squares" algorithm seems to 

be easiest although Dutter's algorithm can be modified with 
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Holland and Welsch (1977) compare robust estimates 

resulting from eight v functions. They also note that a 

semiportable subroutine library (including these eight w 

functions) called ROSEPACK (RObust Statistical Estimation 

PACKage) has been developed at the Computer Research Center of 

the National Bureau of Economic Research, Inc. in Cambridge, 

Mass. For example, from their report, a "tuning constant" of 

k = 1. 5 seems to be appropriate for the Wave estimate because 

then it would have an efficiency greater than 95%, provided 

d =a is known and provided the underlying distribution is 

normal. One desirable feature of a redescending $ function, 

like that of Andrews' Wave or Tukey's Biweight, is that the 

extreme outliers are treated much more harshly than in Huber's 

procedure; and many times, in practice, we find that zero 

weight has been assigned to an outlier or. bad data point. 

Of course, whenever least squares procedures (or general

izations of it) are used, It seemingly would be possible to 

use robust procedures with some type of adaptation. These 

include ANOVA, regression, time series, splines, multivariate 

analysis, and discrimination. For example, Lenth (1977) has 

produced some robust splines that give excellent fits to data 

points for which the usual (least squares) splines fail. Also 

Randles et al. (1977) have found robust estimates of mean vec

tors and variance-covariance matrices that are used in discrim

ination problems. Robust ANOVA procedures are reported on by 
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Schrader and McKean (1977). From these studies it is clear 

that, with the necessary imagination, appropriate adaptations 

can be made; and, hopefully, much more will be done in the 

future. 

Let us first consider the simple case of a random sample 

from a distribution of the continuous type that has a location 

parameter e. Say the order statistics of the sample are 

An 1-estimator is one which is a 

linear combination of these order statistics. Examples of 

1-estimators are: 

(a) sample median, 

(b) a-trimmed mean X 1 L: X where the 
a n-2[na] i (i)' 

summation is over i = [na ]+1, · · · ,n-[na], 

(c) Gastwirth's estimator which is a weighted average 

of the 33}rd, 50th, and 66ird percentiles with 

respective weights .3, .4, and .3, 

(d) Tukey's trimean which is a weighted average of the 

1st, 2nd, and 3rd quartiles with respective weights 

i, j, and i. 
'l'hes<' and oLh<'r L-est.irnal<1I''' are also described by Andrews 

et al. 0972). 

The generalization of 1-estimators to the regression 

situation is not clear as in the case of M-estimators. How

ever, since the use of the p function, p(x) = lxl, yields 
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the median as an estimator (and the "median plane or surface" 

in the regression situation), this could easily be modified 

to get other percentiles. That is, the p function 

p(x) 
=J-(1-p)x, 

L px 

X< 0, 

X<!: 0, 

yields the (lOOp)th percentile in the single sample case and 

thus estimates of the "(lOOp)th percentile plane or surface" 

in the regression situation; see Koenker and Bassett (1978). 

Clearly, generalizations of estimates like those of Gastwirth 

and Tukey could now be constructed in regression problems. More-

over, it seems as if in many situations (for example, educational 

data involving prediction of college performance from high school 

rank and SAT or ACT scores) we would be interested in estimates 

of some percentiles other than those of the middle. Thus per-

centile estimates could stand on their own as well as in combi-

nation with others to predict a "middle" plane or surface. 

R-Estimation ... _ ....... ..., -
R-estimation is a nonparametric method resulting from 

ranking when the sample arises from a continuous-type distri

bution. It can easily be extended to regression. Consider 
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the linear model and modify least squares by replacing one 

factor in 

The rank Ri is clearly a function of ~· Hence we wi~h to 

n 
minimize =::, (yi- xi ~)R .. 

i=l . ~ 1 

This, in turn, can be generalized by replacing the ranks 

1,2,·· ·,n by the "scores" 

a(l) s a(2) s · · ·,; a(n). 

Thus, in this generalized setting, we wish to 

n 
minimize L: (y.- xi p)a(Ri). 

i=l 1 ~ ~ 

Of course, .two examples of scores are 

and 

(a) Wilcoxon scores: a(i) = i or ranks, 

(b) Median scores: a(i) = 1 : {

-1 i < (n+l)/2, 

i > (n+l)/2. 

Jaeckel (1972) proved that this minimization is equiva-

lent to solving the p-equations 

0, J=l,2,···,p, 

that must be solved approximately due to the discontinuities 
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in a(·) and Ri. Moreover, it is well known that "good" 

(having certain asymptotic properties) scores are those given by 

a(i) ~(n;l)' where ~(t) 

Examples of this are: 

r'[F-1(t)J 

f[F-1 (t)] 

(a) f normal produces -1 
~(t)=~ (t), O<t<l, 

gives normal scores; 

that 

(b) f double exponential produces ~(t) 
{

-1, 

1, 

O<t<~ 
}<t<l, 

that gives median scores; 

(c) f logistic produces ~(t) = 2t-l, 0 < t < 1, that 

gives Wilcoxon scores. 

Jureckova (1977) proved that, with certain scores a(·) 

and $ functions, the R-estimators and M-estimators are 

asymptotically equivalent. Among other conditions we need that 

~( t) 

where and are constants, for this equivalence. In 

light of this result, it seems more reasonable to use M-

estimators as the computations are easier, at least at this 

time. 
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Only brief note is made here of adaptive estimators; but, if 

interested in more background, the reader is referred to an ex

pository article on the subject by Hogg (1974). The basic idea 

of adapting is the selection of the estimation procedure after 

observing the data. Thus, for example, the tuning constants 

or the amounts of trimming could be dictated by the sample. 

As a matter of fact, even the forms of the function ~(·) and 

the score function a(·) could be selected after observing 

the sample. Of course, asymptotically, we can select the 

"best" ~( ·) or a(·), but most of the time we are working 

with sample sizes like 20, 30, or 50, not infinity. Hence we 

must find some reasonable procedures for those very limited 

sample sizes. One such scheme is to select a small class of 

underlying distributions that span a large collection of pos

sible distributions. Then determine a good procedure for each 

member of that class. Finally let the observations select 

(through analysis of residuals, plots, etc.) which procedure 

will actually be used by taking that distribution seemingly 

closest to what was observed. Incidentally, there is no 
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objection to analyzing with all of the procedures: If they 

say the same thing, that is the answer; but if they differ, 

then the selection procedure is critical and it is most 

important that it be done well. 

There has been some evidence (Hogg, 1974) that adaptive 

procedures are of value. After all, if the "Hubers, Hampels, 

Waves, Biweights, ... " are good, wouldn't adaptive ones be 

better (particularly since the former are included in the 

latter)? Moreover, it seems as if the applied statisticians 

would find adaptation very appealing (they do it all the time 

anyway), and this gives us a chance to bring theory and appli

cations closer together. 

1. Linear Regression. Andrews (1974) reports on a set of 

data that had been analyzed by Daniel and Wood (1971). There 

were 21 observations and 3 independent variables. After some 

astute observations, Daniel and Wood were able to set aside 4 

of these 21 observations because of unusual behavior. At the 

end of their analysis, they did use a different model from 

However, Andrews notes that "most researchers do not have the 
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insight and perseverance of these authors," Hence he simply 

summarizes three fits to this model: (A) Least squares on 

all 21 points, (B) Least squares on 17 points after discarding 

those 4 points, (C) Robust estimates using the Andrews' ' 

function with k = 1.5 on all 21 points (the estimated stan

dard errors are in parentheses). 

Method 

A 

B 

c 

0.72(0.17) 

0.80(0.07) 

0.82(0.05) 

1.30(0.37) 

0.58(0.17) 

0.52(0.12) 

-0.15(0.16) 

-0.07(0.06) 

-O.D7(0.04) 

It is very impressive to note that the robust method on all 

21 points provides essentially the same estimates as does 

least squares using the 17 observations, with the 4 bad points 

set aside. This means that an investigator could have used 

least squares (A) and the robust scheme (C) and found the four 

spotty points and the better estimates without having the 

"insight and perseverance" of Daniel and Wood. 

2. Half-Life of Plutonium-241. Zeigler and Ferris (1973) 

reported that each of six laboratories had a sample of 

Plutonium containing 338 Pu, aaapu, 340 Pu, 341 Pu, and 343 Pu. 

To determine the half-life of 341 Pu, the ratio (say Y) of 

the contents of 341 Pu to that of 339 Pu was reported by 

each of six labs every 4 months. This was continued longer 
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than three years until over 70 data points were collected. 

The problem was to fit the nonlinear function E(Y) = 13
0

e-J3l. t. 

At a later date and with additional data, Zeigler used, along 

with least squares, a robust scheme based on Andrews' Wave. 

The two estimates of half-life were 14.84 and 14.70 years, 

respectively. However, the most interesting part of this 

analysis was that, with Andrews' weighting function, there 

were 6 data points with weights of zero, all six of which were 

reported incorrectly by the same lab because of some technical 

error (that has since been corrected). 

3. Splines. Lenth (1977) considered 51 observations that 

were simulated from a Cauchy distribution such that the median 

of each was on the curve 
-xa 

sin(2ne ), where the 51 x val-

ues ranged from zero to 2.5. The conventional least-squares 

spline fit with six knots (x = 0, 0.3, 0.7, 1.2, 1.8, and 2.5) 

was compared to two robust spline fits: (l.l)Huber and 

(1.2)Wave. The latter two produced much better fits than the 

one by least squares. Of course, the Andrews' Wave fit was 

somewhat better than that of Huber because a redescending 

M-estimate is more appropriate with the underlying Cauchy dis-

tribution. 

4. Automated Data Reduction. Agee and Turner (1978) note 

that grossly erroneous measur<'ments, when undetected, "com-

pletely destroyed automated data reduction" at the U.S. Army 
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White Sands Missile Range. The application of M-estimation 

(primarily with Hampel's ~) has been highly successful in 

dealing with these problems which occur in data preprocessing, 

instrument calibration, N-station cinetheodolites, N-station 

radar situations, and filtering. 

Good applied statisticians have always been on guard for 

outliers or bad data points, discarding them or investigating 

them further as is appropriate. However, in complicated data 

sets, it is most difficult to spot some of these extreme 

points. But a formal robust procedure can definitely help us 

in this regard. Hence it is recommended that in our statis

tical investigations we do the following. 

(a) Perform the usual (least squares or a generalization 

of it) analyses. 

(b) Also use a robust procedure. Ideally, this might be 

(1.5)Huber for several iterations followed by the (1.5)Wave 

or (5.0)Biweight for two or three iterations. However, at 

the minimum, the one-step Wave or Biweight estimator (that is, 

one step of an iterative process) should be found, noting 

which weights are starting to decrease substantially from the 

number one. 

(c) If estimates from methods (a) and (b) are in essential 
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agreement, report that agreement and the usual statistical 

summaries associated with (a). 

29 

(d) If the estimates from methods (a) and (b) do not 

agree very well, take another hard look at the data. In par

ticular, look at those points having low weights or large 

residuals from the robust fit (the weights and residuals of 

the points should always be displayed on the last iteration). 

Then the usual questions can be asked about these points: 

from "Has someone made a simple recording error?" to "Is this 

outlier trying to tell us something significant about our 

experiment?" 

If a robust element is added to our present day methods, 

we will detect many simple, and not so simple, errors. These 

procedures have been used very successfully (for example, 

Los Alamos Scientific Laboratory has the option of using them 

in all regression problems and this option is exercised fre

quently). Many extremely interesting things have been dis

covered through their use. My hope is that by 1980 almost 

all statistical investigations will include a robust aspect. 

And, by that time, the researchers in robust methods will have 

other new and better procedures to propose to the statistical 

community. 
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