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ABSTRACT 

In this paper, we discuss some computational techniques 

for implementing robust procedures. In particular, techniques 

for M-estimation are considered. Section 1 gives some meth­

ods for estimating the center of a population, with some atten­

tion given to defining what is meant by ''location." In section 

2, the question of scale estimation in conjunction with location 

estimates is discussed, along with a numerical example. Sec­

tion 3 gives a generalization of the techniques for use in 

linear regression models. 

43 



1. ESTIMATING LOCATION 

Suppose we have a set of data which are 

independent observations from some population. Our objective 

is to estimate the "center," or location parameter, of the pop­

ulation. The estimator used should have good properties (such 

as low bias and high efficiency) over a variety of types of 

populations, including normal, nonnormal, and contaminated 

populations. 

We should first define what we mean by location. There 

are some distributions for which the mean is undefined or infi­

nite. This is often the case where the observations are ratios 

of random variables. For example, the ratio of two independent 

normal random variables with zero means has a Cauchy distribu­

tion. Thus the mean is not always a reasonable measure of loca­

tion. However, all distributions have a median. If the dis­

tribution is symmetric, then the median is equal to the mean if 

it exists, and there is no ambiguity at all in defining the 

median as the "center" of the population. Moreover, when the 

population is asymmetric, the median is often considered more 

appropriate than the mean as a measure of location, an example 

being the distribution of incomes. 

In view of the above, it may seem reasonable to use the 

sample median as an estimate of location, especially in view of 

the fact that it is relatively insensitive to the presence of 
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outliers in the data. However, the sample median is not as 

"robust" as the M-estimators we consider in this paper, in 

that it is often inefficient. The M-estimator corresponding 

to Huber's psi function, which will be described below, can be 

viewed as a compromise between the mean and the median. (How-

ever, it must be noted that the Huber estimate for a set of 

data is not necessarily between the sample mean and the sample 

median!) Thus, for symmetric populations it is quite clear 

that the Huber procedure yields estimates of the median. Un-

fortunately, the price we pay for the superior efficiency of 

M-estimators over the sample median is some degree of ambiguity 

in what is being estimated if the population is skewed. (We 

show later, however, that certain M-estimators corresponding 

to "re-descending" psi functions are related to estimates of 

the mode.) 

We now proceed to define an M-estimator of location. 

Supposing that we have data values x 1 ,x 2 ,··· ,xn, the M­

estimator e of location e is a solution to the equation 

g(~,o) 
n (x.-9) L: '!' __;.._ 

i=l cr 
0, ( 1.1) 

where '!' is some function (usually odd) chosen so as to pro­

vide desirable robustness properties, and & is some (robust) 

estimate of spread. Commonly used '!' functions include the 

following: 
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if It I s:c 
'i'(t) {: 'ign t 

( 1. 2) 
if It I >c 

and 

{:in ( t/ o) /o if It I s: en 
'i'(t) ( 1. 3) 

if It I >en 

The 'i' function (1.2) is due to Huber (1964), and is minimax 

for a class of symmetrically contaminated normal distributions 

while (1.3) is an example of a "redescending" 'i' function that 

performs well for very heavy-tailed distributions. See Andrews 

(1974). In practice, the "tuning constant" c in (1.2) and 

(1.3) is usually chosen to be around 1.5, for which the effi­

ciency (relative to the sample mean) is greater than 95% in 

the normal case with known cr. There are a number of other 'i' 

functions in common use. 

Note that in solving (1.1) we require some estimate a 
of "spread," but we defer discussion of this to a later point 

and momentarily assume that we have a known scale value cr. 

In general, finding the solution 9 is a nonlinear problem, 

so that an iterative procedure is necessary. We mention three 

methods here, all of which require a starting value e0 (e.g., 

the sample mean or median): 
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1. (Newton's method) 

s j + 1 ~ J - g < e j , a> 1 g' < e j , a> 

e +a £ 'i'(xi-ej) /~ 'i' '(~i-sj). 
j i=l a / i=l a 

2. (Iterative reweighting) 

Define w(t) = 'i'(t)/t, Wij -- w(xi -aS j). 

~ 

Then , ej+l 

3. (H Algorithm) 

£ wijx. !£ wi. 
i=l 1 /i=l J 

Sj +a.£ 'i'(xi:Sj)\!£ wij" 
l=l ~ i=l 

where k is a "fudge factor" usually chosen between 1 

and 2. 

~ 

4 

In all cases, iterations are discontinued when .eJ+l is 

nearly equal to ej according to some prescribed criterion. 

All three of these algorithms perform quite well when 'i' is 

monotone. Newton's method usually converges more quickly than 

the others, but can fail badly when 'i' is redescending, espe-

cially if a is too small. The iterative reweighting scheme 
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makes 9 look like a weighted average, where the weights are 

chosen by the data. The H Algorithm converges at about the 

same rate as iterative reweighting. The rate is slower than 

Newton's Method but convergence is more stable when a redescend­

ing ¥ function is used. The H Algorithm is not of great 

importance in location estimation but its adaptation to regres­

sion models (given later) is quite useful. 

Note that, when suitably expressed, the only differences 

among these algorithms are the denominators of the terms used 

to modify the previous estimate. In the case of Huber's ¥ 

function (1.2), it is easily seen that the denominator for 

Newton's Method is simply the number of "inliers" (residuals 

less than or equal to ca in absolute value), as compared to 

Lwi and n/k for iterative reweighting and the H Algorithm, 

respectively. Since the inliers each receive unit weight, the 

denominator used in iterative reweighting is somewhat larger 

than in Newton's Method. 

We strongly recommend that, if a redescending Y func­

tion is used, the starting value for the iterative process be 

an M-estimate corresponding to a monotone Y, such as Huber's. 

Furthermore, this starting value should use a severe "tuning 

constant" (i.e., a low value of c in (1.2)). This is an 

effort to avoid converging to a local, rather than global, 

solution. 

There is an interesting connection between M-estimates 

based on certain redescencling Y functions and estimates of 
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the mode. Consider a "kernel" density estimate: 

1 n (x-xi) 
nh L K -h-' 

i=l 
( 1. 4) 

where K is some density function. The mode of f can then 
n 

be used as an estimate of the mode of the true distribution f. 

Now consider, for example, the kernel: 

__ {[1 +

0

cos(t/c)]/(2crr) 
K(t) 

if It I :s: CTT 

( 1. 5) 

if ltl >en. 

Then the solution to fn(9) = maximum is the same as the M-
A 

estimator 9 corresponding to Andrews' Y function (1.3), if 

the scale parameters h in (1.4) and cr in (1.1) are equal. 

In practice, a mode estimator would more likely be based on a 

normal kernel (which is not unlike (1.5)), and a value of h 

somewhat smaller than cr. Nonetheless, this comparison is 

helpful in understanding what sort of "location" is being 

estimated using (1.3) (or other redescending Y), and in antic-

ipating some of the problems that may arise (such as local solu-

tions) in computation of the M-estimate. 

2. SCALE ESTIMATION 

We mentioned earlier that, in general, some estimate a 
of scale, or spread, is necessary in order to compute an M-

estimate of location. This scale estimate should be fairly 
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insensitive to gross outliers in the data. With regard to 

computing M-estimates, we have two choices: to keep cr 

fixed throughout the iterative procedure, or to modify the 

value of 8 after each iteration. 

7 

When keeping scale fixed, the most popular choice is the 

median absolute deviation (MAD) from the median, defined by 

MAD median ( I xi -median( x j} I } . 
l~i~n l~j~n 

Then we could use 8 = MAD/.6745 to make it an unbiased esti-

mate of the standard deviation if the data comes from a normal 

population. While this is insensitive to outliers, this esti-

mate is occasionally so small that convergence problems arise 

in the algorithms for 9, especially Newton's Method. Vari-

ous other procedures based on order statistics, such as the 

interquartile range, could also be used. 

Unfortunately, computing medians and other order statis-

tics requires sorting of the data, an expensive procedure for 

large data sets. Thus an alternative is to compute something 

like a standard deviation and modify this scale estimate at 

each iteration. For instance, if scale is known then the M-

estimate of location can be viewed as the maximum likelihood 

estimate of e for a population having density proportional to 

exp{-p((x-e)/cr)}, where p is an antiderivative of 1. If 

we use maximum likelihood techniques to estimate cr as well, 

we obtain for the jth iteration 
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1 n A 2 
n L: wij(xi-9j) 

i=l 

8 

(where 'f is scaled so that, if xi =ej, then wij =1). The 

division by n in this expression could cause some problems, 

as the value of a is likely to be small, leading to a large 

number of small weights, which in turn reduces cr substan-

tially on the next iteration. A more desirable approach would 

be to use a truly weighted standard deviation, namely: 

(2.1) 

Huber (1977) considered a scale invariant minimization 

problem of the form: 

minimum, 

which leads to the (iterated) scale estimate 

A2 
a. n __.1. A A L: X((x.-9.)/aj), 
a i=l l J 

( 2. 2) 

where X(t) =t'f(t) -p(t). For this to be asymptotically un­

biased in the normal case, one should use a = (n-l)E[X(U)] 

where U is a standard normal random variable. Note that for 

the 'f function (1.2), we have X= l'f 2 so that (2.2) is pro-
2 

n 2 A 2 
portional to L: wi(xi-9) . This suggests that a possible 

i=l 

compromise between (2.1) and (2.2) may be 
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(2.3) 

Many other possibilities exist. It seems that (2.1) and (2.3) 

are more easily interpretable since they are equal to the 

usual standard deviation if all the weights are equal to 1. 

An example of the iterative reweighting procedure in con-

junction with the iterative scale estimator (2.1) is given in 

Table l. Here we have 20 values generated from a "slash" 

distribution (the distribution of the ratio of independent 

normal and uniform random variables). The true median is 0 

and the standard deviation is undefined. The data values are 

given in the first column and the remaining columns show the 

weights in each iteration (a blank entry indicates a weight of 

1.0). The weighting function used corresponds to Huber's Y 

(l. 2) with tuning constant c = l. 5. 

The starting estimates were obtained by setting all wiO = l, 

which corresponds to the usual sample mean and standard devia-

tion for e
0 

and cr 0 , respectively. Subsequent iterations, 

as indicated earlier, are weighted means and standard devia­

tions using wij = Y((xi-Sj)/aj)/((xi-Gj)/crj) 

= min[l, l.5crj/!xi-8j!J in this case. Note that the weights 

settle down rather quickly, and by the tenth iteration the 

changes are very small. The value of cr cannot be viewed as 

an estimate of population standard deviation (which is infinite 

in this example). It is merely an outlier-insensitive measure 

of spread. 
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Table 1. Iterative reweighting procedure: an example. 

WEIGHTS 

DATA INITIAL ITER #1 ITER #2 ITER #3 ITER #4 ITER #10 

-1.21 1 1 

.25 1 1 

-.24 1 1 

-.66 1 1 

-75 1 1 

.04 1 1 

2.28 1 1 

.50 1 1 

.60 1 1 

-4.21 1 1 

.53 1 1 

43.75 1 .414 .297 .253 .234 .219 

l. 47 1 1 

.21 1 1 

.44 1 1 

-2.33 1 1 

-1.02 1 1 

-1.36 1 1 

25.08 1 .768 .535 .451 .416 .387 

l. 31 1 1 

L;Wi 20 19.182 18.832 18.704 18.650 18.606 

9 =weighted - 3.309 l. 810 X l. 262 l. 055 .966 .894 

cr =weighted s 11.152 8.296 7.159 6.663 6.435 6.245 
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3. REGRESSION METHODS. 

The techniques for location and scale estimation can be 

adapted easily to the estimation of coefficients in a linear 

regression model. In particular consider a model of the form 

(If an intercept is desired, take xil _ 1.) Robust regres­

sion estimates are obtained by solving 

n P 
L: p([y.- L: s.x .. ]/&) 

i=l l j=l J lJ 
minimum (3.1) 

in place of the usual "least-squares" criterion. Here, p 

is an antiderivative of the ~ function used earlier. If p 

is smooth then (3.1) is equivalent to finding a solution to 

n 
L: xi ~(t>. /a) 

i=l m l 
0 (m=l,2,···,p), (3. 2) 

p 
where t>.=y.-L:s.x.j. Asinthelocationcase, & isa 

l l j=l J l 

robust scale estimate, and the solution is (usually) unique if 

p is convex. (There are pathological cases in which there is 

no unique solution even though p is convex.) For nonconvex 

p (redescending ~) we again must be careful that we don't 

arrive at a local rather than global solution to (3.1). 

For purposes of describing the algorithms, it is convenient 
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to rewrite the model in matrix notation: 

l X~ + ~· 

where l is the vector of observations y 1 ,y 2 ,···,yn' ~ is 

the vector of coefficients, X is the n x p matrix of 

values and e is the vector of errors. Further, let 

f:.=x.-x~ be the vector of residuals and W=diag(w1 ,w2 ,···,wn) 

be the matrix of weights assigned by the robust procedure. 

Newton's Method modifies the estimate ~ of ~ in each 

according to 

( 3. 3) 

where A is the p xp matrix consisting of the values 

The iterative reweighting procedure is, of course, stan-

dard weighted least-squares, 

which can be rewritten as 

(3. 4) 

The H Algorithm is given by 
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(3.5) 

where k is a "fudge factor." 

Again, the only distinction among these algorithms is the 

"denominator" (in this case an inverted matrix) in the modifi-

cation term. Newton's Method converges at the fastest rate if 

no problems arise, but there is some danger of A being singu-

lar or the solution oscillating among a few values. These pos-

sibilities must be anticipated in writing a computer program 

based on Newton's Method, requiring some rather elaborate alga-

rithms. Iterative reweighting and the H Algorithm converge 

at the same rate, but the H Algorithm is clearly advantageous, 

since X'X may be inverted (decomposed) once and for all and 

no further matrix inversions are necessary. A "fudge factor" 
n 

of k = n/ L: wi has worked quite successfully in this author's 
i=l 

experience. 

If one chooses to use fixed scale, an appropriate scale 

estimate would be 

where ] is the least absolute values (11 ) estimate of ~· 

For iterated scale estimates, one may use a natural adaptation 

of one of those used in location estimates. For example, (2.1) 

would become: 
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n P A 2 n 
L. wi (yi- L. i3jxij) /( L. w -p) 

i=l j=l i=l i ' 
(3. 6) 

or we could use a= (n-p)E[¥(u)] in the regression equivalent 

of (2.2). 

One convenient numerical method for the H Algorithm is 

the "Modified Gram-Schmidt" procedure, which involves an or-

thogonalization of the columns of X. Then the z vector is 

swept out according to the modified columns of X, resulting 

in the vector of least-squares residuals. Each iteration is 

then simply a weighted sweep of the residual vector ~. The 

advantage of this method is that the residuals·are always ex-

plicitly available for purposes of computing the weights. For 

a detailed description of this method, see Lenth (1977). 

4. SOME COMMENTS 

Techniques for computing robust M-estimators are fairly 

well-developed, and the results are generally much more appeal-

ing than least-squares estimates when outliers are present, 

and comparable to least-squares when the data is "clean." 

Variations of the techniques given here can be applied to a 

wide variety of problems, including graduation and smoothing. 

See Huber (1979) and Lenth (1979). 

Hogg (1979) suggests that a good way to use robust pro-

cedures in practice is to perform the "classical" (e.g., 
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least-squares) technique and then see if the results are much 

different if an M-estimate such as a Huber or Andrews proce­

dure (possibly with just a few iterations) is performed. If 

the two results are comparable, then one can proceed with the 

classical method and its associated statistical properties; 

otherwise, take a hard look at the data with special consider­

ation of the seeming outliers indicated by low weights. 

If, however, we can find no reasonable explanation for 

the anomalies in the data, there is no real justification for 

discarding them. This is where some knowledge of the statis­

tical properties of M-estimates is needed, and unfortunately 

there are few practical results known in this regard. While 

there are some asymptotic results available, many of these 

depend on knowledge of scale, and little is known in the case 

of small sets of data. Much more work is needed before we can 

construct meaningful confidence limits and tests based on 

robust estimators. 
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