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A NEW CLASS OF MOVING-WETGHTED-AVERAGE GRADUATION FORMULAS

by Peter A. territson, A.S.A.

ABSTRACT

This paper has two related purposes: first, to introduce a new
class of Moving Weighted Averape (MWA) graduation formulas where
the coefficients are determined in accordance with the relative
emphasis placed on smoothness and fit by the graduator, similar
to the Whittaker-Henderson graduation method, and second, to
consider the question posed by Greville in the part 5 study note
on praduation regarding what value of n to use when graduating

by MWA formula.

MINIMUM R2 FORMULAS
When graduating by the MWA method, it has been customary to define
a measure of roughness associated with the MWA formula. If

a - a, are the coefficients of the formula, the measure of
f

2
2

-n,”

roughness R; is defined as:

n
Rg * ce Gz (Alag)? : (2:) , where a. is taken

to be 0 for s= *(n+1), '+ ,*(n+z). Among all MWA formulas of order
n which reproduce cubics, there exists one whose associated value
of Rg is a minimum among all possible values of R%. This graduation

formula is called the minimum R% formula of order n.
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Proposition 1: Fix z, and let T, be the value of Rg associated
with the minimum Rg formula of order n. Then {rn} forms a non-
increasing sequence.

Proof: Let A, LA, be the coefficients of the minimum Rg

formula of order n. Consider the MWA formula of order n+l whose

coefficients are O,a_n'-»-,an 0. Cubics will be reproduced by

,

this formula since the formula with a_ ce-,a, as coefficients

n,
reproduces cubics. Tt is easily seen that the value of Rg
associated with the formula with coefficients O,a_n.-o-,an,o

is the same as the value of Rg associated with the formula with

coefficients a_, ---,a,, namely r Now since rp,; is the smallest
»

ne
value of Rg that can be associated with any cubic-reproducing order

n+l MWA formula, it follows that r,,, Sr and so the sequence

n»

{}“} is non-increasing.

This proposition shows that if the overriding concern is with the
smoothness of the graduated values, the best value of n to use when
graduating by minimum R% formulas is the largest one that the raw

data will permit.

A MEASURE OF FIT IS INTRODUCED
When performing a graduation, the closeness of the graduated values

to the raw data, referred to as fit, should always be considered.

Tt Ihi!_!}‘i“jmllﬂ_Pz Logmulgs Tgurnducu evhice nrowidac an- .
e

assurance of fit if we assume that the "underlying law" that the

variable under consideration follows can be closely approximated



by a cubic. Yowever, the most obvious numerical measure of fit

between the raw data {Px'} and the graduated values {u¥} is
n

%;(ux-ux”)z. Since under tge MWA method u, = (5 ag u;’s_ it
. "oy " v
1sntrue that (uy-u, )< = ( é-n agu o Suy )° o=
n "
(sé-n a5 Vyxes " (ag-1) Ux 2. m
SEQ

Consider for a moment how the measure of roughness R% was obtained
in the part § ;tudy note on graduation. First the equation
@%u)? - (sgn_z @ *ay) ux,'z',s)? 2)

was deduced. Then, to get a measure of the size of the right-hand
side of equation (2) which was independent of the particular {;xt}
under consideration, the sum of the :quares of the coefficients of
the u ’s was considered, namely: S;gn_z (zﬁzas)z (3)
Finally the expression (3) was divided by (zf) in order to make the

value of R% be 1 for the identity MWA formula.

Consider again the measure of fit given by expression (1) above.
It is possible to duplicate the construction of Rz and define a
measure of fit associated with a MWA formula which is independent
of the particular u”‘s under consideration by taking the sum of
the squares of tne coefficients of the u",s in expression (1),
namely: F = gi_n as2 + (l-aO)Z (4)

sF0
The key step in both the construction of R% and the construction

of F above involves proceeding from an exact expression of the

quantity under consideration to an expression which only represents



the size of the quantity under consideration but which is independent
of the raw data. In both cases the exact expression is of the form

2 . .
i) , and the expression used to represent the exact one is

. What we hope is that there is a correlation between the

“. The following proposxtxon relates the size of these two
&k

quantities,

k k
Proposition 2: :i (xsy) < u2 (Zkﬂ)2 S x )2 for any choice of
s=-k e
real xg's and yg's, where M = max fy |
-k<s4k

Proof: The proof is contained in Appendix I.

Remarks: The ahove proposition provides some justification for both the
minimum R% graduation method and the graduation method that will be

introduced in this pape{. In non-mathematical language, it says t:at by
making the expression ~—~k(x ) small, one forces the expreasion ;f&k(xays)Z
to be less than or equal to a multiple of something small. However,kit
definitely does not imply that the minimun value of the expression E%;k(xsys)Z

g
will be taken on when the expression ;;;k(xs)z takes on its minimum value.

A Practical Solution to the Number of Terms Question

If the measure of fit F defined above in equation (4) is accepted as a
valid one, it is possible to analyze minimum Rz formulas from a different
point of view. As in the Whittaker-Henderson graduation method, the
expression F+kS can be considered, where F is as defined above in equation
(4), kK{(=0) is up to the discretion of the graduator, and S = Rz X [22),

s= 2 (atal. ()

-~
=-n-2

Of course z is also up to the discretion of the graduator.
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A practical solution to the number of terms question posed by
Greville is now possible when minimum Rg formulas are being
considered. A computer can be programmed to calculate the
coefficients of the minimum R§ formulas for all values of n that
would be practical for the data under consideration. Values of

z and k could be chosen by the graduator, and the value of F+kS
could be calculated for the coefficients generated by the computer.
The value of n which resulted in the smallest value of F+kS would
be considered the best value of n to use for the given values of

z and k. The above procedure was performed for 2¢n<ll, z = },2,3,4,
and values of k in the range .1 to 20.0. The ''best" value of n in

each case is shown in Table I.

A New Class of MWA Formulas is Contemplated

If one accepts the numerical measure of fit defined in equation (4)
as a valid one, then there is no reason why this measure should be
applied only to minimum R% formulas. One approach would be to assign
values to z and k and calculate coefficients which would minimize the
quantity F+kS for the chosen values of z and k. When this approach
was tried, it was found that the resulting MWA formulas would not
necessarily reproduce constants. Considerations of fit make the
reproduction of low degreee polynomials by MWA formulas a desirable
characteristic when the variable under consideration can be closely
approximated by low degree polynomials. Therefore, the initial
approach was modified by considering the measure F+kS only for those

MWA formulas which reproduce cubics. It was found that once z, k,
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and n are chosen, there is a unique MWA formula of order n which
reproduces cubics and which has the minimum value of F+k5 among

all order n cubic-reproducing MWA formulas. The mathematics behind
this approach, along with a method for calculating the unique

coefficients, will now be developed.

A New Class of MWA Formulas
For a MWA formula of degree n with coefficients a_, --- a, the

measure of fit F defined by equation {4) can be expressed in matrix

notation as: F = (2 - &) T G@-8 . (6)
[ - e
where & is the vector t ?\ and @ is the vector L s
I
e

of length 2n+}, consisting of all zeros except a 1 in the n+1'st
position. Also, the measure of smoothness S defined by equation
(5) can be expressed as S = kK 3 €}

where 3 is as above and K is the (Zn+l¢z) x (2n+1) matrix which,

—_
when multiplied on the right hy a, gives the 2n+l+z values of

z}?as for s = -n-z,-.-,n. (An exact description of the matrix K is

given in the appendix.) Note that this K is not exactly of the same
form as the K used in the Whittaker-llenderson graduation method
discussed in the part 5 study note on graduation. In the Whittaker-
Henderson method, the matrix K allows one to calculate the n-z z'th
differences of a set of n values, whereas the matrix K referred to
above allows one tc calculate 2n+z+! z'th differences from 2ne+}
values, plus z zerces catenated on either =nd of the 2n+) values.
For example, for n = 3 and z = 2, the matrix XK used in equation (7)

would be:






proposition, contained in Appendix 2, the method for calculating
the coefficients of this MWA formula is developed. This method

will be summarized now.

Let n, z, and k be piven. Let K be the matrix used in equation (7)

of the previous section. [let A be the following (2n+3) x (2n+3)

matrix:
1 (_n)l
1 (-n+1)
A - 2(IkK K 1 (n-1)2
1 (n)?
T e 1 0 0
m2 (e o e 0?0 0

i.e. the upper left 2n+l x 2n+]l submatrix of A is the matrix
T . .
2(I1+kK K), where I is the 2n¢l x 2n+l identity matrix: the 2n+2'nd
column of A consists of 2n+]1 one's and 2 zeros:; the 2n+3'rd column
. 2 2 2 2
of A consists of the sequence {-n)", (-n+1)", ---, (n-1}°, n%, and
two zeros:; and the 2n+2'nd row and 2n+3'rd row are equal to the

2n+2'nd column and the 2n+3'rd column respectively.

The key fact used to calculate the coefficients a_, ***,a, of the

MWA formula of proposition 3 is that the following matrix equation

holds:
a
on >
Al = f (11)
an
x
A

-
where f is the vector of length 2n+3 consisting of all zeros except

L] '
a 2 in the n+l st position and a 1 in the 2n+2 nd position. The
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variables ) and 4 in equation (11) above were introduced to guarantee
the reproduction of cubics., Since the matrix A is always invertible
(proved in Appendix 2), one just has to calculate A"V and then multiply
it on the right by ?. The first 2n+) entries of this product are the
values of a_p --- aj.

As an example, let z = 1, k = 1, and n = 1, The matrix A is:

6 -2 0 1 1
-2 6-2 10
0 -2 6 11
1 1 1.0 0
1 n 1 00
and A7 is: _
b 0 ko
n 0o 0 1-1
5 0 Kook
0 1 N -6 8
¥ -1 % 8 .13]
and A"f:A'lg = (9
0 0
1 -4
0 6
So for this case ay = 0, ag = 1, and ay = 0, i.e.
u, = ux” , the identity MWA formula
EXAMPLES

As an example of graduation by the method introduced in the previous
two sections, the twenty-five central values of the list nf data on

page 63of Miller's book Elements of Graduation were chosen as the

ungraduated values. The value of z was chosen to be 2 for all gradua-
tions. This data was graduated by five methods: (1) Whittaker-
Henderson Type A with k = 2, (2} minimum Ri formula with n = 5,

(3) minimum Rg fromula with n = 10, (4) the method of this paper with
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k= 2and n = 5, and (5) the method of this paper with k = 2, and

n = 10. The results of these graduations are shown in Table 2.

All the MWA graduations done on this data used as many extra values
of the data from page of Miller's book as necessary to pget twenty-five
graduated values. Notice how close the Whittaker-Henderson Type A

graduation is to the graduations hy the method of this paper.

One of the most appealing gualities of the MWA praduation method is
its simplicity. No computers are necessarvy for its execution. It is
true that determining the coefficients of the MWA formulas introduced
in this paper is not computationally easv. [owever, once they are
determined for particular values of z, n, and k, they can be used on
any set of raw data without the need of a computer. For this reason,
the coefficients of the MWA formulas produced by the method of this

paper for n = 5,10 and z = 1,2,3,4 and k = .5,1,2 are shown in Table 3.

CONCLUSION
Section VII gave the solution to the problem of finding coefficients
a.p "' 3, of the MWA formula of order n which will minimize F+kS
subject to the constraint of reproducing cubics., This formula will be
referred to as the "minimum F+kS formula'" of order n, even though this
introduces ambiguity because the formula isn't determined until z is
chosen.
ProEOSition 4: Fix z and k. Let L be the value of F+kS, where F and
S are as previously defined, for the minimum F+kS formula of order n.

1

Then 1m“) is a non-increasing sequence,
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Proof: The proof is essentially a repetition of the proof of

proposition 1 and is left to the reader.

It is now possible to reconsider the question posed by Greville
concerning the number of terms to use when graduating by MWA formulas

in light of the new class of MWA formulas introduced in this paper.

The main purpose for minimum F+kS formulas is to give the graduator
control over the emphasis to be placed between smoothness and fit.
Minimum Rg formulas don't provide this option. However, proposition 4
implies that the value of the fit-smoothness measure will not increase
if the value of n is increased. This would indicate that the graduator,
when graduating by minimum F+kS formula, should choose the largest value
of n which is convenient for the raw data under observation, However,
there is a counterbalancing consideration., If there are t ungraduated
values, graduating by a MWA formula of order n will produce only t-2n
graduated values. Thus there is a trade-off between getting a small
fit-smoothness measure and getting a lot of graduated values. To get

t graduated values, extrapolation of the raw data is necessary, but this

will introduce uncertainty into the final results.

The problem of what order MWA formula to use has not been solved by the
introduction of minimum F+kS formulas. To solve the prohlem, an
investigation into the extrapolation process is necessary to see whether
it is better to use a high value of n with an associated low value of
F+kS, or a low value of n with only a few extrapolated values necessary

to get complete results.
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TABLE 1
Values of N in the Range 2¢N< 11

Which Minimize F+kS for Minimum R% Formulas

1 2

1 2 2
.3 2 3
.5 2 3
.6 2 3
.7 3 3
.8 3 4
.9 3 4
1.0 3 4
1.5 4 4
2.0 5 5
2.5 6 5
3.0 6 5
3.5 7 [
4.0 8 6
5.0 9 6
6.0 9 7
8.0 11 7
10.0 11 8
12.0 11 8
15.0 11 9
20.0 11 10
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TABLE 2

Example of Graduations by Various Methods

(3) 4) (5 (6)
(1) {2) Minimum Mini?um Minimum Minimum
Raw Whittaker- Rz R F+kS F+kS
Data Henderson (n=5) (n=10) (n=5) {n=10)
.00446 .00489 .00502 .00523 . 00489 . 00495
.10632 .00606 .00596 .00581 . 00599 .00597
.00741 .0n701 .NN6RS .00638 . 00698 . 00692
.00726 .00766 .00763 . 00699 .00772 .00760
. 00945 .00811 .00798 .00768 . 00811 .00808
.0N740 .00827 .00844 .00846 .00829 . 00826
.00763 .00873 .00882 .00920 .00867 .00873
.N1064 .00967 .00944 . 00998 .00953 . 00968
.0nN999 .01073 .01061 .01098 . 01065 .01074
.01378 .01204 .01217 .01203 .01209 .01205
.N0967 .01334 .01387 L01331 .01358 .01334
01826 .01525 .01485 .01478 .01528 .01526
.01811 .01656 .01594 .01639 .01638 .01656
.01593 .01756 .01799 .01823 .01756 .01755
.01789 .01930 ,01979 .02009 .01921 .01929
.01853 02204 .02212 .02154 .02203 .02203
.03246 .02532 .02442 02377 .02533 .02531
.02794 .02692 .02683 .02595 .02702 .02691
.01937 .02821 .02928 .02847 .02849 .02819
. 04000 .03106 .03093 .03125 .03116 .03106
.02795 .03290 .03257 .03429 .03275 .03269
.03764 .03567 .03501 .03740 .03536 .03596
.04123 .03880 .03979 .04024 .03920 .03939
.03459 .04272 .04481 .04321 . 04365 .04351
.05391 . 04906 .04932 04627 . 04983 .04950

From Miller, "Elements of Graduation’, pg.

Type A, with z=2 and k=2.

The value of z is 2.

The value of z is 2.

z=2 and k=2.

values of the raw data were used for ages 40-44 and 70-74.

z=2 and k=2.

values of the raw data were used for ages 30-44 and 70-79.

61,

To get the graduated values at apes 15-49 and
65-69, values of the raw data were used for ages 40-44 and 70-74.

To get the graduated values at apes 45-54 and
60-69, values of the raw data were used for ages 30-44 and 70-79.

To get the graduated values at ages 45-49 and 65-69,

To get the graduated values at ages 45-54 and 60-69,
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Table 3

.5

.0141889413
.006311B852
.0106668370
. 0483681026
. 1662397521
.59n4522696
.1662397521
.0483681026
.0106668370
.0063118852
.0141889413

.5

.N066450661
.N144004685
.0074587477
.0569777432
.2357519042
.4715492697
.2357519042
.0569777432
.0074587477
.0144004685
.0066450661

Coefficients

1
.0229251389
.D088011393
.0230123562
.0782860103
.1936914537
.4734729158
.1936914537
.0782860103
.N230123562
.0088011393
.0220251389

)

1
.0145207363
-.0184295859
.0071097381
.0882945393
.2407259820
.3936401257
.2407259820
.0882945393
.0071097381
-.0184295859
-.0145207363

0

2

.N322171146
.N104318083
.N376965794
. 1062471592
.208n7R1474
.3812536740
.2080781474
. 1062473502
.0376965794
.0104318083
.0322171146

2

.0223633258
.N206526587
.N222572379
.1125545426
.2389923725
.3384236630
.2389923725
. 1125545426
0222572379
.0206526587
.0223633258
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Table 3 (Continued)

.5

-.0046127052
-.0202222597
-.0137706862
.0753977821
.2612188337
.4039780707
. 2612188337
.0753977821
-.0137706862
-.0202222597
-.0046127052

.5

-. 0068646435
-.0237418974
-.0093801195
.0928407231
. 2645446275
. 3652026194
2645446275
. 0928407231
-.0093801195
-.0237418974
-.0068646435

| >

1

.0125138164
.0234060740
.0031063058
.1011567923
.2547586729
.3537962389
.2547586729
.1011567923
.0031063058
.0234060740
.0125138164

1

.0133010324
.0259180269
.0051427948
.1110966109
.2565426446
.3328740180
.2565426446
.1110966109
.0051427948
.0259180269
.0133010324

2

.0188274610
.0250918283
.0165507815
.1186799653
.24B4788826
.3204193198
.2484788826
.1186799653
.0165507815
.0250918283
.0188274610

2

.0175338170
.0271069906
.0146396719
.1222851642
.2511595706
.3131128018
.2511595706
.1222851642
.0146396719
.0271069906
.0175338170
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Table 3 (Continued)

|

s S 1 :

-10 -.0022830516 -.0040976375 -.0069856103
-9 -.0021810780 -.0043048780 -.0078257211
-8 -.0015102405 -.0031082969 -.0056322903
-7 -.0007363297 -.0013507183 -.0017171469
-6 .0000936537 .0009259616 .0037520947
-5 .0012574969 .0044388777 (0116682271
-4 .0039133500 .0113813309 .0244308467
-3 .0124160256 .0276160896 .0471461515
-2 .0430266245 .0685381574 .0901800404
-1 .1564347371 .1744697770 .1743410625
0 .5791376239% .4509826732 .3412846913
1 .1564347371 .1744697770 .1743410625
2 . 0430266245 .0685381574 .0901800404
3 .0124160256 .0276160896 .0471461515
4 .0039133500 .0113813309 .0244308467
5 .0012574969 .0044388777 .0116682271
6 . 0000936537 .0009259616 .0037520947
7 -.0007363297 -.0013507183 -.0017171469
8 -.0015102405 -.0031082969 -.0056322903
9 -.0021810780 -.0043048780 -.0078257211
10 -.0022830516 -.004097637S -.0069856103

n=10, z =2
k

s 5 L 2

-10 . 0000390811 .0002940140 .0003859604
-9 .0001884168 .0005015347 .D000494714
-8 .0003952726 .0001272898 -.0017276045
-7 .0001960243 -.0016891817 -.0052481953
-6 -.0016870936 -.005837671S -.0096337030
-5 -.0069382620 -.0114547015 -.0112068455
-4 -.0138738428 -.0118043885 -.0013339547
-3 -.0069332740 .0113137469 .0342156277
-2 .0571976292 .08783941450 .1102952224
-1 .2357098438 .2365912648 .2245472245
0 .4714124092 .3881278959 .3193255934
1 .2357098438 .2365912648 .2245472245
2 .0571976292 .0878941450 .1102952224
3 -.0069332740 .0113137469 .0342156277
4 -.0138738428 -.0118043885 -.0013339547
5 -.0069382620 -.01145470153 -.0112068455
6 -.0016870936 -.0058376715 -.0096397030
7 . 0001960243 -.0016891817 -.0052481953
8 ,0003952726 .0001272898 -.D017276045
9 .0001884168 .0005015347 .0000494714
10 .0000390811 .0002940140 .0003859604
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Table 3 (Continued)

k

s S5 1 2

-10 -.0004514093 .0002195679 .0014960255
-9 -.0000690936 .0016634367 .0034740727
-8 .0020611345 .0035899642 .0031521751
-7 .0044560592 .0025413062 -.0026444710
-6 .0018193295 -.0059511426 -.0144730171
-5 -.0117133044 -.0213550554 -.0257761678
-4 -.0300634165 -.0291286614 -.0197869197
-3 -.0188682012 .0025661333 .0262599852
-2 .0774910720 , 1048338437 .1239660063
-1 .2686789336 . 2607686531 2466570678
0 .4133177921 .3605039087 .3153504860
1 . 2686789336 .2607686531 .2466570678
2 .0774310720 .1048338437 .1239660063
3 -.0188682012 .0025661333 .0262599852
4 -.0300634165 -.0291286614 -.0197869197
5 -.0117133044 -,0213550554 -.0257761678
6 .0018193295 -.0059511426 -.0144730171
7 .0044560592 .0025413062 -.0026444710
8 .0020611345 .0035899642 .0031521751
a -. 0000690936 .0016634367 .0034740727
10 -.0004514093 .0002195679 .0014960255

k

s 5 1 2

-10 -.0013996913 -.0003372530 .0014752155
-9 -.0012595359 .0016868639 .0048872356
-8 .0035179276 .0061884184 .0067332015
-7 .0096364120 .0068339370 .0006073241
-6 .0057424110 -.0052040967 -.0164571202
-5 -.0169516101 -.0288984769 -.0353969770
-4 -.0431373474 -.0409863321 -.0319849216
-3 -.0228077995 -.0005504051 .0220147245
-2 .01944060042 . 1166659522 01323909726
-1 L2785671771 .2700481900 .2573711852
0 .3853721045 . 3491064046 .3167182993
1 .2795671771 .2700481900 .2573711852
2 . 0944060042 . 1166659522 .1323509726
3 -.0228077995 -.000550405] .0220147245
4 -.0431373474 -.0409863321 -.0319849216
5 -.0169516101 -.0288984769 -.0353969770
6 .0057424110 -.0052040967 -.0164571202
7 0096364120 .0N068339370 .0006073341
8 .0035179276 .0061884184 .0067332015
e -.0012595359 .0016868639 .0048872356
10 -.0013996913 -.0003372530 .0014752155
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Appendix I

This appendix contains the proof of Proposition 2.
k 2 2 X

Proposition 2: E Xy X M (2Kk+1) E (xs)2 for any choice
sk 58 sk

of real xs's and ys's, where M = max ‘ys‘.

K
2 k 2 2 2
Proof: XY = XY <{ x|y M é "l
sg'.k * s) (sg'-k 3 SDZ "’(s--kl I S‘) (s=-k| s
k
Now \/2 ()(s)2 Z(xil for each i s.t. -k€isk. Letting i run through
k

S=® -
all integer values from -k to k produces 2k+] inequalities, which we can

add up, giving X 2 k k ‘ ‘
(2k+1) s (xs) z2 |xi| =5 x t.  Squaring
k i=-k s=

S

-k
k
each side we obtain (Zkvl)2 (é (xs)2> - % Ixsgz. Thus MZ(E lxsl)z
- s=-k

s=-k s=-k

K k k
S aentfs « )2) candsof 6 xy FaM @D’ $ ()l
s€.x S sk ® s=-k
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Appendix 2
This appendix contains the proof of Proposition 3.
Proposition 3: Let n, z, and k be given, with k20. Let F and S be as

defined {n eauations (4) and (5). Then there exists a_uniaue MWA formula

of order n which reproduce cubics and which has the smallest value of
F+kS of all order n MWA Formulas which reproduce cubics.

Remarks: The proof will show phat the coefficients a_
-n

- —~
unique MWA formula satisfy A{_ i J= £ where A and € are defined in

n, ", of this
Section VII of this paper, and,“since A is an invertible matrix (shown
below), this equation can be used to find the coefficients of the unique
MWA formula.

Proof of Proposition 3: The proof has three main sections. In Section I

coéfficients a, re ag will be defined. In Section II, it will be shown
that the MWA formula with these coefficients is symmetric and reproduces
cubics. In Section ITI it will be shown that the MWA formula with these
coefficients has the minimum value of F+kS among all order n cubic-repro-
ducing MWA formulas, and that it is unique in this respect.

Section I

In order to define the appropriate coefficients, we need

Lemma 1: The matrix A defined by equation (10) in Section VII is invertible.
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-
Proof: Assume AX - 0. We will show that—} =N, Let x = %1 . Now

‘?G_marciv 4 ran ho nvnracead ac:

00
00
+ 2k KTk Lo
00
_ 00
00 D000
00--0000
f-n)°
1 (-n+1)?
. 0 : :
1 (n-1)?
1 n2
1, T ... 1 T. 0 o
(-n)” 2 a-n?al o o
| B4
Therefore 3T Ax - 2% vyl %
00
00---0000
000000
B 0 0]
00
T s o
PP -2 LS S PO
00
00,,,0000
LD 0.0 000
b
1 {-n)
) {-neD)?
0 S
T . .
+ X 1 -2
1 n
1 1 - 1 1 00
(—n)z (—n*l)z---(n-l)2 nZn o
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, 2.2 2 2, |2 n LU
=2 (_nwi + 2k ’5_ (Aw)) *2-(_2 "'i*zp_i_ i%w,

i i=-n-z i=-n i=-n

i=-

where in calculating the AZ in the last expression it is assumed that
W= 0 for s = *(n+1), "'*(n+z) as usual. Now since A?=ﬁ, it is true

n n 2 n no2
that %' A% = 0, soO=2.Ewiz&2k' s (Aui)2¢2¢<_2ui c2p s ity

i=-n i=-n-z i=-n i=-n
Now hecause A% = TT, the last two elements of AX must both he 0, so

n .. n .2
M0t g i
i=-n i=-n

Thus the above equation reduces to:

n n
- 2 z .2
0=2% w 02k'E (@a™)*.
i=-n i=-n-z

Since k20, this implies that wi = 0 for -n€i¢n. So now all we have to prove

is that L = 0 and_P = 0. Now since AX = 0, the first two elements of AX must
both be 0, so since we have already shown that W = 0 for -n€i€n, we have

oL + (-m?P = 0 and

o+ (-nol)zp =0,
These two equations imply that =P =0, so ‘i‘=‘5 and A is invertihle.

-

It is now possible to define the appropriate coefficients for the proposition.

Nefinition 1: let (a ©oap X ,#) be defined as the unique solution for
R — 13 »

_n..'

X in the equation AX = T where f is the vector of length 2n+3 defined in
- L}
Section VII, i.e. f has all elements 0 except a "2" in the n+l st position

and a '"!'" in the 2n+2'nd position.

This solution exists and is unique by Lemma 1. The MWA formula we will he
considering is n &
U= 2 a Ul

x+s
=-n

where the a's are given in definition 1.
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Section I1: In order to prove that the above formula reproduces cubics
and is symmetric, we need

Lemma 2: The matrix K'K is symmetric about the lower left to upper right
diagonal as well as the upper left to lower right diagonal.

Proof: First we need a complete description of the matrix K. I claim

that K satisfies:
0 if x-y<h

Kxy = (_”x-y xfy) if Ofx-y=z
0 if 2ex-y
This can be written compactly as (»l)x‘y ny) if it is agreed that (:) = 0

for b<0 or bra.

To see the validity of the above expression, consider that the x'th row of

K by definition gives the coefficients of the a's in the expansion of

z 3 z - z-1 fz
AR on-z-l1ex SO SINCEAA o, 1ex ig() -D (1) a_n_z_px.i, we have

that K, = (-1)‘6 where -n-z-i+x+i = -n-l+y, which implies that i = z-(x-y)

z
so K, = (-1f (-] z-(x-y))= -n*7 (,fy).

To show that KK is symmetric about the lower left to upper right diagonal,

it is necessary and sufficient to show that (KTK)-l. = (KTK’ZmZ-i me2-i
n+z+l o -

since KTK is a 2n+l x 2n+l matrix. Now (KTKH,' = E Klip Key =

- t=1 !
2n+z+1] In+eed
T = . . i
51 Kei Keg, MM KKy oy ane2ai T t51 Ke,ame2of Keo2nezoi, Vsine
the above description for ny we get:
2n+z+l
T t-1 /2 t-3f 2 14+ 2

K K - $ - - : - 1 2ntz+4] z

o, ~ 2 ¢ (t_i S PRy ) R S H)(;) (12)
t=1 :

T 1+ 2n#z41 d
and (K'K)y o io 4, 204214 = (1) “% (c-’(2n+2-1)) ((t-‘(2n+2-1)).
t=
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Transform the last summation by letting s = 2n+2+z-t. We get (KTK)2n+2-j n+2-1
,

In4z+1 Z 4 2n+Z+1
. oyt 21 (J*‘Z“J (m-s) - pt él (o) (2. v
8= B

Since the right hand sides of equations (12) and (13) are identical except for
the name of the dummy variable, we have that
(KT g3 = (KTR)gna2-1, 2042-1
and hence KTK is symmetric about both diagonals.
Remark: Since the upper left (2ntl) x (2n+l) part of the matrix A is
2(1+ kKTK), lemma 2 {mplies that
Atx = Ane2-x, 2nt+2-t
for 1=t=2n+l and 1£x<2n+l.
We are now ready to prove that the MWA formula
A I

X  a*-n

where the a's are given in Definition 1 is symmetric. To do this we sghall

an
show that the vector H i.e. the vector with the a's reversed but with
ain
e
X 2 7 - 7.
and )Lin the same position, is a solution for X in the equatfon A = f.
a-n
Since we know that H is the unique golution to this equation, we will
B
u

have shown that a_g = a, for 1<€84n, and hence that the MWA formula under

consideration 18 symmetric.

> - >
Lemma 3: : \is a solution for x in the equation Ax = f,
a’,
X
o a? .
Proof: To verify that an = f, 1t 18 necessary to verify 2n+3 linear
— 0
by
4n
equations; narely, that A, aE - ft where Ay 1s the t'th row of A,
0

"
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-n
for 15t<2n+3. The last two of these are immediate since 1z ay -
-
2 ay =1 and z 12 a; = 2 1231 . To get the other 2n+l equations,
{=n
&n
we will show that H satisfies the equation represented by the t'th row
a
'sn

R
of A because -n satiafies the equation represented by the 2n+2-t "th row

A
a,
of A. Let's start with the equation we need to verify. The vector :
amn
A

will satiafy the equation represented by the t'th row of A {ff

20 2 0 if t ¢ n+l o
kzi Atk gk * ) + (n+l-t) /u ol AP But since lé satinfies

A

p
the equation represented by the 2n+2-t 'th row of A, we know that
0 1F ¢t ¢ n+l

2n%l
2
A + 1+ (n#l - 2n+2- -
:-il 2n42-t,§ -n-14] (0l = (Zo42-60)" @ = 05 (f ¢ = ntl.
Now by the remark after lemma 2, we know that Ay42-t g - Aj Zat2-c ® At Int2-1.

Putting this into the above equation we have that

2ot , [0ifcdnn
E1 Ae,zuezy Sonedeg A ()T 2 40 € = an)

Let k = 2n+2-1, We then have

21 D 1f ¢t # o¥l
k=l Atk A, 41k +A+ (n+1 t) A 2 1f t = ntl,which is exactly what

we wanted to verify. Thus : 18 a solution to AX = ?. and hence ag = a_g

for 1<s<n.
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We are now ready to prove that the MWA formula under conaideration
reproduces cubica. Recall that the four equations required for the

- .
reproduction of cubics are: dag = 1, éxas -0, Eszns = 0, and EBJAB - 0.

Since we have just proved that a, = a_g for the MWA formula under considera-~

tion, we are puaranteed thatr E;as = (= Eéjaa. However, we know that the
a-n

-
a's satisfy = f, The linear equations resulting from the last two

an
BN
Al
rows of A in the above matrix equation are precisely what we need; namely,

n
% a_ =1 and E sla_ = 0. Thus the MWA formula under consideration
g=-n 8 8%-n s

is symmetric and reproduces cubices.

Section I1I: We are now ready to prove that the MWA formula under considera-
tion has the minimum value of F+kS among all order n MWA fromulas which re-
produce cubics, and that it is the only MWA formula which reproduces cubics

vhich has this minimum value. The basic itdea of the proof 1s borrowed from

the development in the part S study note on graduation on pages 53-54.

n

. il
Let u = E; b, uxsg be an arbitrary MWA formula of order n which re-
X  ge-n B 8

n n
produces cubics, so in particular E} b_ =1 and Ei 82b = (0. Let o
g=-n S 8=-n 8
-
w = Consider the expreasion

and P be arbitrary variables. Let

E defined bv;

Expanding the expression, we get (3ince AT - A)

—
Ee=wiaw -t a7-6T F+F0 a1 F,

2T , > 2 a z 2 2
Now BT ad=22 bl + 2k & (A by) +2§__nbs+2 o

8=-n B=-n-2z s
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n

n
as was seen in the proof of Lemma 1. Since E. by = 1 and E sy = 0,
s=-n s=-n 8

!'I

,
z, 2
¢ * 2K dh L (87bg)" + 28

we have n
27 S 2

VIiAw =22 b
8=-n

2
= 2F42KS + 2b, - 2(1-b)’
= 2(F+kS) + LI 2a - 2.
—
vTF a2 +a.
[s]
=T -1
Sa E = 2(F#kS) + 4b_ + 2a ~ 2 - (2by + a) - (b, + o) + £ AL F
= 2(F+ks) -2 +F1 A7 E,
T a

>
Notice that -2 + -1 ¥ 13 a constant, so finding b's which make F+kS

a minimum is equivalent to finding b's and 2 andﬂ which make E a minimum.

Now {f A~l were positive definite we would be done; however, it {8 noc,
since A has two dlngnnnl elements which are 0. However, under the hvpothesis
2 < 2
that b =~ 1 and LA s b « 0, {t 18 true that the expression E is alwavs
g=

non—negutive. To see this, let Au—f-v. Theng - (Av)T Al (Av)n- v FIAT

/c-nH n
P T > 3 2 S z 2 ii
- : - 2 -
Let y cd Then v° Ay 212’:.“::1 + 'klf-n—z(b )"+ 2p L oy ¥
P
n \ 19

2 2 - >
2q1__ni c1 as in the proof of lemma 1. But since AG-f = Ay, we know, by

lo:king at th: last ecwo :lements n; each side of thia eauation. that

2"1- l= 2 ¢y and Z lzb - S_ 12c1. But since 2 b1 = 1 and
{e-n

i=-n iwin i*<n 1 {«Tln
n n n
< 2 e 7,
1;§n1 b, = 0, we know that 1£§nr1 = 7 and {__nizc1 =~ 0. Thus

n n

T > 5> 2 S z 2
- - -
E v Ay 21--nC1 Zki-éi-z(A Ci)
and so, since k20, E is always non-negative under the assumed hvpothesis
In fact, we see from the above equation that E takes on its minimum value

of O precisely when cy = 0 for -n<isn. Since the b's were not arbitrary



