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It has become fashionable for research-minded actuaries 

in our profession to cast classical life contingency problems 

in a stochastic framework. The 1978 Actuarial Research 

Conference was devoted to this topic. At that conference, 

Panjer and Bellhouse presented a paper I that showed how to 

compute moments of insurances and annuities when interest 

rates as well as mortality (or other causes of decrement) 

are governed by a stochastic process. What distinguishes 

their contribution from earlier work is that their method is 

capable of handling realistic interest rate processes - in 

their paper expressions for both discrete and continuous 

first- and second-order autoregressive processes are given. 

Recent experience has shown that interest rates are 

prone to large and relatively rapid changes. The increasing 

importance of external factors on the domestic economy 

suggests that the experience of the last decade is more 

likely to be the norm rather than the exception for many 

years to come. Since the actuary's business is the assessment 

of risk and uncertainty, it is necessary for him to be able 

to place the traditional "discounting at interest" and 

"accumulating at interest" calculations in a stochastic 
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setting. In addition to accounting for the investment 

environment as accurately as possible, it is important to 

do likewise for the investment process. In a fluctuating 

interest r~te environment, the interest rate risk to which 

a fund is subject depends on the principal repayment pattern 

of its investments. Consider a situation where a given 

cash flow is available for investment in either "bullet" 

bonds with principal repaid in one lump sum at the end of 

ten years or in ten-year "sinking fund" bonds requiring 

principal to be repaid in equal installments over the term 

of the bond. The Value of the fund at the end of the ten- 

year period depends not only on how interest rates behave 

but also on which of the two instruments is used. The 

sinking fund bend has greater reinvestment risk: it benefits 

more than the bullet bond if interest rates rise, but suffers 

more if interest rates fall. 

After reading the PanJer-Bellhouse paper in the Pro- 

ceedings of the Ball State University Conference, I wondered 

whether their technique could be used when a realistic in- 

vestment process was assumed. I believe that such an extension 

is necessary if the theory is to have any practical application 

I have had little success in trying to do this. Since ARCH 

is a forum for the presentation of ideas and for the stim- 

ulation of research, I have decided to present some thoughts 

and to invite others with different perspectives to bring 

them to fruition. 
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The easiest way to introduce the investment process 

into the calculation is to define a rollover function r(t) 

that describes how principal from a unit investment at time O 

is repaid. The amount of principal repaid between times t 

and t + dt is r(t) dt. Excluding perpetuities from the 

discussion~ it must be true that 

r(t) dt = I, (I) 

O 

since all principal must be repaid ultimately (ignoring the 

possibility of default). The function r(t) can be chosen 

to represent the distinctive rollover pattern of a particular 

type of asset (conventional mortgage, farm mortgage, bullet 

bond, sinking fund bond, etc.) or the rollover pattern of a 

portfolio of fixed-income instruments. Discrete rollover 

can be handled through the use of generalized functions 

(distributions). 

The following analysis examines a fund built up from 

the investment of external cash flow of density ~(t). 

Interest on invested funds is assumed to be payable contin- 

uously. All funds invested in the interval from t to t + dt 

earn interest at the force of interest ~(t). Such funds 

include not only ~(t), but also interest paid during the 

interval (t,t+dt) and any principal repayments during the 

interval. Let ~(t) represent the total density of invested 

funds. Then, 
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U~(t) = ~(t)  
t 

f 

+ ]~(u) r(t-u) du 

,, j<. j 
, J4(~ ,  g(., ~,- ,(,, du 

(2) 

The first term on the right-hand side is the density of ex- 

ternal funds, the second is the density of principal repay- 

ments fromprevious investments, and the third is the density 

of paid interest. Let ~(t) denote the value of the entire 

fund at time t. 

o 0 

Equation (2) is an inhomogeneous Volterra integral 

equation of the second kind; 

~(t) = ~(t)+ J~(t,u) ~(u) du, 

o 

with kernel 

~(t,u) 

(4) 

- , < , - . >  <,> 

I f  (2) could be solved e x p l i c i t l y  f o r  general  ~ ( t ) ,  ~ ( t ) ,  

and r ( t ) ,  then equat ion (3) would serve as the s t a r t i n g  

point in a stochastic treatment of ~(t). Specifically, 

~t), which might depend on mortality rates or other causes 

of decrement, could be represented by a stochastic process. 

Also, ~(t) could be represented by a stochastic process, 

as discussed in Panjer and Bellhouse. Unfortunately, apart 
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from a series solution, (2) cannot be solved in general.* 

Two special cases can be solved and produce well-known 

results. First, consider a constant force of interest ~. 

Then ~(t,u) is a function of t-u only, and Laplace trans- 

forms can be used to solve (2). The L~place transform of 

a function f(t) is defined as 

f(k) ~- = (t) e -kt dt . 

D 
(6) 

Qsing the convolution theorem for Laplace transforms, (2) 

and (3) may be written as 

~(k) = ~(k) + ~(k)~(k) + ~ ~(k)[I - r(k)J, (7) 
k 

*If rollover, paid interest, cash flow, and reinvestment 

occur only at discrete times, equation (2) can be solved 

in general by finding the "solving kernel" or "Green's 

function" of the integral equation. In the continuous 

form, the Green's function ~(t,u) satisfies 

~(t) = /o~(t,u) ~(U) du . 

The Green's function depends only on the investment pro- 

cess and the investment environment, that is, on rollover 

rates and interest rates only. I used this method in a 

paper titled "The Matching of Assets and Liabilities" to 

be published in TSA XXXII. In that paper the discrete 

form of the Green's function was represented by the matrix 



and 

" "  , 4 [  J (8) 

"2' 
Solving (7) for ~(k) snd then substituting the result 

into (8), we obtain 

(k) = 
k-J 

(9) 

Finally, inverting the Laplace transform of ~, we derive 

/ uj ~(t) = I I ek t 2 ~ "  ~ e - ~  eg(u)  d dk 

-z'~+ ~ (10) 

The constant ~ must be chosen so that r~>~. Changing the 

order of integration, we get 

~(t) = 24 k - ~  

Integration in the complex k plane is used to evaluate 

the inner integral in (11). For t~u, the contour is comp- 

leted to the right and the integral vanishes since the 

integrand is analytic everywhere to the right of the line 

Re k = ~. For t>u, the contour is completed to the left. 

Since the integrand has a simple pole at k = ~ on the int- 

erior of the contour, the value of the integral is 2~rl 

times the residue of the Integrand at k = ~. Thus, 

~(t) = j~(U) e ~(t-u) du . 
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I~ k Im k 

t<u t>u 

Re k . . . . .  " .  Re- k 
t 

Equation (12) is, of course, the familiar result. Notice 

also that ~(t) is independent of r(t), as it should be if 

interest rates are constant. 

The second special case occurs when all invested funds 

are continuously ~d completely rolled over and then entire- 

ly reinvested at the current rate ~(t). This is the ass~p- 

tion underlying the treatment of Panjer and Bellhouse and 

most other papers on the subject. To solve this speci~ 

case, we first solve the more general problem with r(t) = 

(I/to)e-t/to and then consider the limit to-~O. With this 

choice of r(t) the integral equation is solvable because 

the kernel is separable. Equation (2) becomes 

t 
e-t/t° ~ ~ ) 

~(t,t o) = ~(t) + ~(u,t o) + ~(u)t o e u/to du 
t o 

(13) 

~fferentisting (13) with respect to t yields 

; ( ) ~(t,t O ) ~ e-t/tot 2 / = ~ (u,t o) I + ~(u)t o eU/to du 

~t o o 

+ -  o ~ ( t , t  o)  1 * ~ ( t ) t  ° . 
t o  
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Dsing (13), the integral in the second term on the right- 

hand side of (14) can be expressed in terms of ~t,t o) 

and ~(t). Making that substitution into (14), we derive 

~t,t o) d~ ~(t) + ~(t) 4(t,t o) . 
~t : ~ + ~o 

(15) 

This is a first order linear differential equation for 

4(t,to)- 

The general solution of the inhomogeneou8 differential 

equation 

consists of a particular solution plus the general solution 

of the homogeneous equation. Suppose the initial condition 

(boundary value) is a specified value of ~0). Then, 

~(y)  = ~(o) e + x) e dx 

o 

Thus, for our problem, 

4 ( t , t o )  = ~ ( 0 ) e  ~s(w) dw 

t 

+ to/ e a.. 

a (16) 

Integrating the d~/du term by parts produces two "surface" 

terms: ~(t) and one that cancels the first term on the 

right-hand side of (16). Hence, 

t t 

i ~(u) e au . ~t,t o) = ~(t) + (u) 

O 
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Substituting (17) into (3), we finally arrive at 

f 
~( t , t  o) = 7i~(u) e -(t-u)/t° du 

t i~ 

+ (v) + 70 
0 i ° 

7 ~(w)dw e -(t-u)/tO du 

(18) 

The region of integration in the second term on the 

right-hand side of (18) is shown below. 

v 

u 

u=t 

As to-~'O , the factor e-(t-u)/to appearing in (18) becomes 

vsnishingly small in the entire region of integration out- 

side the strip t-6to~U~t for some fixed number E (independ- 

ent of to). In this strip, the above factor varies rapidly 

from 0 to I while the rest of the integrand is approxi- 

mately constant~ taking its value at u=t. Therefore, 

lira - (t-u)/t0 du lira ~(t,t o) = t) + (v)~(v) e d to--dO o to-*o 

t 

+ (v) e d lira I (t-u)/to du 
to-->O TO 0 

t 

= (V) e T dv . (19) 
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Equation (19) is the form that Panjer and Bellhouse use 

in their paper "Theory of Stochastic Mortality and Interest 

Rates." It is based on instantaneous rollover of all in- 

vested funds. 

It might be possible to solve equations (2) and (3) 

for specific forms of r(t) characteristic of bonds, mort- 

gages, and other flxed-income instruments. However, that 

is certainly not as satisfying as having a general theory. 

Perhaps the approach embodied in (2) and (3) is not the 

most useful way to incorporate the investment process into 

the "discounting" and "accumulating" calculations of act- 

uaries. I am interested in hearing the views of others 

on this subject. 

I. 
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