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The purpose of this note is to show how certain formulas of 

life contingencies can be derived aimost painlessly under the 

uniform di~trlbutiou of deaths assumption. 

Let the random variable T denote the remaining life time 

of someone aged x , and let K be the greatest integer less than 

or equal to T. For a life insured at x , T is the duration at 

death and K is the curtate duration at death. Then U = T - K 

is the fractional part of a year lived in the year of death. 

Furthermore, for m = i, 2, 3, ... the random variable U m is 

defined by the requirement that 

U = (j+l)/m , if j/m < U < (j+l)/m , 
m 

j = 0, i, ..., m-i . By convention, U = U . Net single premiums 

can be expressed as expected v@lues of functions of these random 

variables. For example, 

A = E-Iv K+I] 
X 

ax = E [a~ ] 

(I(m)A) x = E[ (K+Um)V T] 

o 
Of course, e 

X 
= E[T] , and e x = E [K] 
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In the following, the uniform distribution of deaths 

assumption will be made over each of the intervals (x, x+l) , 

(x+l, x+2}, etc. Then for k = 0, I, 2 ..... and 0 < u < 1 , 

Pr(K = k and U < u) = Pr(k < T < k + u) 

= kPx uqx+k = kPx qx+k " u = Pr(K = k) Pr(U < u) 

under this assumption. It follows that the random variable U 

is a) independent of the random variable K , and b) is uni- 

formly distributed between 0 and 1 . Furthermore, this 

implies that U m is also independent of K and has a discrete 

uniform distribution over the points i/m , 2/m , ... , 1 

(m) we start with the identity To derive the formula for A x , 

K+U I-U 
m m K+I 

v = (l+i) v 

Now by use of the independence of 

distribution of U , we obtain 
m 

U and K , and the uniform 
m 

I-U 
(i) A(m)x = El(l+i) m] Ax = s(m)~ Ax 

Next, we derive the formula for ~(m) 
x 

The general identity 

d ~i + A = d(m) ~(m) + A(m} 
X X X X 

(both sides are one) can be rearranged as 
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• .(m) d 1 (A (m) - A ) 
ax = ~ ax d(m) x x 

Under the uniform distribution of deaths assumption we may 

substitute (I) to get 

~(m) 
(2) ~(m) d ~ ~ -i 

x d(m) x d(m) x 

This formula has an appealing interpretation: ~(m) is less than 
x 

ax  f o r  two r e a s o n s ,  l o s s  o f  i n t e r e s t  and m i s s i n g  p a y m e n t s  i n  

the year of death. Substituting A = 1 - d ~ , we obtain the 
x x 

formula 

(m) d ) S~ m) - 1 
(3) ax : ~ S~ m ax d(m) ' 

which may be more useful for numerical evaluation. 

To demonstrate the simplicity of this approach, let us look 

at the daring act of calculating 

(4) 
K+U 

(m) (n) n] , 
(I A) x = E[(K+U m) v 

where one of the integers m, n is a multiple of the other. 

(Note that this includes the cases where one of them is 1 or 

, or where both are equal.) The starting point is now the 

identity 

K+U I-U I-U 
(K, Um) v n = (l+i) n(K+l)vK+l - (I-U m) (l+i) n vK+l 
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Taking expectations, under the uniform distribution of deaths 

assumption we see that 

(5) (i(m)A) (n) .(n) x = s T (IA) x - f(m,n) A x , 

where the factor 

(6) 
I-U 

f(m,n) = E[(I-U m) (l+i) n] 

is a function of only interest. Finding a closed form solution 

for f(m,n) is a problem of compound interest. For this purpose, 

observe that 

(7) f(m,n) = sl(~n) - g(m,n) , 

where 

(8) 
I-U 

g(m,n) = E[Um(l+i) n] 

Finally, let us distinguish two cases: 

Case l: If n is a multiple of m , 

(i(m)s) Cn)~.. i (m) (m) (m) 
g (m,n) -- ci r 

Case 2: If m is a multiple of n , observe that 

m-n 
E[Un-Um [ Un] = 2ran 

(No£e that in the special case n = 1 , this is the usual 
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Replacing U m by U n - (Un-U m) is (8), and taking the condi- 

tional expectation (given U ) first, we see that 
n 

(9) (n) ~, (n) m-n . (n) 
g(m,n) = (I o, T 2mn op 

Thus the final result is that 

(10a) f(m,n) = Sl~n) i(m) (m) (m) • (n) (I S)~ 
l 

in case i, and 

(10b) m-n ~(n) (n)~, (n) 
f(m,n) = (l+2-~-g) o p - (I o,~ 

in case 2. 

obtain the formula for (I(m)~)~ n) , which is To only 

meaningful if n is a multiple of m (case I), the easiest 

method is to start with the identity 

ill) • (n) + (i(m)A)x(n) (m) = d(n) (i(m)~j x 
ax 

and use the previous results (2) and (5). In the special case 

m = 1 , a more direct approach is possible, however. By inter- 

preting the standard increasing annuity as a series of deferred 

level annuities, we see that 

= ~(n) (12) (Ialx(n) ~ k E x  x + k  " 
k=O 
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From (2) we see that 

• .(n) d .. s~ n)-I 

ax+ k = ~ ax+k d(n) Ax+k 

We substitute this in (12) to obtain 

(n) I 
s T -- 

(n) _ d (I~) (n) (IA)x 
(Ia)x d(n) x d 

As formula (2), this formula separates the effect of n-thly 

payments into an interest and a mortality component. 
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