David C. Jesionowski

WHY ANOTHER MODEL?

Certainly one of the most difficult subject: for an actuarial student to comprohend is the stationary population. so prepare for examination questions concerning this perplexing topic, I studied chapter eight of Jordan and I read various T.S.A. articles and the subsequert discussions which followed each article. I benefited from reading all of the material; however, the material written by irl. Veit, Dr. INesbitt, and Nrs. Tino proved to be the most beneficial.

From the T.S.A. article written by lir. Veit, I learned how to apply the "in-and-out" method to solve a variety of stationary population probloms. Di. a Nesbitt's discussion of Mr. Veit's article revealed that "the total number of persons aged x or more at any time, is made up of infinitesimal survivorship groups, a typical one consisting of $l_{y} d y$ persons between ages y and $y+d y$ "1 and thi: led me to look one step lurther. Finally, Mrs. Tino's discusision of kir. Veit's article concerned the geometrical interpretation of the stationary population and provided insight into the reasons why the "in-and-out" method worked. Despite the fact that I had studied all of this material, I did not have a complete understanding of the stationary population. Because the time before the exam was getting short, 1T.S.A., 1965, XVI, ME. 24/4

I decided not to study the stationary population any further and I concentrated my efforts on the remaining topics.

In the course of my review of the stationary population material prior to the exam, I noticed on aspect of the present model (views depicted by figures $1 a$ and $1 b)^{2}$ which 1 could not justify.

2 Hodels 1 a and 14 are shown as fisures; 4 and $;$, respectively,
 not shown as such in firs. Tino's material, hats leetr added by the author. T.J.A.. 1965, KVI, Det. 256

The fact that I could not justify one aspect of the present model certainly does not indicate that there is an underlying mathematical fallacy. More likely, it is indicative of my mathematical maturity.

Before discussing the problen which I encountered, it is necessary to define spocific parts of the model and to note several properties. For purposes of our discussion, I would like to define axis t as the "time of study" axis, ard axis x as the "ages of entry into the study" axis. The properties of the model which should be noted are:
(1) $\triangle O W Q$ is an isocelcs rigiit triangle
(2) $\|O W\|=\|w Q\|<\|O Q\|$
(3) $\|O W\| \cdot \sqrt{2}=\|O Q\|=w \cdot \sqrt{2}$
(4) Above $\bar{\delta} w$, one would find an l_{x} curve with the height at point 0 being l_{0}^{x}
(5) If one integrates with respect to x from point 0 to point w, the area linder the l_{x} curve would be found to be 'To

With these definitions and properties in mind, let us examine the problem vihich I encountered when I attempted to use the present model to determine the total future lifetime of a croup of lives now age 0 . The total future lifetime of such a group is T_{0} and I felt that the area under the curve above vector s should thercfore be T_{0}. As shown in figure 2, if i integrated with respect to t (tine of study) over all values of x (ases of entry into the study). I would crose $\overline{C Q}$ in auch : manner as to obtain the correct area, 'fo . However, I could not justify the need to cover all values of x, in order to obtain the proper area.

Figure 2

Next, I attenpted to integrate (as I understand integration) over vector s. Initially I believed the area would be ' Γ_{0}. I later noted that $\|O w\|$ and $\|O Q\|$ were not equivalent and I was not able to understand how one could obtain identical areas beneath the curves above two line segments of different length.

The actual situation seemed far too complex; so, I simplified it by defining $s(x)$ as follows:

$$
s(x)=\left\{\begin{array}{ll}
1, & \text { for } 0 \leq x<w \\
0, & \text { for } x \geq w
\end{array}\right]
$$

In such a situation, every nember of the population survives to age w, the limiting ase Clearly, $l_{X}=l_{0}$ for $0 \leq x<w$. The area under this l_{x} curve from point 0 to point w, would be $w \cdot l_{0}$. However, if 1 integrated with respect to s from point O to point Q, I found the area to be $w \cdot l_{0} \cdot \sqrt{2}$.

Because of this enigma, I searched for a new model. I wanted a model in which line segments $\overline{O W}$ and $\overline{O Q}$ were of equal length and which could be used to solve any stationary population problen (including finding the total future lifetime of those now living between age: x and $x+t$, who die before age $x+t$. After several days of research, I found such a model.

Let us begin by exanininä the least complex situation and proceed in a logical marner to the overall model of the stationary population. Figure 3 illustrates the simplest situation the study of a group of lives now age x.

Figure 3

time of life time of study

One should immediately note the two horizontal axes. The axis labeled "time of life" measures time since the birth of each member of the group, while the axis labeled "time of study" measures time since the initialization of the study. I believe that, in reality, only onc axis exists - the time axis. The time at any point (ic. the value assigned to any point) is relative to the point from which one measures time. 3 tated more simply, the time value assigned to any point along the time axis depends upon the point in time which one defines to
be the origin.

Now let us define the areas which are labeled A and \bar{B} in figure 3 . Area a represents the total past lifetime of a group of lives currently (ic. time of study $=0$) ace x. Area B represents the total future lifetime of the same croup. of course, the sum of the two areas equals the total lifetime of a group of lives now ace x. It should be apparent that the following are true:

$$
\begin{aligned}
& \text { Area } A=x \cdot I_{x} \\
& \text { Area } D=\int_{x}^{W} 1_{y} d y, \text { where } y \text { is the "time of life" } \\
&=\int_{0}^{W} 1_{x+t} d t, \text { where } t \text { is the "time of study" } \\
&=P_{x} \\
& \text { Area }(A+13)=\pi \cdot I_{x}+T_{x}=F_{x}
\end{aligned}
$$

The integrals used to evaluate area B are quite correct; however, they are also quite deceiving. The integrals shown above give the impression that the future lifetime of a group of l_{x} lives
 Actually, the area is derived by summing horizontal lines, as lifetime of those $l_{x+t} \cdot \mu_{x+t}$ dit individuals now age x, who die upon attaining age $x+t$.

Figure 4 a

Figure 4b

From the foregoins; analysis and by carrying Dr. Nesbitt's viewpoint one step further, it follows that a group of lives now age x is composed of $l_{x+t} \cdot \mu_{x+t}$ dt individuals who survive exactly t years $(0 \leq t \leq w-x)$. Therefore, the total future lifetime of a group of l_{x} lives may be expressed as :

$$
\begin{aligned}
& \int_{0}^{w-x} t \cdot 1_{x+t} \mu_{x+t} d t= \\
& \left(-\left.t \cdot I_{x+t}\right|_{0} ^{w-x}-\int_{0}^{w-x} 1 \cdot-1 \cdot 1_{x+t} d t=\right. \\
& 0 \quad{ }_{0}^{+} \int_{x+t}^{w-x} l_{x+t} d t= \\
& \int_{x}^{w} l_{y} d y
\end{aligned}
$$

Perhaps if a student were introduced to the concept of future lifetime in the adove fashion, the student would more readily understand other stationary population problems dealing with future lifetime.

Let us now examine the result of partitionine areas A and \bar{i} of figure 3. Figure 5 provides us with a model for our study. Figure 5

time of life
time of study

Area E and the sum of areas F and G are two treas of major interest. Area E represents the total futuro lifetime of those lives now age x, who die before attaining age $x+s$. The sum of areas Fand G represente the total future lifetine of those individuals now age x, who survive to age $x+s$? Using figure 5 , a formula for aren E may easily be derived as follows :
(1) Arca $F=5^{-1} 1_{x+5}$
(2) Area $G=T_{x+s}$
(3) $\operatorname{Arca}(E+F+G)=T_{x}$
(4) Aren $E=T_{x}-T_{x+5}-3 \cdot I_{x+5}$

The identical area may be obtained by evaluatine $\int_{0}^{s} \operatorname{l}_{x+t} \mu_{x+t} d t$.
Before study ins a mroup of lives now age x and over, let us consider the problem of finding the futuve lifetime of those lives now age x, who die between t_{1} and t_{2} years in the future (between ages $x+t_{1}$ and $x+t_{2}$). From figurc 6 we can derive an appropriate formula for the shaded region.

$$
\begin{aligned}
\text { Area } & =\left(1_{x+t_{1}}-1_{x+t_{2}}\right) \cdot t_{1}+T_{x+t_{1}}-T_{x+t_{2}}-\left(t_{2}-t_{1}\right) \cdot 1_{x+t_{2}} \\
& =T_{x+t_{1}}-T_{x+t_{2}}+t_{1} \cdot 1_{x+t_{1}}-t_{2} \cdot 1_{x+t_{2}} \\
& =\left(T_{x+t_{1}}+t_{1} \cdot 1_{x+t_{1}}\right)-\left(T_{x+t_{2}}+t_{2} \cdot 1_{x+t_{2}}\right) \\
& =t_{1}^{H}{ }_{x}-t_{2}^{H} x \text { where }{ }_{s}^{H}=T_{x+s}+s \cdot l_{x+s}
\end{aligned}
$$

The same expression for the area would result if one evaluated $t_{1} \int_{t_{2}}^{t_{2}} 1_{x+t^{\prime}} \mu_{x+t} d t=\int_{x+t_{1}}^{x+t_{2}}(y-x) \cdot 1 y y^{\prime} \mu_{y}^{d} y$.

3 The sionificance of this area will become evident shortly in
this paper. this paper.

Pigure 6

The function ${ }_{s}{ }^{H}{ }_{x}$ is very useful. The value of $s^{i} x_{x}$ equals the sum of areas F and G in fisure 5, and represents the total future lifetime of those persons now age x, who survive s years (until age $x+s$). In addition, the function $s^{H} x$ may be used to determine the total future lifetime of a group of lives now age x (Area B of figure 3), and the total future lifetime of a group of lives now age x, who die before age $x+s$ (Area $卫$ of figure 5).

$$
\begin{aligned}
\text { Area } 3 & =0^{H} x-w-x^{H} x \\
& =\left(T T_{x+0}+0 \cdot 1_{x+0}\right)-\left(T_{w}+(w-x) \cdot 1_{w}\right) \\
& =T_{x} \\
\text { Area } A & =0^{H} x-s^{H} x \\
& =T_{x}-\left({ }^{H} x+s+s \cdot 1_{x+s}\right) \\
& =T_{x}-T_{x+s}-s \cdot 1_{x+s}
\end{aligned}
$$

In the begimnine, I believed that the present definition of $5^{H} \times$ rould be adequate; however, further study revealed that this was not so. i found it esscntial to refine the definition of the function as follows:

$$
f(x)-x^{H} x=T f(x)+(\Gamma(x)-x) \cdot l_{f(x)}
$$

In the nev: definition, $f(x)$ is a function of the present age of a group of lives and the difference, $f(\because)-x=t(x)$, yields the length of time that clapses before an individual age x attains age $f(x)$. In figure E on page 11, the variable t (time of study) would be labeled $t(x)$ and the variable y (time of life) would be labeled $f(x)$ under the new definition. The appropriateness of the new definition will becone appareat in the latter portion of this paper. Before continuing, it should be noted that, if $f(x)=x+5$, then $f(x)-x^{H} x=s^{H} x=T_{x+5}+s \cdot l_{x+s^{\circ}}$

Having a thorough understanding of the study of a group of lives now age x, let us now direct our attention toward the study of a group of lives now age x and over. At the initial tine of our study we would find l_{y} lives who are exactly are $y(x \leq y \leq w)$. Thus, above the "ages of entry into the study" axis, we vould find an l_{x} curve as shown in figure 7a. Also, we vould discover the identical l_{x} curve above the time uxis, as whown in figure $7 b$.

Pigure 7a

Fieure 7 b

?igures 7a and pb illustrate two attributes of a stationary population. rinst, thess figures disclose that the number of lives currently are a and over, cquals the total future lifetime of a group of livec no: age x. Secondly, they show that it is not necessary to cioerve a group of lives now age, x, lintil their deaths, in ordes to procure specific data on the group. In a otationary population, any dosired data on a group of l_{x} lives may on obtained by studying those lives currently age x and over.

In our next etep, let us exmine a cencral eroup of lives now ase $x+t$. Pisure 8 provides a model for our study. iny student

Pigure 8

is capable of dofining the designated aroas; so, will not define them. In my opinion it is important that the reader
notes four characteristics of this general Group of l_{x+t} lives:
(1) e yoars from now, l_{x+t+s} lives aue $x+t+s$
(2) will romain $w-(x+t)$ ycars from now, there will be $l_{w}=0$ survivors.
(3) t yaurs aco, those lives now ase $x+t$ were menber: of a goup of lives then age x
(4) : $\mathrm{i}+\mathrm{t}$ yours ago, the l_{x+t} lives now age $x+t$ were nembers of a group of lives age 0 (ic. the l_{x+t} lives now age $x+t$ were born)

Based upon the previous observations, we can note that all of the following statements concerning figure 9 are true:

(1)	111	live	above	line	. 1	are	ace		
(2)	All	live	above	line	3	are	age	-	
(3)	.ill	live	above	line	C	are	aso		+ t
(4)	All	live	above	line		are	age		$t+s$
(5)	All	live	above	line		are	age		

Ficure 9

The proof that tne past lifetime of a group of lives now age x and over, since attaining age x, is equivalent to the total future lifetime of the same group of lives necessitates the knowledge of the forementioned facts.

Another interesting set of properties which the model possesses may be discovered if one subdivides the total future lifetime of a group of lives ace x and over, as shown in figure 10.

Pigure 10

The sum of the area above regions \dot{A}, B, C, and D is equivalent to Y_{x}, the total future lifetine of a froup of lives now age x and over. Note that the sum of the area above regions A and B, as well as the sum of the area above recions i and D, equals Y_{x+t}. The area above resion is is readily seen to be $Y_{x+2 t}$. It follows that the areu above both region A and region) (iquals $Y_{x+t}-Y_{x+2 t}$. Finally, the area above region C must then be $Y_{x}-2 \cdot Y_{x+t}+Y_{x+2 t}$.
sefore applying the model to a specific problem, let us see how the model may be applied to a general stationay population problem. Let us use the model to determine the total future lifetime of those individuals now between the ages of x_{1} and x_{5}, who die within t ycars and between ages $f_{1}(y)$ and $f_{2}(y)$, where y represents the present age of a typical group of l_{y} lives. The region over which we must integrate is shown in figure 11.

Figure 11

Note that the region does not extend beyond the line $t(y)=0$, where $t(y)$ refers to the time of study. This is due to the fact that any person now living (ie. alive at "time of study" $=0$) can not possibly die in the past (time of study < 0). Alternatively, one may view this as an age restriction. No individual now age y can die at an age less than y. This restriction, although not
specifically mentioned, is found in some stationary population problems and the student should be aware of its existence.

In order to determine the total future lifetime of those who die in region hi, region in must be partitioned as depicted by figure 12. The area above region hay be obtained by summing the following integrals:

$$
\begin{aligned}
& \left.x_{1} \int^{x_{2}} f_{(y)-y^{H}}^{x_{3}}-f_{(y)}(y)-y_{y}\right) d y \\
& \left.{ }_{x_{2}} \int^{x_{3}(y)-y} \int^{x_{3}(y)-y^{H} y}-{ }_{2}^{H_{2}}\left(y_{2}\right)-y^{H} y\right) d y \text {, where } f_{3}(y)=y \\
& \left.{ }_{x_{3}} \int^{x_{4}} \int^{x_{5}} f(y)-y^{1 i} y-f_{4}(y)-y^{H} y\right) d y \text {, where } f_{4}^{\prime}(y)=y+t \\
& \left.+x_{4} \int^{x_{5}} \int^{x_{2}}(y)-y^{11} y-f_{4}(y)-y^{H} y\right) d y \\
& \left.=x_{1} \int^{x_{2}} f_{x_{3}}(y)-y^{H} y-f_{2}^{4}(y)-y^{H} y\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& { }_{x_{4}} \int^{4}\left({ }^{5}(y)-y^{h} y-t_{4}(y) y^{1 i} y\right) d y
\end{aligned}
$$

Figure 12

If ${ }^{1} f(y)$ is substituted for $f(y)-y^{11} y$, the number of lives dying within the region may be found. To derive the tutal lifetime of those who die, one may either substitute $F_{f(y)}=f(y) \cdot 1_{f(y)}+T{ }_{f(y)}{ }^{4}$ for $f(y)-y^{H} y$ or substitute F_{y} for I_{y} and G_{y} for ${ }^{T} y$ in the expression obtained for the number of lives dying. In addition, the total future lifetime lived in region by those individuals now between ages $:_{1}$ and x_{5}, may be found by substituting $T f(y)$ for $f(y)-y^{H} y^{\text {. }}$
In the majority of problems, $f(y)$ is a linear function of y. It is instructive to note that, if $f(y)=a \cdot y+b$, the following are true:
(1) $\frac{d}{d y} \mathrm{P}_{a y+b}=-a \cdot 1 a y+b$
(2) $\frac{d}{d y} Y_{a y+b}=-a \cdot T a y+b$
(3) $\begin{aligned} \frac{d}{d y}(a-1) y+b^{H} y= & -1 a y+b \cdot a-[(a-1) \cdot y+b] \cdot 1_{a y+b} \cdot \mu a y+b^{a} \\ & +(a-1) \cdot 1_{a y+b}\end{aligned}$
(1) $\int_{1}{ }_{a y+b} d y=\frac{-1}{a} \cdot T a y+b$
(5) $\int_{a y+b} d y=\frac{-1}{a} \cdot Y_{a y+b}$
(6) $\int_{(a-1) y+b^{1} y^{\prime}} d y=\frac{-(2 \cdot a-1)}{a^{2}} \cdot y_{d y+b}-\frac{(a \cdot y+b-y)}{a} \cdot T_{a y+b}$
(7) $\int_{a y+b} d y=\frac{-2}{a} \cdot Y_{a y+b}-\frac{(a \cdot y+b)}{a} \cdot T_{a y+b}$

4
Based upon the Grace-Nesbitt function $F_{x}=x \cdot I_{x}+T_{x}$.

If the coefficient of y in $f(y)$ is an element of the set $\{0,1\}$. the "in-and-out" method may be easily used to derive an expression for the number of people dying (and consequently their total lifetime) within a region whose borders are determined by $t(y)=f(y)-y=(a-1) \cdot y+b, a \in\{0,1\}$ and $b \in \mathcal{R}$. If $a \notin\{0,1\}$, the "in-and-out" method may not be applied.

Mr. Veit's "in-and-out" method is a valuable tool if one knows how and when to use it. In Mr. Veit's T.i.A. article, he demonstrated how one could use the method to determine the total past lifetime since age 20 , of a group of lives now between the ages of 30 and 65. In his paper, he obtained an expression for the net migration through the shaded area in figure 13 (shown as figure 4 in ir. Veit's article) and derived the desired result by substituting ${ }^{\prime}{ }_{x}$. for 1_{x} and Y_{x} for T_{x}.

Figure 13

In my model, the wrea which represents the total past lifetime since age 20 , of the satme group of lives, lies above region W in figure 14. If we view a typical age y, we would discover a rectangle of length $y-20$ and height l_{y} above region W. The area of the rectangle is,of course, $(y-20) \cdot 1_{y}$.

Figure 14

Recall from figure 9, that all lives along a line which passes through the (y, t) plane as line St_{c} in figure 14 , are age y. If one integrates with respect to time over ages 20 through age y, the sum of the weights applied to each group of l_{y} lives alons line segment \bar{L} vould be $y-20$. The resulting area beneath the curve above line segment $B C$ must be $(y-20) \cdot I_{y}$. Because $(y-20) \cdot I_{y}$ is equivalent to the past lifetime since age 20 of a group of individuals now age y, it follows that $\overline{\mathrm{BC}}$ is a projection of $\overline{\mathrm{AB}}$
o to future lifetime. If the past lifetime of every ace under study is projected onto the future lifetime in i similar manner, we would obtain region P in figure 15 . The area above region k equals the are above region W. A formula for the area above region R is $10 \cdot\left(T_{30}-T_{65}\right)+\left(Y_{30}-Y_{65}-35 \cdot T_{65}\right)$. Note that the net migration through the region is $10 \cdot 1_{30}+\left(\mathrm{T}_{30} \mathrm{~T}_{65}\right)-45 \cdot 1_{65}$ as Mr. Veit obtained using figure 13.

「igure 15

Based upon the preceding discuscion, it should now be evident that the area which Mr. veit utilizes to determine the total past lifetime since age 20, is a projection of the past lifetime
orto future lifetine as shown in figure 16.

Figure 16

From our discussion, it may appear that it necessary to project past lifetime onto future lifetime in order to solve problems involving past lifctime. however, tho arca above region in figure 14 can be derived by summing the area above the vertical lines shown in figure 17. This alternative approach may prove more valuable to students.

Figure 17

The final portion of this paper is devoted to the derivation, and geometrical rerification, of an expression for the total future lifetime of those individuals now between the ages of x and $x+t$, who die before age $x+t$. The area which we are attempting to determine is pictured in figure 18a. The area shown in figuro 13 a lies above the region laboled P in figure 18 b .

Figure 18a

Figure 18b

The number of individual:; who die within region P (the net migration thoue! \mid ri,ion) $i: ;$

$$
\int_{x}^{x+t}\left(1_{y}-1_{x+t}\right) d y=T_{x}-\stackrel{m}{x}_{x+t}-t \cdot 1_{\ddot{x}+t} .
$$

Coincidentally, the above capression is equivalent to the total future lifetine of those lives now age x who die before age $x+t$.

The total future lifetime of those who die in region P may be obtained in the following manner:

$$
\begin{aligned}
& =\int_{x^{x+t}}^{\left({ }_{0}^{\mathrm{HL}} y-x+t-y^{H} y\right) d y} \\
& =\int_{x}^{x+t}\left(T_{y+0}+0 \cdot 1_{y+0}\right)-\left(T_{x+t}+(: x+t-y) \cdot 1_{x+t}\right) d y \\
& =Y_{X}-Y_{x+t}-t \cdot T_{x+t}-\frac{t^{2}}{2} \cdot 1_{x+t} .
\end{aligned}
$$

Now let us confirm that the above formula is valid. The sum of the area above regions H, P, and Q in figure 18 b is Y_{X}. It should be obvious that the area above region in equals Y_{x+t}. The area above region Q is not as obvious. An expression for the area is

$$
\int_{x}^{x+t} T_{x+t} d y=t \cdot T_{x+t} \text {, where } y \text { refers to an "age of entry". }
$$

It follows that the total area above region P can be expressed as $Y_{x}-Y_{x+t}-t \cdot T_{x+t}$. However, we are not searching for an expression for the entire area above region P (shown in figure 19); we wish to determine a formula for the shaded region in figure 18 a .

Figure 19

If we subtract the volume of the weice with inicht l_{x+t} and with a base of $\frac{t^{2}}{2}$, we will obtain the volume of the shaded region of figure 18a. Therefore, the total future lifetime of those individuals now between age x and $x+t$, who die before age $x+t$ is indeed $Y_{x}-Y_{y+t}-t \cdot T_{y+t}-\frac{t^{2}}{2} \cdot 1_{x+t}$.

BIBLIOGRAPIFY

Veit, Kenneth P. Stationary Population hethods, Transactions of the Society of Mctuaries, 1905, ivI, 23j-13.

Nesbitt, Cecil J.; Iino, Paulette; et. al. , "Discussion of the Preceding Paper", Transactions of the Society of Actuaries.1965. \therefore Vi, 244-ú4

