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The prohler

This note is labeled actuarial because it deals extensively with
the force of interest, a concept which is characteristically of concern

to the actuarial community.

Muring the five vears which 1 have taught the theory of interest,
I have never been able to adequately addresé the tricky question inevi-
tably raised by a brighter-than-the-average student: "How do you explain
that the expression (| 4-,1)* is good for any real value of £?" The tra-
ditional definition of compound interest stipulates that the interest
earned by a fund during, let's say, a year is added to the principal at
the end of the year and earns interest thereafter. The formula (1 +_L5:
is trivially derived for integral values of X . However the definition is
mute on the way interest is earned during the year, so that the answer to

the above questicon is pure speculation.

1 have looked through many textbooks in search of an answer, but no
one has proved satisfactorv. Most do not even touch on the subject.
Kellison [3]. for one, savs: "Strictly speaking, the accumulation function
tor compound Interest has been defined onlv for integral values of X .
However, it 1s natural to assume that interest is accruing continuously
and, therefore, to extend the definition to non-integral values of b v
This solution is unsatisfactory because, even admitting that interest ac-

crues continuouslv (this not being stipulated in the definition), it does
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not necessarily follow that (144 ) 1is continuous, as we shall see.

The most widespread solution to the problem is to replace the giv-
en effective rate i.by an equivalent rate which is compounded with a
frequency that makes the time involved a whole number of periods, then
accumulating in the usual way with this new rate. Let us find, for ex-
ample, the compound amount of $1000 after 15 years 3 months at j( [ 6%.

The solution presented by Hummel and Seeback[]]is:

"Solution: The first step is to replaée the rate, }, = 6%,
by a rate compounded quarterly, since the time involved is
an integer when expressed as quarters. So let i.be the in-

terest rtate per quarter that is equivalent to 1% 6%. Then

(w*) {0 03) and (1+x)=(. oa)
Accumulating $1000 for 15 years 3 months at rate L gives
el
§ = 1000 (1+4)

Substituting for ( {4 A) its value from the preceding equation

gives

(9] 30"
S = looo[(l.OB)V'] = |ooo(\.03)0/z

So it appears that the compound interest formula holds

whether W is an integer or not".

Hummel and Seeback's reasoning leads logicallvy to the replacement of j_
by an equivalent rate of interest compounded continuously (the force of in-

terest, actuarially speaking) which would fit anv situation. This last
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approach hzs been utilized by Butcher and Nesbitt[l]. They first deri-
ve the two following expressions:

(2
74 4z

any= e m

. ~ § .
Ay

where (1) holds truc for any law of {nterest and any real value of N,
§- "

and where = A . Then: If now, for the continuous theory, we as-

sume that 8t= é , 4 constant, then ..."

-0_(“) = esM us_ing (1)

LS
= (l + ).) using (2)
.n
Expression (1) being good for any value of W\, ( 1+a) has been proved
continuous for M 2 O. An immediate question is: "Why should we assume

that 6: is a constant?"

Author's viewpoint

I believe, as do Butcher and Nesbitt (and many others), that a cons-
tant force of intvrest underlying the law of compound interest is the u-
nique solution to prove the continuity of (|+j,)£ . Rowever the fact
[s that a compound rate of interest does not imply necessarily a constant
force of interest. The present definition implies chat Qinm) = (|+L)h

tor tnteeral values of N\. As a corollarv, we have that the effective
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innual rzte of interest for a given year N, A, is constant and equal

:oJ._, for any integral values of M (N 21):

a(n) -~ aln-1)

aln-1)

A = (3)

- A
using the common definition of effective rate and Kellison's symbols.
Now let us examine what a constant annual effective rate of interest im-
olies on the underlying forge of interest. It does not imply much.

Replacing (1) in (3):

[ LR
Eaﬁr‘éx dt _ GEL 8: d+x

A = 4 = =)
An = A ol 4, dx

leading to n-
. e{h-q ét AI
1+ &

" I VO = congtant
and !n_. 62 dt = L\ ) (&)

i

All that is required of 8% is that it sum up to a constant when integrated

{rom one integral duration to the next one.

Actually a number of functions é’ may solve equation (4), a constant
Yeing obviously one of them. A cyclical function could also be used. Let

us, for exanple, consider the following function:

b, = 5l ammi
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The graph of 8‘ 1s as follows:

A
§x

i NI

' 2 . 3 ...,

3y
' 4

t

One can easily verify that the surface under any semi-circle is equal

to Ln.( H-j.) so that (4) holds true. We would then get the following

"elegant" formula for Q(n+ R), where his integral and R fractional:

!hq»“

Aofea) | sinrg) dr

aln +w)

‘ H . '
r’f{‘ ( eka..h%b_‘.llab-\'\-rt\dt) - e[:l:i:d.‘nwvxl
n h‘%‘—*:l[l - Cuﬁ((h+n).-|-,.)]

(l-a—ﬁu) . G

(R}

In summary, an effective rate of interest A does not necessarily imply
an equivalent constant force of interest 8 , which, in turn, would be ne-

cessary to prove that (1+ L) is true for all real values of % .
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Xellison's text states that it is normal to assume that interest ac-
crues continuously. Let us suppose that this also means that interest
accrucs at a constant continuous rate. Then Kellison would be fully jus-
tifivd in saving that (I+,§,\I is good for anv value of % (although it
would have been better to {nsert the concept of constant growth rate in
the basic definition). Where 1 disagree is when he proves later that ég
i{s constant under compound interest and uses the continuity of ( \-A—L).t
to prove it, which continuity is based on the constancy of ét! We thus
have arrived at my crucial point: the vicious circle trap. ( \+,L)z is
continuous {f and only if 6: is constant, but ét is constant {f and only

X
if (V4 i{s continuous since

g & o4,
2 T T oy

and a non-continuous function would not be differentiable. This vicious

(3)

circle suggests that it might be appropriate to insert in the definition

of compound interest the concept of a continuous and comnstant growth rate.

Some professors of finance, when questioned on this subject of the
continuity of (i+ L,)t , stated that a compound rate of interest does not
at all imply a constant force of interest. To be more explicit, $1000 in-
vested at 57 effective could earn $0.10 the first dav. $0.01 the second
dav, $0.25 the third dav, nothing the fourth dav, and so on (a day being
vonnidered a moment). The fmportant point, tuey sald, is that the interest

sumoup te Sh0 alter one vear,  But then, how can oone aft i, ooder such a

1
random scenario, that 1000 will have accurulated to SI000 (1.0 7 after 3
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months, unless by pure coincidence? This is impossible. If I extend the

reasoning of these professors, continuous compounding of interest at a

constant rate Is a special case of the basic compound interest theory.

Perhaps thev are right, but this has never been mentioned in any textbook.
. 4

Tf they are right, then the continuous expression (t«4-a ) is also a

special case and does not represent a general expression for compound in-

terest. My personal point of view is that we should modify the basic de-

finition.

Prorosed Definition

A modified definition could be as follows:

n .
A fund earns annual compound interest A. when it grows
continuously at a coustant rate 8 such that the effec-
(1]

tive rate of interest in any year is A .

From a teaching point of view or for those planning to write a
textbook, this definition means that the concept of effective rate, includ-
ing the force of interest (which is the infinitesimal effective rate es~
pressed on an annual basis) should be carefully analyzed at the outset.

The procedure to derive (I+.L )t could be summarized as follows:

Step 1

Derive the expression

L5, 4t
ain) = € o)
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frem the basic definition of 31’ i.e.,

6 ) ‘QQu%I (5)
x - alx)

which detinftton {8 pure reoasoning and applies to any law of {nterest,

Use the two basic concepts of the definition (constant S and constant
effective rate i )} to derive (6) and (7):

én
(4 (6)

: . _ e’-p

An = A

an)

)
O~
~
J
t
N

s 2 - |
leading to e(S = 4 . )
Step 3
Replace (7) in (6):
n

a) = (+ &) ¥Vn

The annual compounding of interest would be a corollary.

The proposed definition seems to differ greatly from the traditional
one; actually it does not so much since it merelv stipulates that interest

is compounded continuously at a constant rate S rather than beinc compounded
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vearlv at a constant rate i,. Moreover the proposed definition has three
advantapes.  First, it {s in line with the now-almost-universal practice
of banks of quoting their accounts’' earnings on the basis of two equi-
valent rates:  one compounded daily (close approximat lon to 8 ), the
other on a vearly hasts (;.). Scecond, the detinition makes compound in-
terest more consistent with simple interest from a teaching point of view.
Ilnder simple interest, the amount of interest earned at each moment is
constant; under compound interest, the effedtive rate of interest earned
at each moment is constant. Third, the definition helps to erase the im-
pression students acquire, from the traditional definition, that compound-
ing is a characteristic of compound interest only. Actually interest is
compounded under any law of interest, on an infinitesimal scale. This is
expressed in the following equation, which {s a rearrangement of (5):
ot +dt) = aly) « a@) S, dr
This reflects the fact that, for any law of interest, the interest earned
at each moment is credited to the principal {nstantaneously. Let us con-
T
but since @ ( t ) is contlnuously lncreasing [|¢. ’;A:] due to the com-~

sider the simple interest case: 6! is continuously decreasing [

pounding et fect, there Is an oflset such that the amount of interest

varned at each moment {s constant [_‘L dt]

The proposed definition is more academic than practical in the sense
that the financial world, authors of textbooks and students are all accus-

tomed to viewing compound interest basicallv as being compounded at the
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end of each vear. This is unquestionably a meaningful aspect but 1
nevertheless hope that the concept of constant continuous growth will
be added to the present definition., The wording could then be: "A
tund carns annual compound Interest whon the interest earned during o
vear s added to the principal at the end of the year so as to earn ad-

ditional interest and when the fund grows continuouslv at a constant

rate”.

This note will not change the mathematics of finance but it should,
however, modify some sections of finance textbooks dealing with conti-
nuous aspects. It should also avoid forever the embarrassment of answer-
ing the question: 'How do vou explain that the expression (i« L)x is’
good for any real value of £ ?"

A British author once said: 'Our most convinced answers are only

"

questions ... So let me conclude with a question: ''Should we consider
the continuous compouding of interest at a constant rate only as a special
case of the basic theory of coumpound interest, in which case ( (bldt
cannot be said to be the fundamental accumulation function of compound

<
intereat, or shouldv%odify the basic definition of compound interest?"

The reader knows my answer.
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