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1. Objectives 

I. Determine the extent to which Makeham's or Gompertz's Laws describe 

recent insurance and population mortality; investigate that Gompertz's 

Law holds quite closely between ages 30-90 [ 4 ]. 

II. Analyze how the constants in the two laws vary with respect to the 

factors: 

A. Sex 
B. Time 
C. Geographical Area 

III. Propose a simple extension to Makeham's Law to account for recent 

departures from the laws, related to difference in sex. 

2. Background 

Force of Mortality is defined to be, ux = - d !~9 1x = - lo~xs(x) 

where lx is the number of lives in a closed group, attaining age x, 

given an arbitrary number of births, lo , where s(x) = lx I lo is the 

probability that a new birth survives to age x. We will use a first 

order approximation to the force of mortality ux + \ = - log Px where 

Px = lx + 1 I lx is the probability that a life aged x survives one 

year to age x + 1. ux + \ ~ qx for small qx = 1 - px' the probability 

that a life aged x dies before attaining age x + 1. We will deal with 

lOOOux and lOOOqx. Makeham's law is defined to be: u = A + Bcx • 
X 

Gompertz's law, which preceded Makeham's, has A = 0 , i.e. ux = Bcx 
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In words, this means that the propensity to die grows geometrically with 

age, like compound interest at a rate of 7~ - 10% per year. The growth 

rate, A, was introduced by Makeham to account for deaths due to random, 

chance causes, such as accidents. 

The critical relation we use is 

(1) 1ogb (~x - A) = logbB + (logbc)x, for any base b 

This is a linear function in age x. When ~x - A is plotted on semi-log 

paper, the equation (1) indicates that the result is a straight line. 

When ~x is plotted on semi-log paper, for Makeham's law, the result 

is a curve lying above a straight line, asymptotic to a straight line as 

age increases, with the visual distances between the curve and the 

straight line diminishing with age. 

Figure 1 displays two such curves. The lower curve represents the 

large company experience for 1930-1940, anniversaries which was used as 

the basis for the 1941 CSO table [ 6]. Note that this experience is very 

closely a Gompertz or linear fit between the ages 30 and 90. The final 

Makeham rates for the 1941 CSO table are shown in the upper curve (with 

typical Makeham shape). Margins in 1941 CSO were added to the basic 

rates, which, when expressed as a percentage of the rates, decrease with 

age. (A constant percentage margin would be parallel to the experience 

rates on semi-log paper). 

Two methods were used in solving (1): graphical [ 2 ]; and least 

squares [ 1 ]. In the graphical method, B is read from the y intercept 

of the graph of (~x - A) on semi-log paper. The value of log10c is de

l termined as --~~-- where x1 and x2 are chosen so that log10 C~x 1 - A) = 
xl - x2 

10 log10 <~x2 - A). In least squares the dependent variable is 

Yx = log10 C~x - A) = e
0 

+ e
1
x + ex e0 + e1x is the predicted value of 
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the dependent variable and ex is the error or discrepancy. The least 

squares estimates of e0 and e1 are 

(2) el =x~a (yx - y)(x- x) /x~a(x - x)2 

(3) eo = Y- e1x , where x andy are sample means. 

The residuals are defined to be e = 
X 

y - eo - elx' and the residual 
X 

w • 
sum of squares, ESS = ! e ' is minimized with respect to e0 and e1 by x=a x 

using (2) and (3). for any value of Awe get a different ESS. We can 

vary A systematically and choose the one with minimal ESS as our least 

squares estimate of A, namely A. By reference to (1) we se that B = lOeO 

and c = 1061 • 

The results presented below are partially graphical and partially 

least squares on a computer (note is made of which). 
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3. Departures from Gompertz's Law based on sex 

We saw in Figure 1 that the 1930-40 experience followed Gompertz's 

Law quite closely between ages 30 and 90. However, when it came time to 

construct a new table for valuation purposes, based on 19SO-S4 experience, 

a significant departure from Gompertz's Law became evident. This can be 

seen in Figure 2. Curvature exists in the graph of the raw rates ( S 

centered around age 62. The rates from ages S0-80 are above a straight line. 

Similar curvature was retained in the 19S8 CSO table, based on 19SO-S4 

experience, and that table was not Makehamized because of the curvature. 

This can be seen in Figure 3. 

Since insurance company experience is based, predominantly, upon 

white male mortality, the question arises whether this departure is 

characteristic of male mortality. Figure 4 shows graphs of white male 

and female mortality from the 1969-71 U.S. Life tables ( 7 ]. The male 

mortality exhibits the characteristic curvature above a straight line, 

centered at age 62, whereas the female mortality exhibits an opposing cur

vature below a straight line centered at age 67. When male and female 

mortality is combined as in FigureS, Gompertz's Law holds except at age SO. 

Male and female mortality is seen to complement each other, with respect to 

Gompertz's Law. 

Figure 6 shows the graphs of mortality rates for the 196S-70 Ultimate 

Tables, which are recent tables of insurance experience. Again male mor

tality has the characteristic curvature above the straight line and female 

mortality has the chacteristic curvature below the straight line, both at 

ages S0-7S. However, there is additional curvature below age SO as well. 

Since the combined table, shown in Figure 7, has male and female experience 
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Figure 2 
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Figure 4 
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Figure 5 
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figure 6 
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Figure 7 
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combined in proportion to their respective amounts of experience, white 

male experience predominates, and the Gompertz fit is not so close as in 

the combined 1969-71 U.S. Life Table. 

Table 1 summarizes the determination of Gompertz constants for the 

data in Figures 1 - 7 by computer program. Table 2 compares determination 

of Makeham constants by computer program with actual, published results [6 ]. 

The results agree to three significant figures, which offers some con-

firmation of the computer algorithm used here. Similar results were obtained 

in [ J], where a similar algorithm was used. 

Table 1 

Determination of Gompertz Constants 

Mortality Table B c 

1930-40 Experience .13260 1.08934 
1950-54 Experience .05685 1.09788 
1958 cso .12065 1.08879 
1965-70 Ult, M & F .05532 1.09671 
1965-70 Ult. M .05902 1.09628 
1965-70 Ult. F .03000 1.10000 
1969-71 u.s. Life White lot .08217 1.09064 
1969-71 u.s. Life White M .11836 1.08885 
1969-71 u.s. Life White F .04595 1.09558 

Note: Above results determined by computer program 

Table 2 

Determination of Makeham Constants 

1941 cso A B c 

Actual 1.6050 .14471 1.08913 

Estimated 1.6100 .14405 1.08920 

~: Above results determined by computer program 
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4. Changes in Gompertz Constanta Across Time 

Assuming that Gompertz Law describes mortality data reasonably well 

between the ages of 30 and 90, the next question to answer is how do the 

constants change across time. In order to answer this question it is neces-

sary to analyze a homogenous body of data at various times. An ideal body 

of such data would be the large company experience for life insurance col-

lected by the Society of Actuaries on an ongoing basis. I chose the latter 

data because of its easy availability. The results of this analysis are 

shown in Table 3. The data are separated by duration from issue and sepa-

rated into three categories: 

(i) Policy Years 1 to 5 
(ii) Policy Years 6 to 15 

(iii) Policy Years 16 and over [9] 

In interpretting this data it is important to note that B and c do not 

change independently of each other. For example, if B increases from one 

time period to another, then c will probably decrease, and vice versa. In 

analyzing the first pair of columns, you will note that the changes are 

U - shaped. For B there is a decrease towards the middle with pronounced 

high points towards the ends. Fore, the opposite direction is evident: low 

points on the ends with high points toward the middle. In particular the 

values for 1970 to 75 seem especially suspicious, with pronounced changes from 

previous time periods. 

For the second and third pairs of columns a more easily explainable 

situation obtains. B decreases fairly smoothly over time while c is fairly 

stable. These changes can be seen as conforming to a general lowering of 

mortality rates in the general population over time. 
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Table 3 

Variation in Gompertz Constants over Time 

Large Company Insurance Experience 

Pol. Year 1-5 Pol. Year 6-15 Pol. Year 16 & over 

Year B c B c B c 

39-43 .071 1.088 .071 1.098 .081 1.096 
43-47 .048 1.093 .066 1.095 .102 1.090 
47-51 .048 1.093 • 066 1.093 .067 1.097 . 
51-55 .048 1.090 .ass 1.093 .054 1.098 
55-59 .041 1.093 .058 1.093 .oso 1.099 
59-64 .057 1.086 .045 1.096 .047 1.100 
64-70 .052 1.087 .058 1.091 .055 1.097 
70-75 .071 1.077 .044 1.095 .041 1.101 

Note: Above results determined graphically. 
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5. Changes in Gompertz Constants Across U.S. Metropolitan Areas 

Another criterion across which variation in the Gompertz constants 

can be measured is geographical area. The geographical unit chosen was the 

Standard Metropolitan Statistical Area used in the U.S. Census. I am in-

debted to the class members of Math 464/564 , the Graduation of Data class, 

in the spring quarter of 1978, at Ball State University, for analyzing 14 

such units as part of a class project. Their results, after some modification 

for obvious errors, are shown in Table 4. 

The method for these analyses was to pool the deaths in the SMSA for 

the years 1969, 70, and 71, as they appear in ~1)· These deaths, Dx' are 

available for decennial age groups, and become the numerators in age-specific 

mortality rates. The denominators are taken to be 3P + ~D , where P is 
X X X 

the population in the age group in the 1970 census [ 8 ) • The procedure is 

the same one as that used in forming the 1969-71 U.S. ~ife Tables [10) • 

The results in Table 4 are ordered by increasing B. Besides B and c, the 

complete expectation of life at age 30 is also listed as a single, indicative 

measure of mortality. Honolulu stands out with a low value of B and high 

expectation of life. This is consistent with Greville's findings for Hawaii 

in the 1969-71 U.S. Life Tables by State [10) 

The next group of metropolitan areas, starting with Evansville and 

ending with Erie, for~ a fairly consistent group of midwestern cities with 

similar Gompertz constant. The group from Gary/Hammond to Miami have 

higher levels of B and lower levels of c than the first group. New York 

City has a substantially higher value for B a fairly small value for c but 

a marked decrease in the expectation of life. In summary, data show de-

finite patterns of mortality within geographical area as well as marked 

differences between areas, as described by the Gompertz constants. It is 

perhaps surprising that Gompertz law still holds within each area despite 

the differences between areas. 
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Table 4 

Variation in Gompertz Constants 
Across U.S. Metropolitan Areas 

Discrepant 
g30 SMSA Ages* B log

10
c c 

Honolulu 40 46.7 .093 .0356 1.085 

Evansville none 44.1 .110 .0357 1.086 

Muncie none 44.7 .125 .0345 1.083 

Indianapolis none 44.0 .125 .0350 1.084 

Springfield, Ohio 90 42.6 .126 .0360 1.086 

Kansas City none 44.3 .13 .0345 1.083 

Erie, Penn. 80 42.6 .15 .0345 1.083 

Gary/Hammond 70,80 43.9 .17 .0333 1.079 

Portland, Maine none 41.1 .17 .0345 1.083 

Bakersfield, Calif. 40,50 42.6 .212 .0323 1.077 

Miami 40 43.6 .22 .0315 1.075 

New York City 60,70 38.3 .271 .0330 1.079 

Male none 35.7 .42 .0313 1.075 

Female 60,70 41.8 .135 .0357 1.086 

*Ages between 30 and 90 at which crude rates were not "close" to predicted 
rates, 
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6. An Extension to Makeham's Law 

The curv&ture about a straight line evident in Figu=es 2, 3, 4, 6, and 

7, which is related to differences in sex poses a problem which we would 

like to solve. This inspires a search for a more flexible parametric re-

presentation to account for this curvature. The extension to Makeham's 

law considered here is a simple one: instead of fitting a straight line 

to log10 (ux - A) as in equation ), we try fitting a higher degree 

curve, which was limited in the present study to the fourth degree. For 

any given value of A, equation ( then becomes: 

( 4 ) loglO (ux - A) = 90 + 91 x + 92x2 + 93x3 + 9,x• + Ex 

This equation can then be fitted using a linear least squares computer 

program, producing a vector of parameters ai and a vector residuals Ex 

For a given value of A the residual sum of squares, RSS(A) = ~ Ex , is 

minimal with respect to 9i Now by choosing the value of A through trial 

and error, a true least squares solution for 9i and A is obtained by choosing 

that value of A for which RSS(A) is minimal.* We call that minimal value, 

A , the resulting parameters, 9i , and the corresponding residuals, Ex 

Then by substituting these values into 4 ) and raising both sides of 

4 to a power of 10 we obtain the following: 

8 = lo9o c = 1061 ; d = 62 1 a1 ; 

f = e3 1 el ; 
, =a.; 61 

A 

: lOEX 1 + px 

Combining the results in ( 4 we obtain a generalization to Makeham's 

law. 

( 5 ) llx 
•• x(l + dx + fx2 + fix3 ) A+Bc (l+Px) 

*The results reported below use R2 , the square of the multiple correlation 
coefficient as the least squares criteria. I am indebted to Prof. Aaron 
Tenenbein for pointing out that RSS(A) is the correct criterion. 
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The Px constitute a relative error model for ~x- A which is desirable to 

prevent the estimation of negative values for A and ~x for small x. A 

final relative error norm for the entire procedure is max I Px I, the max

imum percentage error. 

In Table 5 we see this procedure applied to quinquennial data from the 1958 

CSO table. Four sets of results are presented, corresponding to linear, quad-

ratic, cubic and quartic fits. The cubic fit is to be preferred for 

several reasons: 

a) It is an improvement over the linear and 
quadratic fits, with smaller percentage errors. 

b) The quartic fit is only a slight improvement 
over the cubic. 

c) Furthermore the quartic fit produces a value 
for c that is less than one, and, therefore, 
cis no longer an aging parameter (rather, 
the opposite). 

We feel that the cubic fit in Table 5 is adequate with an acceptable level 

of percentage error. The residuals, labeled DU, seem to be random, without 

cyclic pattern. The percentage errors might even be better. (No normality 

tests wer~ applied to either of these residuals.) 

Although apparently successful with 1958 CSO data, the extension to 

Makeham's law was less successful with the 1965-70 Ultimate Table (not shown). 

One reason for this may have been the graduation of the table. Curve fitting 

to graduated data presents a problem because the graduation process itself may 

introduce cyclic patterns into the data with which the subsequent curve fitting 

must deal. It would seem preferable to fit a curve to ungraduated data to 

avoid such problems (not done with the 1965-70 Ultimate Table). 

268 



-19-

Table 5 

Extension to Makeham's Law 
1958 CSO Table 

Linear Fit 

R2 0.99896 

A 0.50000 B 0.09051 c 1.09274 

X 1.1 u lll.l 
%Error 

32.5 2.252 2.116 0.136 6.053 
37.5 2.804 3.018 -0.214 -7.637 
42.5 4.179 4.423 -0.245 -5.854 
47.5 6.380 6.613 -0.232 -3.642 
52.5 10.010 10.024 -0.014 -0.140 
57.5 15.662 15.339 0.323 2.064 
~.5 24.610 23.620 0.991 4.026 
67.5 38.782 36.522 2.261 5.829 
72.5 60.440 56.624 3.816 6.314 
77.5 89.596 87.944 1.652 1.844 
82.5 138.308 136.743 1.566 1.132 
87.5 204.727 212.774 -8.047 -3.931 
92.5 309.151 331.234 -22.084 -7.143 

Quadratic Fit 

R2 0.99964 

A 1.50000 B 0.00657 c 1.17580 

D -3.08328E-03 

X 
~ 

ll1J %Error ll 1.1 

32.5 2.252 2.248 0.004 0.187 
37.5 2.804 2.912 -0.108 -3.855 
42.5 4.179 4.099 0.080 1. 912 
47.5 6.380 6.165 0.215 3.374 
52.5 10.010 9.668 0.342 3.420 
57.5 15.662 15.448 0.214 1.369 
62.5 24.610 24.730 -0.120 -0.487 
67.5 38.782 39.237 -0.455 -1.172 
72.5 60.440 61.291 -0.851 -1.408 
77.5 89.596 93.899 -4.302 -4.802 
82.5 138.308 140.768 -2.459 -1.778 
87.5 204.727 206.234 -1.508 -0.736 
92.5 309.151 295.055 14.095 4.559 
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Table 5 (Continued) 

Extension to Makeham's Law 
1958 CSO Table 

Cubic Fit (Preferred) 

R2 0.99979 

A 1.50000 8 0.00255 c 1.23765 

D -6.50552E-03 F 2.16723E-05 

X \l \l llJJ ~6Error 

32.5 2.252 2.220 0.032 1.429 

37.5 2.804 2.912 -0.108 -3.856 
42.5 4.179 4.153 0.025 0.605 
47.5 6.380 6.296 0.084 1.318 
52.5 10.010 9.868 0.142 1.415 
57.5 15.662 15.642 0.020 0.126 
62.5 24.610 24.730 -0.120 -0.487 
67.5 38.782 38.717 0.065 0.167 
72.5 60.440 59.858 0.582 0.963 
77.5 89.596 91.372 -1.776 -1.982 
82.5 138.308 p7.902 0.407 0.294 
87.5 204.72'7 206.234 -1.508 -0.736 
92.5 309.151 306.462 2.689 0.870 

Quartic Fit 

R2 0.99992 

A 0.00000 8 65.93153 c 0.71962 

D -2.93845E-02 F 2.91771E-04 H -1.04785E-06 
A 

X \l \l llJJ %Error 

32.5 2.252 2.218 0.035 1.543 
37.5 2.804 2.902 -0.098 -3.498 
42.5 4.179 4.152 0.027 0.636 
47.5 6.380 6.300 0.081 1.266 
52.5 10.010 9.880 0.129 1.293 
57.5 15.662 15.699 -0.037 -0.233 
62.5 24.610 24.888 -0.277 -1.126 
67.5 38.782 38.981 -0.198 -0.511 
72.5 60.440 60.029 0.411 0.680 
77.5 89.596 90.935 -1.338 -1.493 
82.5 138.308 136.253 2.056 1.486 
87.5 204.727 204.411 0.612 0.299 
92.5 309.151 310.618 -1.467 -0.475 
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