A Proof of Lidstone's Theorem

Richard W. Ziock
University of Iowa

Symbols:
$\mathrm{P}=$ Net annual premium
$\mathbf{i}_{\mathbf{t}}=$ Interest rate
$t^{q}=$ Mortality rate
$C_{t}=t-$ th year contribution to surplus
$t^{V}=t-t h$ year reserve
Unprimed symbols are based on assumed rates.
Primed symbols are based on experience rates
Assumptions: Level benefits, level premiums.
Two factor contribution or dividend formula:

$$
\begin{align*}
& \left({ }_{t-1} v+p\right)\left(1+i_{t}\right)-q_{t}\left(1-{ }_{t} v\right)={ }_{t} v \tag{1}\\
& \left({ }_{t-1} v+p\right)\left(1+i_{t}\right)-q_{t}\left(1-{ }_{t} v\right)={ }_{t} v+c_{t} \tag{2}\\
& \left({ }_{t-1} v+P\right)\left(i_{t}^{1}-i_{t}\right)+\left(t_{t} q-t_{t} q^{\prime}\right)\left(1-{ }_{t} v\right)=c_{t} \tag{2}
\end{align*}
$$

If the policy dividend equals C_{t}, this is the unique method of paying dividends which leaves each year's reserve unchanged. This fact is clearly seen in formula (2) since there if C_{t} is paid out the ending reserve is $t V$.

Policy Comparisons:
Consider:
A: Non-Par plan based on i^{\prime} and q^{\prime}
B: Non-Par plan based on i and q
$B^{\prime}:$ Par plan with net premiums based on i and q, which experiences i^{\prime} and q^{\prime}, with two factor dividends paid. B' may be looked on
as a non-par level benefit, decreasing premium plan based on i^{\prime} and q^{\prime}.

Observations:

B' has larger reserves than A.
Note:(1) Both are non par and based on i^{\prime} and q^{\prime}.
(2) Decreasing premiums lead to larger reserves (e.g. single premiums)
B^{\prime} has same reserves as B because two factor dividends leave the reserves unchanged.

Thus B's reserves exceed A's or -
If $C_{t}=\left({ }_{t-1} V+P\right)\left(i_{t}^{\prime}-i_{t}\right)+\left({ }_{t} q-q^{\prime}\right)\left(1-t^{V}\right)$ always increases the reserves based on i and q exceed those based on i^{\prime} and q^{\prime} and vice-versa.

This heuristic proof seems to be a little easier for students than the one in the Jordan text.

[^0]

Benefits

[^0]: Reference: "A Simplified Illustration of Lidstone's Theorem," The Actuary, September 1969.

