```
A REVISION OF THE MINIMUM \(R_{z}\) THEOREM
```

Beda Clian
Department of Statistical \& Actuarial Sciences
The University of Western Ontario
London, Ontario, Canada N6A 5B9

In this note, we rearrange the statement and the proof of a theorem in Greville [1,p.13,pp.65-70]. The presentation appears to be more compact; the materials, however, are not new.

THECPEM: Among moving weighted average formulas of the form

$$
\begin{equation*}
u_{x}=\sum_{s=-n}^{n} a_{s} u^{\prime \prime} x+s \tag{1}
\end{equation*}
$$

and being exact for quadratics, there is a unique formula with minimum R_{z}. Its weights $\left\{\hat{a}_{s}\right\}$ are given by

$$
\begin{align*}
\hat{a}_{s} & =\left[(n+1)^{2}-s^{2}\right]\left[(n+2)^{2}-s^{2}\right] \cdots\left[(n+z)^{2}-s^{2}\right]\left(a+b s^{2}\right) \tag{2}\\
& =q(s)\left(a+b s^{2}\right)
\end{align*}
$$

where a and b are determined uniquely by

$$
\begin{align*}
& \sum_{s=-n}^{n} q(s)\left(a+b s^{2}\right)=1 \tag{3}\\
& \sum_{s=-n}^{n} q(s)\left(a+b s^{2}\right) s^{2}=0 . \tag{4}
\end{align*}
$$

Since $\left\{\hat{a}_{s}\right\}$ is symmetric, the formula is exact for cubics. It has minimum R_{z} among exact for quadratics formulas and consequently among exact for cubics formulas.

Proof:

The system (3) and (4) fails to have a unique solution if and only if the left hand sides of (3) and (4) are linearly dependent. That is, for some $\alpha \neq 0, \beta \neq 0$,

$$
\begin{aligned}
0 & =\underset{s=-n}{n} q(s)\left(a+b s^{2}\right)+\sum_{s=-n}^{n} q(s)\left(a+b s^{2}\right) s^{2} \\
& =\sum_{s=-n}^{n} q(s)\left(a+b s^{2}\right)\left(a+\beta s^{2}\right)
\end{aligned}
$$

for all a, b. With $a=\alpha, b=\beta$,

$$
\sum_{s=-n}^{n} q(s)\left(\alpha+\beta s^{2}\right)^{2}=0
$$

implies $\alpha=\beta=0$ since $q(s)>0$ for $|s| \leq n$. Thus the system (3) and (4) has a unique solution.

We adopt the convention that $a_{s}=0$ for $|s|>n$ and change the limits of summation to $-\infty$ and ∞. For any formula of the form (1) and being exact for quadratics, consider

$$
\begin{aligned}
\Sigma\left(\Delta^{z} a_{s}\right)^{2} & =\Sigma\left[\Delta^{z} \hat{a}_{s}+\Delta^{z}\left(a_{s}-\hat{a}_{s}\right)\right]^{2} \\
& =\Sigma\left(\Delta^{z} \hat{a}_{s}\right)^{2}+\Sigma\left(\Delta^{z}\left(a_{s}-\hat{a}_{s}\right)\right)^{2}+2 \Sigma \Delta^{z} a_{s} \cdot \Delta^{z}\left(a_{s}-\hat{a}_{s}\right)
\end{aligned}
$$

Apply summation by parts $[2,(6.14)] z$ times to obtain

$$
\begin{aligned}
\sum_{s=-\infty}^{\infty} & \Delta^{z} \hat{a}_{s} \Delta^{z}\left(a_{s}-\hat{a}_{s}\right) \\
& =\left\{\Delta^{z} \hat{a}_{s-1} \Delta^{z-1}\left(a_{s}-\hat{a}_{s}\right)\right\}_{-\infty}^{\infty}-\sum_{s=-\infty}^{\infty} \Delta^{z+1} \hat{a}_{s-1} \Delta^{z-1}\left(a_{s}-\hat{a}_{s}\right) \\
& =(-1)^{z} \sum_{s=-\infty}^{\infty}\left(\Delta^{\left.2 z_{\hat{a}_{s-z}}\right)\left(a_{s}-\hat{a}_{s}\right)}\right.
\end{aligned}
$$

This last quantity vanishes because $\operatorname{deg}\left(\Delta^{2 z_{\hat{a}}^{s-2}}, ~=2 z+2-2 z=2\right.$ and both $\left\{a_{s}\right\}$ and $\left\{\hat{a}_{s}\right\}$ come from exact for quadratics
formulas. Thus for $\left\{a_{s}\right\}$ to have minimum R_{z}, we must have $\Delta^{z}\left(a_{s}-\hat{a}_{s}\right)=0$ for all s. When $z=0$, this implies $a_{s}=\hat{a}_{s}$ for all s. When $z>0$, since $a_{s}=\hat{a}_{s}=0$ on $\pm(n+1), \pm(n+2), \cdots$ $\pm(n+z), a_{s}-\hat{a}_{s}$, a polynomial in s of degree at most $z-1$, must be identically zero. This shows that the minimum R_{z} formula is unique.

REFERENCES

1. Greville, T.N.E., Graduation, Society of Actuaries, Chicago, 1973.
2. Kellison, S.G., Fundamentals of Numerical Analysis , Irwin, Homewood, Illinois, 1974.
