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by 
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1. Introduction 

Last year (1979) saw the publication of the most recent complete national 

life tables for England and Wales and for Scotland. By courtesy of the 

U.K. Government Actuary at an early date the crude data underlying these 

tables were made available to the present author, who with Dr J C Eilbeck 

carried out extensive graduation experiments. This work led ultimately 

to a graduation by cubic splines, which was adopted for the officially 

published tables. The use of splines as an actuarial tool is perhaps 

not all that widespread and in §3 below we describe their application to 

graduation. In §4 we suggest a possible improvement of the methods used 

for the English Life Tables No. 13 and give some illustrations of our 

ideas. 

Earlier this year two new sets of tables, of considerable importance to 

the life insurance industry in the U.K., have been published by the 

Continuous Mortality Investigation Committee of the Institute and Faculty 

of Actuaries. These new tables relate to the mortality of immediate 

annuitants (under 'ordinary' business) and to that of pensioners (under 

'group' schemes) • It is expected that these new tables "dll be '·:ifely 

used for premium calculations and as valuation bases. Two particular 

features of these tables of special interest are the method of graduation 

and the procedure whereby allowance has been made for possible secular 

improvements in mortality. The graduation method adopted, a curve-fitting 

exercise based on maximum likelihood, is described in §6 below and the 

projection basis for improvement in mortality is considered in §7. 

These topics have been the subject of much recent discusaion by the 

actuarial profession in the U.K. and it is hoped that North Americ~• 

actuaries will find them of interest in relation to their own work. 

Although these new tables (the PA(90) for pensioners and a(90) for annuitants 

are the responsibility of the entire Continous Mortality Investigation 

Committee (of which the present author is a member), particular mention 

must be made o~ Mr A D Wilkie, whose contribution to the work involved 
was especially large. 
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2. Splines 

A spline is a piecewise polynomial function for which the maximum possible 

number of derivatives exist. More precisely, suppose that 

a= x
0 

< x 1 < •••• < xn < xn+ 1 =b. A splines of order k, defined on 

the interval [a,b) with 'internal knots' x1 , •••• , xn' is a function 

such that, if o ~ i ~ nand xi~ x ~ xi+1 ' then s(x) =pi {x) where pi (x) 

is a polynomial in x of degree k. tloreover the polynomials 

p
0

(x), p
1 

(x), •••• , pn(x) fit together in such a manner that sis 

differentiable (k-1) times throughout the interval (a 1 b). 

It is this last condition which distinguishes splines from other piecewise 

polynomial functions. Between knots, of course, the differentiability 

condition is automatically satisfied by each defining polynomial, so that 

the condition simply restricts the manner in which adjacent pol~T.omials 

are joined togeth€r at the knots. 

A simplistic (and not in practice the most efficient) way of constructL~g 

such a spline is as follows. The polynomial p
0

(x) of degree k on the 

interval [x
0

,x11 is defin~d by (k+1) parameters. When these parameters 

have been fixed, the polynorr.ial is determined. In particular the function 

va::.:~e c>.nd the values of the first (k-1) derivatives are defined at the 

internal knot x 1. The::;e must also be the value of p
1 

(x) and its first 

(k-1) derivatives at x
1

• If we now specify one further parameter for 

the polynomial p 1 (x) - say the value of its kth derivative at x
1 

- the 

function p 1 (x) is completely defined on the interval [ x
1
,x

2
). 1'/e may 

now repeat this argument, this time at the second internal knot x
2

• 

By this process we are able to 'extend' our spline to ~~e entire interval 

[ a,b) • In addition to the original (k+1) parameters used to defi!'!e the 

spline on [x
0

,x1), for 1 ~ i ~ n we are able to choose one further parameter 

to extend the spline to the interval [xi,xi+
1
). Thus, to define a spline 

of order k with n internal knots, a total of (n+k+1) parameters is needed. 

Piecewise pol~T.omial interpolation has been used by actuaries for many 

years (cf. King's method of osculatory interpolation). The application 

of splines to graduation and to data analysis has been studied by several 

authors - (references 1 and 2 are detailed works) , so that 

the English Life Tables No. 13 may be con!;idereC. an application o:' earlier 

ideas. 62 



Although in theory it is possible to work with splines of any order, 

for many practical applications cubic splines (i.e. splines of orner 3) 

are an excellent tool. Such functions are twice-differentiable and, 

if suitably defined, have minimum-curvature properties. A cubic spline 

over the interval [a,b) with n internal knots is defined by (n+4) 

parameters. In practice the spline may be defined by its values at the 

end points and at the internal knots (i.e. n+2 points in all) together 

with the values at the end points of either its first or second derivatives. 

If the second derivative is zero at each the end point, the function is 

called a 'natural' spline. 

3. The Use of Splines to Graduate Mortality Rates 

Suppose that b = a+m-1 and that we have m 'data' points (a,y(a)), 

(a+1,y(a+1)), •••• , (b,y(b)) •. suppose further that it is required to fit 

a cubic spline as closely as possible to the data. The spline is to have 

n specified internal knots x1, •.•• , xn. (We discuss how the knots may 

be chosen in §4 below.) As we have remarked above, the spline is 

defined by n+4 suitably chosen parameters. We write s(x;A 1,A2 , .... ,An+4 J 

to denote the value at x of the spline determined by the particular 

rarameter set A1,A 2 , •••• ,An+4
. (The parameters A1, •••• ,An+4 

need not be 

those described in §2 above. For example,in practice they will probably 

be the coefficients in a B-spline representation of our function. :see 

references 1 and 2.) The important point to note is that L~e value 

of s(x;A
1

,A 2 , ..•• ,An+4), although cubic in x, is a linear expression in 

A1,A2 , •••• ,An+4 . If w(a), .••• ,w(b) areagiven set of weights, we define 

the best-fitting spline to be that for which 

x=b 

x=a 
w(x). [ y(x) -s (x;A

1
, •••• ,An+

4
ll 2 ( 3. 1\ 

has a minimum value. Thus our best-fit spline is that which has a mininum 

weighted least square error. Since s(x;1. 1 , •••• ,An+~) is linear in 

A1, .... ,An+4 ,the expression (3.1) is a quadratic form in th~se pararr.eters 

and it is a relatively simple task to obtain the parameter set corresponding 

to the minimum value. 
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Thus, given the crude data points on the interval [a,b], the weights 

w(a), ••.• ,w(b), and a particular choice of internal knots, we are able 

to determine a unique cubic spline which yields the best fit according 

to the above definition. 

In mortality analysis the available data often consist of exposures to 

risk and observed numbers of deaths, from which crude death rates can be 

found at each age. Suppose that for x = a,a+l, •••• ,b the exposure to risk 

is denoted by Ex and the number of deaths by 8x. The quotient Sx/Ex is 

the crude death rate at age x, say ~· The 'true' death rate at age x is 

denoted by qx. The nur.~er of deaths arising from an exposure of Ex is 

regarded as a binomially distributed variable with mean Exqx and variance 

Ex~(l-~). If the exposures and number of deaths are sufficiently large, 

we may regard the corresponding standardised variable as having a 

normal distribution. On this basis, if we have independence at successive 

ages, the distribution of 

(3 .2) 

will be closely approximated by that of a x2 variable. 

This is well known and is repeated here solely for completeness. Several 

graduation methods are based on the minimisa~ion of the above expression. 

We may write 

where 

w(x) 

b 
l: 
a 

b 
l: w(x). (q'-c ) 2 

a x ·x 

E 
X 

(3. 3) 

(3.4) 
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Equation 3.3 shows that x2 may be regarded as a weighted sum of the squares 

of the differences between the crude and the true mortality rates. From 

this viewpoint, however, the weights w(x) depend on the true rates. 

For a given set of internal knots the graduated rates qx are taken to be 

the values of that cubic spline "'hich leads to the smallest possible 

value for x2 • In its simplest form- with then internal knot positions 

not determined directly by the data (see below) - a deduction of (n+4) 

must be made from the number of degrees of freedom in certain statistical 

tests, to allow for the number of parameters which have been fitted. 

One complication compared with our earlier discussion is to be found in 

the fact that the weights w(x) in 3.3 above themselves depend on the spline. 

We allow for this by an iterative method. An initial set of weights w(o) (x) 

is chosen somewhat arbitrarily and the best-fitting spline is found by 

minimising 3.3 above with w(x) = w(o) (x). The values of qx from this 

spline are then substituted in 3.4 to obtain a new set of weights, say 

w(l) (x). These new weights are then used in 3.3 (i.e. we put w(x) w(l) (x)) 

to find a revised best-fitting spline, from which yet another set of 

weights can be found by 3 •. 4. This iterative process may be continued 

until the values of successive splines are equal at ever-J age (to v1ithin 

any desired degree of accuracy), at which point the latest spline values 

are taken as the graduated rates. In practice only a few iterations 

(between 3 and 6 in most cases) are needed • 

4. A Possible Criterion for the Knot Positions 

Two important aspects of the spline graduation method are (i) the n~ber 

and (ii) the position of the internal knots. At present we have no 

definite way of determining the "best" number of knots to use. Practical 

experience shows that in some situations, if there are too few knots, then 

there is no possibility of obtaining an acceptable graduation. On the 

other hand, if the number of knots is excessive, the spline will adhere 

too closely to the crude rates and in fact there will be little graduation. 

This matter is perhaps worth further study. (See below for a possible line 

of attack .. ) In the construction of the English Life Tables the knots were 

chosen by dividing the entire age-range (2-95) into two subintervals 

(2-17 and 17-95 for males; 2-23 and 23-95 for females) -to allow for the 

pattern of mortality rates in the late teens and early twenties - and then 

by inserting equally-spaced knots over each of these subintervals 
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{cf. references 3 and 8) • This was a somewhat arbitrary procedure. 

In view of our remarks above, the following method of determining the 

knot positions may be considered a better (and, with hindsight, rather 

obvious!) approach. 

Suppose that n ~ 1 and that a< x 1 < •••• < xn <b. Let z<x1, ••.• ,xn) 

denote the minimum value of the expression 3.2 above, when the rates 

qx are given by a cubic spline on [a,b] with knots x 1, •••• ,xn. We now 

consider z(x
1

, •••• ,xn) as a function of the knot positions. The criterion 

which we suggest is that the knot positions themselves be chosen to 

minimise z(x
1

, •••• ,xn). Thus, the number of knots having been fixed as 

n, we define the graduated rates by the minimum-x2 n-knot cubic spline 

on [ a,b]. Theoretically it is not obvious that the criterion does in 

fact lead to a unique spline, but in practice this seems always to be the 

case - although in unusual circumstances it may be necessary to allow 

two or more of the knots to become coinc.ident (in which case there is a 

reduction in the number of derivatives which exist) . The choice of the 

knot positions thus becomes a problem of constrained minimisation - the 

constraints arising since the knots must lie within the interval [a,b] 

Since, for a given set ofknots the evaluation of z(x
1

, ..•• ,xn) is 

relatively simple, with a modern computer the solution of such a problem 

is not too formidable a task even when the number of knots is quite 

large. (The fact that the knots must be in ascending order causes little 

difficulty.) It should be noted that with this criterion we have (2n+4) 

parameters available to fit our curve - ~irst we have n parameters to choose for 

the knot positions and then a further in+4) parameters to determine the spline 

based on these knots. 

It is worth pointing out that a sensible choice of the knot positions can 

lead to a striking reduction in the number of knots required. The method 

dPscribed above for the English Life Table had 20 knots. Yet, for example, 

a smaller x2 can be obtained with only 12 knots, suitably chosen. 

As the nur.lber of knots increases, the minimum X2 decreases and this may 

provide some clue as to how many knots should be chosen. We may ask 

whether or not the addition of a further knot leads to a 'significant' 

reduction in the minimum x2 • However this is something which we have not 

yet had time to consider. 
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As an illustration of some of the above points, we consider the crude 

data underlying the English Life Table (No. 13)Males over the age range 

2 to 30 inclusive. (We have chosen this range of ages simply for purposes 

of illustration.) In figure 1 we show the crude death rates q~ and the 

best cubic spline fits with (i) 3 and (ii) 6 knots. The 3-knot spline has 

x2=92.95 with a repeated knot at x =16.62 and a further knot at x = 23.06. 

The 6-knot spline has X2 = 20.95 with knots at X= 5.67, 15.36, 15.38, 

16.38, 16.50 and 23.98. It is obvious from these figures that over the 

age range in question no satisfactory graduation can be obtained with only 

3 knots. 

5. Curve-fitting by formula 

As an alternative to the approach using splines, we may instead try to fit 

a specific mathematical formula to the crude mortality rates - or to some 

associated function. (The celebrated laws of Makeham and Gompertz are 

simple illustrations of this.) Much more complicated formulae may be used. 

For example, in the English Life Tables 11 and 12 the values of mx' the 

central death rate at age x, were graduated by a seven-parameter formula 

which combined logistic and normal curves in the form 

m 
X 

(5. 1) 

This somewhat unusual expression was chosen after close scrutiny of the 

pattern of the crude rates, the values of the coefficient a
1

, ..•.• ~7 being 

determined by a trial-and-error method (cf. reference 10). 

More generally we may suppose that the true death rates qx are given by 

an equation of the form 

qx = q(x;~) (5.2) 

where a is the vector of formula coefficients. Two criteria then come to 

mind as obvious possible ways of finding the 'best' choice for a. These are 

the methods of minimum x2 and maximum likelihood. The former approach 

has been discussed in §3 above. For our present purpose we reg~rd equation 

3. 2 as defining 67 
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and choose ~ to minimise this expression. In practice for a particular 

formula under consideration it is 

derivatives ~ (1.,; i E;;n 1 where n 

usually simple to calculate the partial 

OCti 
is the number of formula coefficients) 1 

so that using 3.2 above we can find not only 
av 2 

X2 (a) but also ~d for each 
- Cti 

value of i. With these partial derivatives and the power of a modern 

computer the minimisation problem can be solved rapidly in most circumstances. 

The maximum likelihood approach is particularly suited to the determination 

of formula coefficients when exposures and deaths are available as described 

in §3 above. The likelihood function to be maximised is 

x=brE J 8 E -8 X X X X 
L = II 

8 
. (q ) . (1-q ) • 

x=a, X X 
t X 

(5.4) 

Determining the maximum of L is e~ivalent to finding that of log L. Since 

log L ~ rog ([::]} • 9Xlog g,+<Ex-9x)log(l-q,J] 

and first term in this last expression does not depend on qxl the function 

to be maximised may be taken as 

b 
L*(~) ~ [ 6xlog qx+(Ex-6x)log(1-~l] (5.5) 

Again with any particular formula for qx it is generally easy to find the 

values of L*(~) and its partial derivatives with respect to the formula 

coefficients. This means that the vector ~which maximises L* can be 

found fairly quickly. 

Although the two methods are theoretically quite di$tinct 1 in practical terms 

the minimum x2 and maximum likelihood approaches ususally produce very 

similar graduations. Obviously one vital aspect of either method is the 

choice of the particular formula to be fitted to the crude rates. The 

age range over which the curve is being fitted is often an important 

consideration hera and the pattern of the crude rates must be studied 

carefully. 
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The maximum likelihood method was used for the annuitant and pensioner 

mortality tables referred to in §1 above. In our next section we discuss 

the application of this method to these tables, with reference to the 

particular formula used and some interesting consequences thereof. 

6. The basic formula of the PA(90) and a(90) tables 

These tables were based on the experience of life office pensioners under 

group schemes and that of immediate annuitants under ordinary business. 

For pensioners the data were available on both a 'lives' and 'amounts' 

basis, further subdivided according to whether or not retirement took 

place early (i.e. before normal retirement age) • 

Although in this paper we are not concerned with the detailed construction 

of these tables., it is perhaps worth pointing out that after much 

discussion the annuitants' table was produced with a one-year select period 

while that for the pensioners was an ultimate table based on the 'amounts' 

data for normal retirements. 

references 4, 5, 6, and 7 

and other matters.) 

(The interested reader should refer to 

for a very detailed account of these 

In view of the relatively short age range covered by the available data, 

it was felt that a simple formula might be found as a basis for the 

graduation. Consideration was given to the pattern of the c~ude rates 

and to various related functions. We show in figure 2 the values of 

log (~1 ~ -,1 according to the 'lives' data for male pensioners retiring at 
-qxJ 

or after the normal retirement ?.ge. (As before, q~ denotes the crude 

mortality rate at exact. age x. Because of the manner in which data are 

collected, the values of x are 50~, 511:, .•.. , 99'l· A..'"t asterisk is used 

to denote an age at which there were no deaths.) 

The points on the graph of figure 2 lie, roughly speaking, close to a 

straight line. Accordingly the graduation formula was based on the 

equation 

log [~~: ] 
X 

pol (xl (6. !) 

where pol(x)is alow order (and, in the final event, linear) polynomial 

in x. This last equation may be rewritten as 
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epol(x) 

1+epol (x) 

1- -----;--,~ 

1+epol(x) 

(6.2) 

(6. 3) 

cne convenient feature of the formula 6.2 is that, whatever the values 

of the coefficients occurring in pol(x), the graduated rates must necessarily 

lie between 0 and 1. For a more general formula this last condition 

may impose constraints upon the region in which the optimal vector ~ 

must lie and in certain circumstances such constraints might make the 

maximisation problem more difficult. 

Using the particular formula under consideration together with equations 

6.2 and 6.3 above, we may substitute in equation 5.5 to obtain in this 

case 

L*(~_) 

b 
L [ e (pol (x) -log{ 1 +epol (x)})- (E -8 ) log{ 1 +epol (X) }] 
a X X X 

from which it follows that 

~L* 
b [' ._.~l(x) J apol (x) 
l: 

ex- 1:epol(x) ~= a ()a. 
l. l. 

b 
i: ( e -E a ] afol (x) 
a X X "X au. 

l. 

If our formula has n coefficients, we may write 

pol (xl 

in which case 

i-1 
X ( 1 .;; i .;; n). 

70 

(6.4) 

(6. 5) 

(6.6) 

(6. 7) 



Since the maximum likelihood solution must have each of the partial 

d . . dL* 6 5 er~vat~ves oai equal to zero, by combining equations . and 6.7 we 

see that for this solution 

b i-1 r e .x 
a x 

(1..;i..;;;n). (6.8) 

This last equation (when i=1) shows that our solution will produce the 

same totals for the 'actual' and the 'expected' deaths. In addition each 

of the first (n-1) moments about the origin of the actual deaths will 

equal the corresponding moment of the expected deat.>ts. This equality of 

the moments is, of course, a consequence of the particular formula being 

used and does not hold in general for the maximum likelihood method. 

In fact for the graduations in question the polynomial pol(x) -in 6.1 

above - was expressed in terms of a transformed variable 

t 
x-70 
50 

anu the Chebyshev polynomials Ci(t)-(c0 (tl~1, c 1 (t)=t, c 2 (t)=2t2 -1, etc.) -

in the form 

n 

pol(x) = i~1 aici-1 (t) (6.9) 

The advantages of using such an expression lie in the fact that the values 

of the coefficients {ai} are a convenient order of magnitude and change 

only to a moderate extent asthe degree of the polynomial is increased. 

As an illustration of the above ideas we consider the best maximum like:ihood 

quadratic fit to the 'lives' data for male pensioners. In this example the 

formula used is 

( 

q 1 
log l-~ J (6. 10) 
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The values of the coefficients obtained by the maximum likelihood method 

described above are a 1 = -3.156928, a
2 

= 4.286465, and a
3 

= -0.187533. 

The graph of the curve given by the right hand side of equation 6.10 with 

these particular coefficients is shown in figure 2. 

It is perhaps of interest for purposes of comparison to consider the minimum 

X2 graduation by equation 6.10 above. For this method the values of the 

coefficients are a 1 = -3.101088, a 2 = 4.264721 and a 3 = -0.131656. The 

rates determined by these coefficients are, of course, very similar to 

those arising from the first graduation. This is borne out by the fact 

that while the minimum value of x2 is 77.32 the x2 value from the maximum 

likelihood graduation is only 77.51. 

Experiments were carried out not only with a quadratic expression for pol(x) 

but also with a linear and a cubic form. For each of the sets of 'normal' 

(i.e. not 'early') retirement data the linear formula produced graduations 

not significantly worse than the quadratic and for only one set of such 

data did the cubic lead to a significant improvement. In the final event 

the maximum likelihocd method with a linear polynomial was used for all 

graduations (cf. references 2 and 3 ) • This choice of formula has 

interesting consequences when allowance is made for possible improvements 

in mortality. This is discussed in the following section,where we give a 

brief description of the construction of the tables actually published. 

7. Allowance for possible improvement in mortality 

The data to which the above discussion relates are obtained from the 

experience of U.K. life offices over the four years 1967 to 1970. 

The basic graduated rates at age x refer on average to a life attaini~g 

age x in 1968. 

For tables likely to be widely used for premium and valuation purposes 

relating to annuity benefits it is obviously prudent to make some allowance 

for possible improvement in mortality with the passage of time. One 

well-known method, commonly used for projection of mortality rates, is 

to assui:Je that the rates decrea::e geor.1etrically with time, so t!o.at 

(r )t 
x · qx,o 
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where qx,t denotes the mortality rate at age x for a life attaining this 

age in calendar year t (measured from some suitable base year) and rx 

is the 'mortality improvement factor' at age x. For many practical purpuses 

it is often assumed that the improvement factors do not vary with age, 

in which case 

t 
r.q 

x,o 
(7 .2) 

In view of the graduation method used, for the pensioner and annuitant 

tables it was decided to allow for mortality improvement by the equation 

t 
r. (7. 3) 

(It should be noted that in general, for a given value of r, the projected 

rates qx,t arising from equation 7.3 above will be very close to those 

arising from equation 7. 2, The difference in the two methods of rrojection 

will be noticeable only at advanced ages, say where qx,o is ~ or mere.) 

As described in §6 above ~he graduated rates in the base year ( 1968) were 

obtained by the fo~ula 

( 
qx o l log --'- ~ a + :x 

1-q 1 2 
x,o ) 

flx-70 ) 
50 • 

Note that equation 7.3 above implies 

log 
( 

qx, t 1 _ 
--- J - t.log r + log 1-o 

""X. t 

By coobining our last two equations we obtain 

( 

qx t ) 
log --'- J' = 1-q x,t 

(
x-f-t-70 

0 1+0.2 50 

73 

(7.4) 

(7.5) 

('7 .6) 



where 

50 1 -log {-} 
a

2 
r (7. 7) 

The right-hand side of equation 7.6 is of course the value of 

[~-At,o ] leer 1 - -~-At,o 

Hence it is a consequence of the projection method used (i.e. equation 7. 3 

above) and the graduation formula that 

(7.8) 

where A is defined by equation 7.7 above. 

Thus the mortality rate at age x in year t equals the rate at age (x-At) 

in the base year. Loosely speaking, therefore, we may say that each 

year's advance in time corresponds to a deduction of ), from the age. 
1 Equivalently we may say that an advance of I years in time cc·rresponds 

to a deduction of 1 year from 

to replace rt in equation 7.3 

the age. (Of course it would be quite possible 

by rt, in which case A- ·in equations 7.7 
X 

and 7. 8 - would be changed to ;\ On practical grounds, however, it may 

be dif~icult to justify this refinement.) If the mortality rates of the 

base year are given by a mathematical formula or spline, the rates 

applicable to any future year can easily be found from equation 7.8. 

When the allowance for mortality improvement to be incorporated in the 

published tables was under consideration, careful attention was paid to 

past trends. Strictly speaking it follows from equation 7.7 that\ depends 

on both a 2 and r. Since, however, any method of projection can be at 

best a realistic ,,stimate of future trends, it is wrong to infer a greater 

degree of accuracy than in reality exists. As many factors as possible 
1 having been considered (cf. reference 5 ), it was decided to take A= 20 

for both male and female pensioners and annuitants. This choice of the 

same value of A for all the tables does in fact imply a slightly greater 

rate of improvement in mortality for females than for males. Roughly 

speaking, however, this value of /.. implies that mortality rates ·.,ill 

decrease by about 10% every 20 years. 
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In determining the mortality rates to be used for the new tables, the 

Continuous Mortality Investigation Committee considered (among other 

methods) using the mortality rates of one particular generation or those 

applicable in some specified future year. As far as the former method 

is concerned the following simple argument is of some interest. 

(n) 
Let qx denote the mortality rate at age x for a life born in calendar 

yearn (where the base year- in our case 1968- is taken as year 0). Since 

such a life will attain age x in calendar year n+x, using our earlier 

notation, we have 

Now suppose that the calendar year of birth N cohort is taken as a basis. 

Then 

(N+t) 
qx qx,x+N+t 

= qx-A(x+N+t) ,o 

(by 7. 8) above). 

Similarly it follows that 

qx-S,x-!3+N 

qx-8-:\ (x-S+N) ,o 

The right-hand sides of equations 7.9 and 7.10 are e~al if 

x-~. (x+N+t) = x-8-A (x-S+N) 

which is equivalent to 

f. l=I. t 
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Combining this last equation with equations 7.9 and 7.10 above we see 

that 

(N+t) (N) 
qx qx-JJt (7 .12) 

where 

A 
IJ = r:r (7 .13) 

(Note that, if A then IJ n-1 
.) 

n 

Equation 7.12 shows that- with the projection method described above­

the mortality rates for any particular generation can be obtained from 

those of some base generation by making an age deduction of IJ for each 

year by which the year of birth of the given cohort is later than the year 

of birth of the base cohort. Note also that equation 7.10 (with S 

suitably chosen) provides the link between the mortality rates of a 

particular generation and those applicable in the base calendar year. 

The mortality rates ~pen -which the new tables are based are in fact the 

projected rates applicable to the calendar year 1990. This is the 

reason for the tables being given the names PA(90) and a(90) - for 

Pensioners (based on Amounts data) and for annuitants. 

For practical reasons it was considered desirable to extend the tables 

to younger ages where the data are virtually non-existent. Extrapolation 

to the younger ages was carried out by a somewhat ad hoc method, 

based on the mortality of assured lives and that of the general population. 

Precise details are outwith the scope of the present paper and the 

interested reader should refer to reference 2 for a full account of 

the methods employed. 

It is obviously essential to know reasonably accurately the financial 

consequences for annuity and pensions business of different rates of 

improvement in mortality. At the time of construction of the new 

tables described above extensive experiments were carried out relating 

to possible alternative projection bases (cf. references 4 and 6). As these 

experiments may be of some general interest, we give below an abridged 

form of certain of our earlier results. 
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Although the basic projection equation 7.3 does not in fact imply a constant 

geometric rate of decrease in mortality at all ages, for practical purposes 

the projected values are virtually the same as those which arise from 

the assumption that male mortality rates decrease (at a constant annual 

rate) by about 8% every 20 years and those for females by about 10% over 

the same period. For purposes of illustration we give below figures 

which arise from the base year (1968) mortality rates on alternative 

assumptions of constant annual rates of decrease in mortality at all 

ages. We have assumed instead that every 20 years mortality rates will 

decrease by (i) 5% or (ii) 15%. In terms of equation 7.1 above these 

alternative models are given by (i) r
20 

= .95 or (ii) r
20 

= .85 (for 
X X 

all values of x) . 

Given the base year mortality rates, an annuity value applicable to any 

individual in the future depends on the age at entry, the calendar year 

of entry, the mortality improvement rate, and the rate of interest. 

(The annuity value must be calculated using the appropriate "generation" 

nortality table.) We con~ider entry dates from 1980 to 2000 at intervals 

of 5 years and interest rates of 0%, 5%, 10% and 15%. For single lives 

(male) and joint lives (male/female) we have calculated annuity values 

and expressed the results as an appropriate Eercentaoe adjustment to 

the values on the published table (which, for purposes of illustration 

we have taken as the PA(90)). A percentage addition means that the 

published table ~~derstates the 'true' annuity value and a percentage 

subtraction means that there is some safety margin in the tabulated value. 

The results of our calculations are given in tables 1,2 and 3 below. 

TABLE 1 

PA(90) Annuity Values (Single-life male Joint-life male and female) 

Interest a60 a65 a70 a65:60 a65:65 a65:60 a65:6~ 
rate p.a. 

0% 17.512 14.093 11 . 063 12.018 10.966 24.099 21. 04( 
5% 10.607 9. 149 7.669 8. 189 7.658 13.364 12. 39" 

10% 7.296 6.561 5.736 6.049 5.748 8.670 8. 30~ 
15% 5.463 5.039 4.528 4.734 4.545 6.247 6. 08, 
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TABLE 2 

Male Pensioners 

(Percentage addition to PA(90) values of specified function) 

Improvement 
basis 

r 20 0.95 
X 

(all x) 

r 20 0. 85 
X 

Call x) 

Function 
1980 

-1.3 
-1.1 
-0.9 
-0.8 

-1.8 
-1.5 
-1.2 
-1.1 

-2.3 
-1.9 
-1.6 
-1.4 

6.1 
3.1 
1.6 
1.0 

5.7 
3. 1 
1.8 
1. 2 

5.3 
3.2 
2.0 
1.4 

78 

Entry Date 

1985 

-0.7 
-0.7 
-0.6 
-0.5 

-1.1 
-1.0 
-0.9 
-0.8 

-1.5 
-1.3 
-1.2 
-1.0 

8.3 
4.4 
2.5 
1.6 

8.2 
4.8 
3.0 
2.0 

8.1 
5.2 
3.5 
2.5 

1990 

-o.o 
-0.3 
-0.3 
-0.3 

-0.4 
-0.5 
-0.5 
-0.5 

-0.7 
-0.7 
-0.7 
-0.7 

10.6 
5.7 
3.4 
2.2 

10.7 
6.4 
4. 1 
2.9 

10.9 
7.1 
5.0 
3.7 

1995 

0.6 
0.1 

-0.1 
-0.1 

0.4 
o.o 

-0.1 
-0.2 

0.1 
-0.1 
-0.2 
-0.3 

12.8 
7.0 
4.2 
2.8 

13.2 
8.0 
5.2 
3.7 

13.8 
9.1 
6.4 
4.9 

2000 

1.3 
0.5 
0.2 
0.1 

1.1 
0.5 
0.2 
0.1 

1.0 
0.5 
0.2 
0.1 

15.1 
8.3 
5.1 
3.4 

15.8 
9.6 
6.4 
4.5 

16.7 
11. 1 
7.9 
6.0 



TABLE 3 

Pensioners (Joint-life Functions : Male/Female) 

Percentage addition to PA(90) values of specified function 

Entry Date 
Improvement Function 
basis 1980 1985 1990 1995 2000 

a65:65 -2.9 -2. 1 -1.3 -0.6 0.2 
-2.3 -1.8 -1.2 -0.6 0.0 
-1.9 -1.5 -1.0 -0.6 -0.1 
-1.6 -1.3 -0.9 -0.6 -0.2 

a65:60 -2.5 -1.8 -1.0 -0.3 0.4 
-2.0 -1.5 -1.0 -0.4 0. 1 

20 -1.7 -1.3 -0.9 -0.4 0.0 
r = 0.95 -1.4 -1.1 -0.8 -0.4 -0.1 

X 

(all x) 
-1.4 -0.8 -0.3 0.3 0.9 a65:65 
-1.0 -0.6 -0.3 0.0 0.4 
-0.7 -0.5 -0.3 -0.1 0.1 
-0.5 -0.3 -0.2 -0.1 0.0 

a65:60 -1.1 -0.6 -0.1 0.4 0.9 
. -0.8 -0.5 -0.2 0.1 0.4 
-0.5 -0.3 -0.2 0.0 0. 1 
-0.3 -0.2 -0.2 -0.1 0.0 

r a65:65 4.1 6.6 9.2 11.9 14.6 
2.5 4.3 6.2 8.1 9.9 
1.6 3.0 4.4 5.8 7.2 
1.0 2.2 3.3 4.4 5.5 

a65:60 4.5 7.0 9.5 12. 1 14.7 
2.7 4.4 6.2 7.9 9.7 

20 I 1.7 3.0 4.3 5.5 6.8 
r = 0.85 1 1.1 2. 1 3. 1 4. 1 5. 1 

X 

(all x) 
5.6 7.6 9.6 11.6 13.6 a65:65 
2.8 3.9 4.9 6.0 7. 1 
1.4 2.0 2.6 3.2 3.8 
0.7 1.1 1.5 1.8 2.2 

a65:60 5.8 7.5 9.3 11.0 12.8 
2.6 3.5 4.4 5.3 6. 1 
1.2 1.7 2.2 2.6 3.0 
0.6 0.9 1.1 1.4 1.6 

79 



From these tables we see, for example, that if allowance is made for 

a 15% reduction in mortality rates every 20 years (i.e. r 20 = 0.8~), then 

for a life attaining age 70 in 1990 the necessary percentage addition 

to the PA(90) (males) value of a 70 will be 10.9, 7.1, 5.0 or 3.7 

depending on whether the annual interest rate is 0%, 5%, 10% or 15% 

respectively. On the same mortality improvement basis for the male/ 

female last survivor annuity a65 , 60 with entry in 1990 the necessary 

addition to the published PA(90) annuity value ranges from 9.3% to 1.1% 

as the annual interest rate varies from 0% to 15%. 

8. A spline graduation of the pensioners' data 

If the age range spanned by the available data is large, it may prove 

impossible to obtain a r~latively simple formula which provides a 

satisfactory curve-fitting tool. In such circumstances the use of splines 

with a few well-chosen knots may be the best method of graduation. 

On the other hand, if the age range is somewhat limited (as happens for 

the pensioner and annuitant data described above) a properly chosen 

formula may yield on excellent graduation. As we have discussed L, 

§6 above, this was the case for the PA(90) and a(90) tables, for which 

graduations were made by a formula with only 2 parameters. 

Nevertheless it is of interest to compare the various methods, particularly 

to ascertain whether or not the spline technique can lead to a better 

graduation. Accordingly we consider briefly again the 'lives' data 

for male pensioners (for which the crude rates of mortality are plotted 

in figure 2). Since the age range is only 50.5 to 99.5, before attempting 

a fit by a spline (a piecewise cubic), we graduate the rates by the 

minimum x2 method, using one cubic formula, valid over the entire age 

range. 

Initially, therefore, we consider an equation of the form 

(8. 1) 

where, as before, Cr denotes the rth order Chebyshev polynomial. (:·le 

use this particular expression - rather than a more obvious polynomial 

form- simply to be consistent with our earlier notation.) 
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It proved impossible to obtain an acceptable graduation with a linear 

or quadratic form of 8.1 above but a satisfactory fit was given by the 

cubic formula, for which a
1 

= 0.239697, a
2 

= 0.450892, a 3 = 0.190900, 

and a 4 = 0.083751. The value of x 2 for this graduation is 78.01. 

(Recall that the minimum-x2 two-parameter fit by equation 6.2 above 

gave X2 = 77.32, while the corresponding maximum likelihood fit had 

X2 = 77.51.) Given that our cubic has 4 parameters and does not produce 

a smaller X2 value than either of these earlier formulae, we conclude 

that a simple cubic is not an especially good graduation method in this 

case. 

Finally we consider, as an alternative to the simple cubic, a cubic 

spline graduation with one internal knot. Using the criterion suggested 

in §4 above, we find the optimal knot position to be x 1 = i3.77. Not 

surprisingly, when the pattern of the crude rates is examined, this 

knot position is close to the mid-point of the age interval. For this 

one-knot spline graduation the value of x2 is 74.56 - a deduction of 

5.45 from the value given by the simple cubic. This reduction in X2 

is not particularly significant and close examination of the detailed 

graduations shows that for the data in question the spline graduation 

is really no better than that by the single cubic formula. A graph 

of the spline with one knot is given in figure 3. 

The above remarks simply confirm that the most opportune use of a spline 

graduation may be when the age range is grea.t or \\'hen the data are in 

some sense unusual - in either of which situations it may prove impossible 

to find a reasonably simple graduation formula. 

We hope that the above discussion, although basically simple, will be 

of some general interest. 

It is a pleasure to acknowledge the financial support of the 

Canadian Life Insurance Association in relation to the presentation 

of this paper at the 1980 University of British Columbla Actuarial 

Research Conference. 
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