ON THE DIFFERENCE BETWEEN BALDUCCI AND U.D.D.
Dr. Murray Silver, A.S.A.
Department of Insurance and Risk
Temple University
Philadelphia, PA 19122
The selection of a law of mortality is fundamental to mortality table construction. Crucial to this choice, is the fact that for most ages x, the difference between the values of $1-\mathrm{t} \mathrm{q}_{\mathrm{x}+\mathrm{t}}$ for $0 \leq \mathrm{t} \leq 1$ under the various assumptions is negligible. Unfortunately, the standard texts do not treat this point fully. In [1], page 190, it is pointed out that the U.D.D. curve is the chord of the Balducci curve for $0 \leq t \leq 1$ and therefore, the two curves should reasonably close to each other. In [2], page 16 , this problem is explicitly discussed, but the resolution consists some numerical examples in the exercises of Chapter 1 and a numerical example in the introduction to Chapter 2. The purpose of this note is to give an inequality which is true for all $t(0 \leq t \leq 1)$ and x. Further relations between U.D.D. and Balducci are developed and discussed. Theorem 1: $1-t_{x+t}^{Q_{x+D}}-1-t_{x+t}^{q^{B a l d u c c i}} \leq q_{x}^{2}$ for all $0 \leq t \leq 1$ and all x. Proof: $\quad 1-t^{q_{x+t}} \quad=\frac{(1-t) \cdot q_{x}}{1-t \cdot q_{x}}=\frac{1-t q^{\text {Balducci }}}{1-t \cdot q_{x}}$

Thus, $1-t^{q^{\text {U.D.D.D. }}}-1-t^{q_{x+t}^{B a l d u c c i}}=t \cdot q_{x} \cdot 1-t^{q}{ }_{x+t}^{U . D . D .} \leq t \cdot q_{x}^{2} \leq q_{x}^{2}$.
This inequality is sufficient for many pedagogical purposes; the next theorem sharpens this inequality and lays the foundation for some related results.

Remark: Roughly, for most of the life table $\sqrt{p_{x}} \doteq 1$ and the upper bound approaches $\frac{1}{4} \cdot q_{x}^{2}$.

Proof: Let $\lambda=\ell_{x+t}^{\text {U.0.D. }}-\ell_{x+t}^{\text {Balducci }}=\ell_{x}-t \cdot d_{x}-\frac{\ell_{x} \ell^{2}+1}{\ell_{x+1}+t \cdot d_{x}}$
Then, $\frac{d \lambda}{d t}=0=-d_{x}+\frac{\ell^{\cdot} \cdot \ell x+1 \cdot \frac{d}{x}}{\left(\ell_{x+1}+T \cdot d_{x}\right)^{2}}$, where $T=t_{\text {MAX }}$.

$$
\begin{equation*}
\left(\ell_{x+1}+T \cdot d_{x}\right)^{2}=\ell_{x} \cdot \ell_{x+1} \tag{1}
\end{equation*}
$$

and, $T=\frac{-\ell x+1+\sqrt{\ell x^{\ell} x+1}}{d_{x}}$
Insert equations (1) and (2) into the equation for λ :
$\lambda_{\text {MAX }}=\ell_{x}+\ell_{x+1}-2 \sqrt{\ell_{x}^{\ell} x+1}=\left(\sqrt{\ell_{x}}-\sqrt{\ell_{x+1}}\right)^{2}$
Hence, $\lambda \leq\left(\sqrt{\ell_{x}}-\sqrt{\ell_{x+1}}\right)^{2}=\ell_{x}\left(1-\sqrt{P_{x}}\right)^{2}=\frac{\ell_{x} q_{x}^{2}}{\left(1+\sqrt{p_{x}}\right)^{2}}$
Thus, $\ell_{x+t}^{\text {U.D.D. }}-\ell_{x+t}^{\text {Balducci }} \leq \frac{\ell_{x} q_{x}^{2}}{\left(1+\sqrt{\left.P_{x}\right)^{2}}\right.}$
or $t^{q_{x}}$ U.D.D. $-t^{q_{x}^{B a l d u c c i}} \leq \frac{q_{x}^{2}}{\left(1+\sqrt{p_{x}}\right)^{2}}$
Since this result is true for all t in the interval $(0,1)$,
$1-t^{q_{x}^{U . D . D . ~}-1-t^{q}}{ }_{x}^{B a 1 d u c c i} \leq \frac{q_{x}^{2}}{\left(1+\sqrt{p_{x}}\right)^{2}}$

But $1-t^{q_{x}^{U . O . D . ~}}=1-t^{q_{x+t}^{B a l d u c c i}}$ and $1-t^{q_{x}^{B a l d u c c i}}=1-t^{q_{x+t}^{U .0 . D .}}$; hence,
$1-t^{q_{x+t}^{B a l d u c c i}}-1-t^{q} \frac{\text { U.D.D. }}{1} \leq \frac{q_{x}^{2}}{\left(1+\sqrt{P_{x}}\right)^{2}}$.
q.e.d.

The proof of theorem 2 yields several auxillary results which give addel insight into the difference between the $e_{x+t}^{U . D . D . ~ a n d ~} e_{x+t}^{B a l d u c c i}$ curves. Theorem 3: $e_{x+t}^{\text {U.D.D. }}-\ell_{x+t}^{\text {Balducci }} \leq\left(\sqrt{l_{x}}-\sqrt{{ }^{l}{ }_{x+1}}\right)^{2}$ and the maximum difference is actually attained at $\mathrm{t}=\mathrm{T}$.

Froof: equation 3

Theorem 4: For fixed $\ell_{x}, 0<T<\frac{1}{2}$ and T is a strictly decreasing function of d_{x} Proof: Apply the classical arithmetic-geometric inequality to equation (2):

$$
\frac{-\ell_{x+1}+\frac{\ell_{x}+\ell_{x+1}}{2}}{d_{x}}=\frac{1}{2}
$$

Further, from the classical arithmetic-geometric inequality, it follows that T is a strictly increasing function of ℓ_{x+1} and therefore, a strictly decreasing function of d_{x}.
q.e.d.

REFERENCES
[1] Gershenson, H. Measurement of Mortality Society of Actuaries 1961
[2] Batten, R. W. Mortality Table Construction Prentice Hall 1978

