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Abstract. This work represents two related but distinctly different pur-
poses. The first is to incorporate phase transitions into a copula frame-
work. Phase transitions are a concept common to statistical physics
and probability theory in which a phenomenological behavior changes
abruptly and often, but not always, as the result of a parametric change.
The second purpose is to calculate the probability of defaulting in the
context of a portfolio of correlated mortgages when a contagion effect ex-
ists. Understanding and measuring the effects that contagion has on the
probability of defaulting, for both single assets and portfolios of assets,
are crucial to CDO markets.

This research report has been conducted under contract with the Society
of Actuaries ( c©Society of Actuaries, 2008).

1 Introduction

Although the mortgage crisis of 2007-08 was well in progress before
this work begun, and these events are nearly perfect for illustrating
the principles that underlie phase transitions, the methods are not
specific to these events. Phase transitions are useful for analyzing
the problem of correlated defaults that are undergoing contagion.

There are several ways that the concept of phase transitions may be
introduced, and this paper aims to introduce one that we believe will
be useful to practitioners. The author tries to take a very pragmatic
viewpoint: assume that the mortgage crisis had not yet occurred and
that one were trying to compute probabilities of mortgages default-
ing. The problem of correlated defaulting is fundamental to pricing
of security derivatives backed by mortgages.

A general framework for correlated defaulting for collateralized debt
obligations (CDOs) was expounded upon by David Li (see [1]) in his
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paper On Default Correlation: A Copula Function Approach. One of
the most important attributes of this copula approach to modeling
correlated defaulting is that one can compute in a practical manner
from the approach Li put forth. Li’s original paper concerned CDOs
constructed from corporate loans and not mortgages, and although
there is nothing specific about the method that would limit its use
to only corporate loans, one should not think that residential mort-
gages and corporate loans are equivalent, but they are not dissimilar
either. Whether one is concerned with corporate loans or residential
mortgages, the use of optimistic inputs into the method will yield
optimistic predictions.

To be specific, Li’s method requires two inputs

1. The probability of default for individual assets.
2. The correlation between assets.

Correlation between assets is a complicated matter, because the cor-
relations between assets are not static.

The phase transition behavior that will be introduced is basically the
infectious/contagion spread throughout markets. If the contagion is
small and limited in scope, then the asset pool is in a particularly
good phase. If the contagion is relatively large, then the phase is
considered to be in the bad phase. For this setting, we consider only
two phases: good and bad. It may prove that bad and horrific would
be more appropriate names and also, more than two phases might
be appropriate.

Rather than producing an a priori estimate of such phase transitions,
we consider the problem of determining whether a phase transition
(or contagion) is occurring and how much lead time one might have
before the contagion’s effect becomes wide-spread.

Consider the following scenario concerning a market for which a
bubble has formed. As the bubble is forming there is opportunity
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for profit, but all bubbles break and while it is expanding it is quite
likely that one does not have all the data required to correctly pre-
dict when the bubble will reach a breaking point or when it will stop
expanding, reaching an inflection point. Risk managers may need
to proceed even in the advent of risk that may in all actuality still
be ill-posed and extreme. Ill-posed does not refer to the inherent
randomness associated with risk, but rather that models are never
complete and even when they are sufficient (and hopefully useful),
the model inputs need to be correctly specified. If one has taken a
completely indefensible position and the required inputs to a model
are lacking, then although a well-posed model may be completely
defendable, the real life problem may still be ill-posed. One may ar-
gue that all real world problems are never and will never be truly
well-posed and in this regard, the real world works on plausible ar-
guments and not on proofs. The use of overly optimistic inputs will
never support plausibility.

Furthermore and on a different chain of thought, an a priori model
for a copula phase transition could be well-posed, but may be of
limited use as a quantitative model, because, in part, its sensitivity
to initial conditions may render such a model difficult to use and
also lead to a false sense of security. The effort is still potentially
useful because the scenarios generated may be instructive.

For this reason, our work has focused on quantitative estimates to
measure the degree to which a priori assumptions/inputs are not be-
ing realized and the degree to which a portfolio of assets is defaulting
faster than expected, whether due to contagion or overly optimistic
choices for correlation or individual asset default probabilities.

2 Key inputs to the copula approach

We begin by summarizing David Li’s copula approach to correlated
defaulting. There is nothing particular that requires that the copula
be a Gaussian copula, but for concreteness we will use the Gaussian
copula.
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2.1 Copulas

The use of copulas in statistics is an ansatz method that postulates
the functional form that a multivariate distribution shall have. The
copula is specifically a multi-dimensional function C : [0, 1]n → [0, 1],
with the following properties:

– C(u) = 0, if u ∈ [0, 1]n has at least one component equal to 0.
– C(u) = ui, if u ∈ [0, 1]n has every component equal to 1 except

the ith component that equals ui.

Suppose that τA and τB are random variables for the default times
of assets A and B, respectively with the probability distributions
P (τA < t) and P (τB < t). The copula (Gaussian) ansatz states that
the joint distribution for both defaulting is given by

P (τA < t, τB < t) = Φ2(Φ
−1(P (τA < t)), Φ−1(P (τB < t)), ρAB).

The function Φ2 is the bivariate normal distribution with mean 0
and covariance ρAB. The function Φ−1 is the inverse of the normal
distribution with mean 0 and variance 1.

There are two main components to Li’s approach to correlated de-
faulting. In the context of mortgages, the probability that a single
mortgage/asset defaults is needed and additionally, the correlation
between mortgages is needed. One can easily imagine the proba-
bility of a mortgage defaulting depending on several parameters.
Originally, this work had hoped for data that might be data mined
to evolve such a notion of dependency for default time as well as
correlation between assets, but the reality of acquiring data has not
been simple. As such, a more minimalist point of view was taken:
What is the least amount of data needed to be able to compute
and study correlated defaulting in the context of mortgages and de-
velop an approach to copula phase transitions. Even in this case
there are choices. For example, does one use FICO scores or loan-
to-value ratios? In the next two sub-sections, the copula approach
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of Li is outlined with choices that are subjective, but hopefully ra-
tional/plausible and are required before any consideration of phase
transitions due to contagion can be made.

2.2 Hazard Functions

The hazard function, h(·), is the infinitesimal change in probability
and the probability of defaulting before time t is given by

P (τ < t) = 1 − e−
R

t

0
h(s)ds.

We wish to describe the probability of defaulting as a function of
loan-to-value. This choice is largely based on the availability of his-
torical data that can be used to calibrate the model. This is partic-
ularly important, because the sub-prime mortgage crisis has associ-
ated loans with extremely high loan-to-value ratios and a functional
form with dependency on loan-to-value ratios is needed. We begin
by making the following 2 assumptions.

1. If the loan is 0, then there is no chance for the loan to default at
any time and the loan-to-value is 0, but more important P (τ >

t) = 1, for all t > 0.
2. If the loan is for the full value of the loan or loan-to-value, l, equals

1, then there was no money down on the loan. In cases that have
little money down, the loan is obviously considered risky, and as
l → 1, the loan becomes increasingly more risky. As such, con-
sider the idealization that as l → 1 the loan instantly defaults.
Although this is clearly not true, its not an unreasonable assump-
tion for several reasons, but the most compelling argument is how
well this assumption fits to data for values of l 6= 1. The proba-
bility of instantly defaulting can be expressed as P (τ > t) = 0,
for all t > 0. The case of loan-to-value = 1 will be a singularity
and in practice one will need to convolve the distribution with a
smoothing function or at minimum truncate the singularity. In
addition, we are not addressing the case that loan-to-value ex-
ceeds 1, but it will be clear that the approach can be extended,
but the question as to “how risky” are such loans needs to be
addressed.
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The function l
1−l

will be used to interpolate between cases 1 and 2,
described above, giving a parameterized family of exponential dis-
tributions for the probability of defaulting on a loan as a function
of time and initial loan-to-value. The function l

1−l
is not the only

function that one could have used, but it is the simplest ratio of two
linear functions having the desired boundary behavior. Let loan-to-
value be denoted by l2v and β be a constant that will be fit to data.
The tail distribution for defaulting will have the form

P (τ > t|l2v = l) = e−β·( l

1−l
)·t.

Case 1: l = 0 and

P (τ > t|l2v = 0) = e−β·0·t = 1, ∀t > 0.

Case 1: l = 1 and

P (τ > t|l2v = 1) = e−β·∞·t = 0, ∀t > 0.

The parameter β needs to be fit to historical data. Although his-
torical data can be erroneous, because it only represents empirical
samples of a distribution, one should not undervalue that historical
data represents the samples that have actually occurred.

Discussions with Dr. Thomas Herzog, Chief Actuary for the U.S.
Department of Housing and Urban Development (HUD) have been
illuminating in several respects, but most important, Actuaries at
HUD published results that are needed for fitting β. Table 1 is taken
directly from “15 Million Mortgages, The FHA Experience” (see [2]).
Consider minimizing with respect to β, where the summation is over
the loan-to-value categories. Taking the derivative with respect to β

and setting equal to 0 gives

β{(49)2 + (24)2 + (12.33)2 + (5.66)2} =

{49 ∗ 0.1931 + 24 ∗ 0.1159 + 12.33 ∗ 0.0652 + 5.66 ∗ 0.0751}

β =
13.46

3161.07
= 0.004
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Table 1. claim rates for mortgages endorsed in 1981

Claim rates for mortgages endorsed in 1981

Loan2value % 15k-25k 25k-35k 35k-50k 50k-60k Over Total

Under 80% 3.07% 2.30% 2.29% 3.90% 3.47% 2.89%

80.0 89.9 10.49 8.53 7.03 8.2 5.4 7.51

90.0 94.9 11.42 9.16 6.21 5.22 4.59 6.52

95.0 96.9 13.87 14.85 11.34 10.45 8.74 11.59

97.0 98.9 17.57 25.33 19.40 14.71 6.96 19.31

Totals 10.20 10.00 7.46 7.24 5.74 7.79

The tail probability for defaulting on a loan conditioned on loan-
to-value ratio needed as input to the copula method will be taken
as

P (τ > t|l2v = l) = e−0.004·( l

1−l
)·t.

For the reader’s convenience, Table 2 tabulates the rates against
Table 1.

Table 2. Comparison of defaulting rates

Comparison of defaulting rates

Loan2value l 0.98 0.96 0.925 0.85 0.80

η(l) = ( l

1−l
) 49 24 12.33 5.66 4

0.004 ∗ η(l) 0.196 0.096 0.049 0.023 0.016

Totals 1981 0.1931 0.1159 0.0652 0.0751 0.0289

Some observations are in order. First, there is a definite bump in
the historical distribution in the loan-to-value range of 80.0-89.9.
Dr. Herzog has conveyed that this bump was attributable to a series
of defaulted loans that were not owner-occupied. Other than this
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bump, the postulated distribution compares well against the empir-
ical default rates, but for the most part, underestimates the rate of
defaulting. Although we are pleased with this functional form as a
starting point, we believe that further refinement would be useful.
For example, refinement by conditioning on location and other rele-
vant attributes may result in a more useful prediction to practitioners
in the credit markets.

2.3 Correlation Functions

The copula approach requires knowledge of the correlation between
assets, or mortgages in this case, be known. This is not as simple a
matter as one might wish to think. In the best of situations, there are
different correlation functions that may be used, but in an attempt
to be as realistic as possible: it is not clear in the absence of data that
one can even justify any choice of correlation function. Regardless,
a correlation function is needed.

Consider a pair of mortgages, and that we only know the initial
loan-to-value ratios (lA, lB). Initially, consider the assumption that
if lA → lB, then the correlation ρAB → 1 and if |lA − lB| → 1, then
ρAB should decrease, but not necessarily tend to 0. If one has no
additional information, then there are several choices for functions
that will have the desired boundary behavior, but some are more
optimistic than others. We give several examples.

1. cos(π
2
(lA − lB))

2. 1 − |lA − lB|
2

3. 1 − |lA − lB|
4. 1 −

√

|lA − lB|

5. 1
4
{e−3(lA−lB)2 + 3e−4(lA−lB)4}

The rationale for the 1st is that a Pearson correlation has a geometric
interpretation. The 2nd is a simpler function, but still related to the
functional behavior of the 1st. The 3rd and 4th are both optimistic
choices for functional dependencies, with the 4th being more opti-
mistic than the 3rd function. The 5th function is interesting because
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of the cosine-like behavior near a loan-to-value difference of 0, but
does not go to zero near a difference of 1. As such, the correlation
between two assets stays strictly positive.

Note that if a pool of mortgages is mostly formed with high loan-to-
value ratios, then the defaulting is twice jeopardized. First, because
the individual assets have a very high probability of defaulting, and
the second, a correlation function other than the 3rd and 4th are not
overly optimistic.

3 Contagion effect: results in a chain-reaction

As defaults occur, the degree to which contagion occurs needs to be
measured. Consider the additional factors that one may have been
overly optimistic and under-estimated the correlation function, or
the fundamentals of an individual loan defaulting may have changed
in the last 25 years since the data used to fit the hazard function.
In an attempt to be as practical as possible, one may ask whether
it actually matters. If a portfolio of assets is defaulting quicker than
expected, all that matters is determining the increased rate and the
function that best describes the change in rate.

Nothing travels faster than bad news and for this reason we consider
contagion to be like an infectious disease. Note that every time a
mortgage defaults the associated property is often available at a
distressed price which advocates a buyers market that further effects
market prices. A nearby property may have an increased likelihood
of defaulting due to proximity. In one respect, the effective loan-
to-value ratio is increased. Secondly, nearby sellers may have been
expecting or have needed to sell at minimum prices in order to avoid
defaulting.

Regardless, defaulting spreads via contact, like influenza through a
population. Although contact now may be considered in a broader
sense of the word, we hope to aggregate all the complex behavior into
a computable parameter. This parameter will encode the notion of
a phase transition. If the parameter remains small and negligible
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then one is in the good or at least the expected phase, and if the
parameter is not negligible then the behavior will enter the bad or
unexpected phase.

Stochastic models associated with infectious diseases make crucial
use of branching processes. Branching processes are one of the basic
building blocks for studying stochastic processes that exhibit phase
transitions. We begin by providing a brief primer on branching pro-
cesses.

3.1 Branching Processes (Galton-Watson)

Although we will be interested in time-dependent branching pro-
cesses, we start with the discrete time Galton-Watson process. Let
ξk
j , j, k ≥ 0 be a collection of independent identically distributed non-

negative integer-valued random variables. The off-spring is given by
the family of probability distributions P (ξk

j = l). Given the off-spring
distribution ξn

j , one iteratively constructs the size of a population at
discrete time n + 1 using the off-spring of the population at time n.
The Galton-Walton process is defined by the following formula

Zn+1 =

{
∑Zn

j=1 ξn+1
j : if Zn > 0

0 : if Zn = 0

A realization of this branching process is seen in Figure 1. The popu-
lation associated with this realization grows as follows: Z1 = 1, Z2 =
3, Z3 = 7, with ξ2

1 = 3, ξ3
2 = 2 and ξ3

3 = 3.

Useful facts concerning the Galton-Watson process are:

– (Sub-critical regime) if µ = E(ξn
j ) < 1 then Zn → 0 exponentially

fast.
– (Super-critical regime) If µ > 0 then P (Zn > 0, for all n) > 0.

There is also the case when µ = 1 (critical regime), but we will
not deal with this case. This process is the starting point for un-
derstanding many processes which have phase transitions and also
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Fig. 1. depiction of branching process

understanding the stochastic spread of infections. A key idea is
that if one can identify a behavior that can be thought of
as a branching behavior, then there is possibility of a phase
transition. If the branching rate is sufficiently large then the be-
havior is super-critical and if the branching rate is sufficiently small
then the behavior is sub-critical.

3.2 Malthusian parameter

The discrete time branching has a direct extension to continuous
time branching processes in which the holding time between branch-
ing events has a general holding distribution and is characterized by
the Bellman-Harris process. The Malthusian parameter associated
with the Bellman-Harris process is a characterization of the expo-
nential growth or decay of the process, whereby establishing the
super and sub critical regimes.

Following Theodore Harris’ book The Theory of Branching Processes
(see [3]), Chapter VI on age-dependent branching processes, let the
Laplace transform of the holding time be given by

Lα(G) =

∫

∞

0

e−αydG(y).

Theorem 17.1 (T. Harris, chapter 6)
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Suppose m = d
dθ
|θ=1f(θ) > 1. Define the constant α as the posi-

tive root of the equation

mLα(G) = 1 (17.1)

If G is not a lattice distribution then

E(Zt) ≈ n1e
αt, t → ∞,

Where

n1 =
m − 1

−αm2 d
dα
Lα(G)

Theorem 17.3 (T. Harris)
Suppose m < 1, G is not a lattice distribution, and there exists

a real α (necessarily negative) satisfying (17.1). Suppose in addition
that − d

dα
Lα(G) < ∞ Then (17.2) holds with again defined by (17.3).

Theorem 17.1 and 17.3 characterize the super and sub critical be-
havior of E(Zt) entirely in terms of the mean of the off-spring distri-
bution and the Laplace transform of the time to infect distribution.

3.3 Exponential holding time case

Let P (T > t) = e−βt, β > 0. Then G(t) = 1 − e−βt and dG(t) =
βe−βt.

Lα(G) =

∫

∞

0

e−αydG(y) =

∫

∞

0

βe−(α+β)ydy =
β

α + β

mLα(G) = 1 =⇒ mβ = α = β =⇒
m − 1

α
=

1

β

d

dα
Lα(G) =

β

(α + β)2
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n1 =
m − 1

−αm2 d
dα
Lα(G)

=
(m − 1)(α + β)2

αm2
=

1

βm2

(mβ)2

β
= 1

E(Zt) ≈ e(m−1)βt, t → ∞

If we start by assuming a Markovian case, with exponential holding
times, then n1 = 1 and E(Zt) ≈ eαt.

4 Augmenting the hazard function

Consider that the hazard rate may be perturbed by the degree of con-
tagion. For given α > 0, let N be the number of mortgages in a pool
that is experiencing contagion. At time s, the ratio eαs

N
is the percent-

age of mortgages experiencing contagion. Although the following is
not the only functional dependency that is possible, consider a simple
scenario in which a small percentage of contagion causes a linear per-
turbation to the hazard function and increases dramatically as the
percentage increases. Consider that one may postulate the hazard
function perturbation to again make use of the function x

1−x
. There

are two reasons to consider using this function again. First, it has
certain desirable properties and second leads to nice formulas. Al-
though it is unreasonable to expect the real world to be in complete
agreement with this ansatz, it seemed to be amenable concerning
the hazard function.

P (τ < t|l2v = l) ≈ 1 − e−
R

t

0
[0.004η(l)+η( e

αs

N
)]ds

After some arithmetic and calculus, the following correction to the
single asset default probability is

P (τ < t|l2v = l) ≈ 1 − e−0.004 l

1−l
t ×

[

N − eαt

N − 1

]
1
α

, α > 0, eαt ≤ N
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The contagion term has been collected into the factor

CONTAG(N, α, t) =

[

N − eαt

N − 1

]
1
α

,

where eαt ≤ N . LHopital’s rule may be applied to show that when
α = 0, the contagion term equals 1 and the formula still holds for
α < 0, but α > 0 is the case of interest.

To illustrate the effect that this contagion term has on the defaulting
of a single asset, consider the graphs in Figure 3, e0.1960t corresponds
to the 0.98 loan-to-value case, a CONTAG(1000, 0.5, t) term was
used.

Under this choice of contagion functionality and choice of α, the
default probability is largely unaffected until after t = 4. After which
the contagion term becomes increasingly significant and dramatically
alters the tail probability.

Although α was chosen relatively small (but still positive), its effect
could only be delayed and not avoided. Consider that α could be
significantly larger. Now for the sake of argument, consider that α =
2.5. As seen in Figure 4, the effect on the hazard function tail is now
dramatic.

The time horizon, for α = 2.5, N = 1000, before the contagion begins
to alter the tail is nominally t = 1 and by t = 1.5 the collapse is
eminent. If N = 100, then the time horizon is shortened to t = 0.5,
after which the contagion effect propagates and is depicted in Figure
5.

5 Numerical Experiment

The most important cases are when α > 0, because these
are the situations in which the contagion spreads and the
branching process does not die out.

The following numerical experiment will allow for the use of real
data, as well as synthesized data. In the absence of real data, we
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begin with synthesized data, but first construct the numerical frame-
work for the experiment.

Regardless of whether the data is real or synthesized, consider that
A and B represent two assets from among N assets. Let the matrix
δAB(t) denote the pair-wise indicator functions as to whether pairs
of assets have both defaulted by time t > 0. That is

δAB(t) =

{

1 : if both A and B have defaulted by time t

0 : if otherwise

The joint probability distribution for pair-wise defaulting is approx-
imated by

pα
AB = P (τA < t, τB < t|α > 0)

= Φ2(Φ
−1(P (τA < t|α > 0)), Φ−1(P (τB < t|α > 0)), ρAB)

and one can compute a discrepancy/error term for fixed t and sub-
sequently compute the α that minimizes this discrepancy. For each
t > 0, let A(t) denote the best alpha and given by the formula

A(t) = min
α>0

{

∑

AB

(δAB(t) − pα
AB)2

}

6 Synthesized Data

In order to synthesize data, consider fixing α > 0 and sampling from
the distribution pα

AB for the first time that both assets A and B

have defaulted. A pool of N assets with loan-to-value ratios chosen
independently and identically distributed using the distribution

min(0.750 + 0.128 × Uniform(0, 1), 1)

The simulation is currently based on using loan-to-value, largely be-
cause the report from H.U.D provided real data from which to fit
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the hazard function. It is certainly the case that more than loan-
to-value may be relevant. As noted, geographical data, such as zip
codes, may be extremely useful. In particular, two mortgages with
respective loan-to-value ratios should be more correlated if the assets
are geographically within the “same” real estate market (i.e. same
city or metro-area) than if they are separated. Geographic sepera-
tion does not imply that the assets decorrelate, because other factors
may contribute to asset correlation. Our thinking is that conditioned
on other factors, loan-to-value becomes the final determining fac-
tor in asset correlation and in the absence of real market data, we
would rather not speculate any further than necessary. Regardless,
how correlated two assets “truly” are is of importance and errors in
determining the true asset correlations contribute and increase the
evalution of A(t).

Given two assets, A and B, the choice of covariance function used
was cos(π

2
(lA − lB)), where lA and lB are the initial loan-to-value

ratios for assets A and B. The matrix time-series δAB(t) may now
be computed from the matrix of joint default times and subsequently,
the time-series A(t) may then be computed.

There are several empirical observations concerning A(t). Although
it is clear that A(t) is random and when δAB(t) is not identically 1,
for all pairs, A(t) tends to converge to α.

1. The rate of convergence at which A(t) → α appears to depend
on α.

2. Determining if A(t) has converged is subtle, because by the time
one is confident about the estimate of α, t (time) may be unac-
ceptably large.

3. It is the path properties of A(t) that are crucial.
4. The regularity of A(t) is also a function of number of assets N .

The important question concerns short time horizons and determin-
ing whether an acceptable estimate of α has been computed. If no
contagion exists, then although A(t) will fluctuate, it should, in gen-
eral, remain near 0, but having a point estimate of A(t) near 0 is not

c©Society of Actuaries, 2008 16



7. RUNNING STATISTIC

necessarily an indicator of convergence, because it is the trend of
over intervals of time that is really important and whether
the variance of A(t) is suitably small, which is again a func-
tion of time.

7 Running Statistic

A(t) “counts” the degree to which defaults that have occurred dif-
fer from the probabilities from a parameterized distribution and
which value of this parameter minimizes this discrepancy. The rate
of change of this statistic is important. To make matters more com-
plex, if α is relatively small then although contagion still exists it
can remain under the radar for quite awhile. If α is relatively large,
then although it is above the radar, there is considerably less time to
make decisions concerning the pool of assets. The situation is more
stable for larger asset pools, but the behavior of A(t) over short time
horizons is still the crux of the matter.

In order to get a sense of how this process behaves, 64 realizations of
the process described above were simulated and the values of A(t),
the percentage change of A(t), and the percentage change of defaults
occurred were gathered and plotted. Each realization was run until
no more than 7 percent of all possible pairs had jointly defaulted,
which for these choices of parameters occurs at approximately t = 1
or one year.

Apparent from Figure 6 is that even for synthesized data using α =
2.5 the variance of A(t) is initially quite large. Although it is a matter
of opinion as to when the variance has suitably decreased, it is fair
to say that between t = 0.75 and t = 1 the variance is acceptable
and the joint defaults still have not exceeded 7 percent.

At least for α = 2.5, and the functional dependency for the contagion
effect, there is a time interval during which the contagion is ramping
up and its effects have yet to propagate. Nominally this is between
9 months to a year after which these mortgages were initiated. Fur-
thermore, under these assumptions there is nominally half a year
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before the contagion really sets in. Table 3 gives A(t) statistics, for
the indicated choices of parameters. For viewing, figure 9 and figure
10 respectively graph the log-variance and variance of A(t).

Table 3. Statistics for α = 2.5, N = 100

A(t) statistics for α = 2.5, N = 100

Time Mean Variance Log Variance Skew Kurtosis

1 0.0833 6.2095 53.262 3.9752 0.7680 -0.6825

2 0.1250 4.2722 20.205 3.0059 0.6980 -0.5935

3 0.1667 3.2992 9.6242 2.2643 0.3906 -1.1298

4 0.2083 2.8603 5.3543 1.6779 0.2128 -0.9491

5 0.2500 2.6651 3.4780 1.2465 0.1407 -0.8028

6 0.2917 2.5310 2.4356 0.8902 -0.0570 -1.0139

7 0.3333 2.4302 1.6834 0.5208 -0.0895 -0.8322

8 0.3750 2.4373 1.0255 0.0252 -0.3132 -0.5219

9 0.4167 2.4476 0.7263 -0.3198 -0.2917 0.0819

10 0.4583 2.4762 0.4472 -0.8047 -0.5961 1.4491

11 0.5000 2.5040 0.3193 -1.1416 -0.5269 0.7446

12 0.5417 2.4865 0.2394 -1.4296 -0.4059 0.3112

13 0.5833 2.4667 0.1813 -1.7076 -0.5756 0.4966

14 0.6250 2.4849 0.1294 -2.0448 -0.6061 0.4958

15 0.6667 2.4905 0.1014 -2.2887 -0.8166 1.4329

16 0.7083 2.5024 0.0789 -2.5408 -0.8704 2.0296

17 0.7500 2.5040 0.0561 -2.8806 -0.8924 1.7543

18 0.7917 2.5016 0.0465 -3.0683 -0.9999 1.7938

19 0.8333 2.5190 0.0319 -3.4451 -0.5712 0.2092

20 0.8750 2.5317 0.0220 -3.8167 -0.4862 0.0899

21 0.9167 2.5294 0.0163 -4.1166 -0.3639 -0.1875

8 Some Formalism

For each choice of ρAB and choice of hazard function, a probability
measure is being induced with distribution function:
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µAB((0, t)) = P (τA < t, τB < t) = Φ2(Φ
−1(P (τA < t)), Φ−1(P (τB < t)), ρAB).

Define a measure-valued matrix, over all pairs A and B, to be M ,
where the index set is denoted by {1, 2, · · · , N} over the set of assets.

M =







µ11 · · · µ1N

...
. . .

...
µN1 · · · µNN







The contagion term perturbation also induces a measure-valued ma-
trix.

Mα =







µα
11 · · · µα

1N
...

. . .
...

µα
N1 · · · µ

α
NN







Furthermore, consider the matrix that represents the pair-wise de-
faults.

∆(t) =







δ11(t) · · · δ1N (t)
...

. . .
...

δN1(t) · · · δNN (t)







Recall that the δ’s are 0 or 1 determined by whether pairs of assets
have both defaulted by time t. Using a standard sum of squares
norm, define

‖∆(t) − Mα((0, t))‖2 ≡
∑

AB

(δAB(t) − pα
AB)2

Now, we have given by

A(t) = min
α>0

‖∆(t) − Mα((0, t))‖2

We are looking for the nearest Mα to ∆(t) with respect to ‖ · ‖,
and A(t) represents the best α at time t. The functional form for
the perturbations were chosen because contagion is connected to
branching processes, but we chose the simple type of branching. This
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could have been made more complex. Figure 2 depicts a measure of
a perturbation’s distance from the distribution of pair-wise defaults,
and does not actually imply the geometry.

Fig. 2. Depiction of measure space perturbation

9 Observations, conclusions, and next steps

The approach taken has been straight-forward: we have postulated
that the hazard function associated with the standard copula ap-
proach may be perturbed by an exponential functional correspond-
ing to Malthusian growth. Although the form of this perturbation
has not been rigorously established, its effect is not unreasonable.
Regardless, one may choose to consider other perturbations. Once
the perturbation term is chosen, the method for fitting is really a
regression or curve-fitting type of analysis.

The form of the perturbation was chosen because it leads to a simple
altering of the tail distribution of hazard function and results in a
phase transition for the copula method. To be more precise, the phase
transition is associated with the branching process, and for α > 0 is
the phase for which the branching process has positive probability
of spreading and not dying out.

In the α > 0 case, there is a period of time before which the effects of
the contagion phase are negligible. After an incubation period,

c©Society of Actuaries, 2008 20
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the effects of the contagion phase become macroscopically
noticeable on the magnitude of the pool of assets, but as
the simulation shows there is an interval of time in which
the rate could be estimated. As time elapses, the variance
decreases, as does the window of time before the macro-
scopic effects of contagion become unavoidable. There is a
trade-off between certainty about the estimates and the time frame
remaining in which to make decisions. The reader should take note
that for very short-time asymptotics the variance in the estimates
are “large”, but this balanced by the number of defaults being small.
As the time evolves, the number of defaults increases and the law
large numbers starts to take hold and variance decreases.

Of course, the real world events would be more complex than the
synthesized events and in fact, time delays would play a significant
role in altering the variance in estimating α, but the methods are
still relevant as a starting point for future advances. The choice of
functions which may be used for perturbation of the hazard function
should be further explored, as well as refining the dependency on
other relevant data beyond loan-to-value, such as geographical and
other asset attributes. For example, rather than using a Malthusian
growth behavior, a logistics growth term could have been used and
although estimates would be different, the framework would stay
the same. The exponential growth is curtailed with logistics growth,
but initially remains exponential. The long term/tail behavior of a
purely exponential correction may turn out to be extreme and overly
conservative, but this is somewhat a moot point when considering
current events in the mortgage markets.

Ultimately, use of real data is needed to determine the correct per-
turbation of the hazard function, refinements of the hazard functions
to attributes, and the realistic correlation functions. Although some
real data has been involved in this work, more real data would have
been helpful in calibrating the approach, whereby making the results
more useful to the practitioner.
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9.1 Over-estimating Defaulting

Although this case seems pedantic when considering the current
mortgage crisis, note that the initial estimate of hazard function and
correlations can result in a situation in which a positive perturbation
term only increases error. This situation can arise if the initial proba-
bility measure over-estimates the defaulting. In this case, a negative
perturbation term is needed in order to reduce the error. Such a
perturbation can be an exponential correction or another function.
Although this is not realistic for the current events, it is possible and
should be considered when considering “long” positions or a bubble
that is expanding. In practice, one would consider an expansion of
the market, followed by a contraction.

9.2 Time-varying loan-to-value

In this paper, loan-to-value has been treated as a static variable
established when a mortgage was initiated, but this is not realis-
tic. Fluctuating, albeit currently mostly decreasing, housing pricing
causes the loan-to-value ratio to flucuate and in some cases the value
can move under the loan resulting in a loan-to-value ≥ 1. In addition,
mortgage payments will also adjust the loan-to-value ratios. Formu-
las discussed need to be adjusted for these cases, but the principle
is to measure “skin in the game” and the less “skin” in the game
a borrower has, the more likely the loan is to default. Having loan-
to-value greater than or equal 1 does not necessarily imply instant
defaulting, but it certainly represents an extremely risky position.

The devaluation of assets as been a significant contributing force
resulting in the spread of contagion in the mortgage market. It is
conceivable that if one, in hindsight, adjusts the loan-to-value ratios
for the value decline, then the resulting alpha might not be very
large. The point is to estimate alpha in foresight and not hindsight.
Of course, the situation is one of evaluating and updating in an on-
going process, with the objective to predict the extent of defaulting.
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11 Figures

Note: the legends within the figures are likely to require
enlargement using electronic viewing in order to read.
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11. FIGURES

Fig. 3. CONTAG(1000, 0.5, t)
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Fig. 4. CONTAG(1000, 2.5, t)
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Fig. 5. CONTAG(100, 2.5, t)
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11. FIGURES

Fig. 6. realizations of A(t)
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11. FIGURES

Fig. 7. Percentage Change of A(t) (Second figure is a subset of the first)

The percentage change of quantities A(t2) and A(t1), with times t2 > t1 is

(
(A(t2) −A(t1))

A(t1)
) × 100

.
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Fig. 8. Percentage Change of Defaults (Second figure is a subset of the first)
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11. FIGURES

Fig. 9. log variance A(t)

Fig. 10. variance A(t)
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