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LIFE TABLE TECHNIQUES APPLIED TO 

EXPERIMENTS IN CARCINOGENESIS, AND OTHER INVESTIGATIONS* 

by 

John A. Beekman 

The purpose of this paper is to explain several actuarial-demographic­

statistical techniques and show their application in medical investigations. 

The techniques which will be explained (briefly) are: 

(1) measurement of mortality, and morbidity; 

(2) life table analysis, including multiple-decrement life tables; 

(3) expectation of life; and 

(4) force of mortality. 

Although this paper draws mainly from actuarial and statistical 

references, techniques (1), (2), (3), and (4) are much used in demography-see 

(14], and [21]. 

~ .!_. ~ Simple Exposed to Risk Technique 

Consider an arthritis study designed to compare Treatment A with aspirin. 

The study has investigators in Minneapolis, DesMoines, Houston, and Cincinnati. 

There will be 100 patients per center. For simplicity, we will assume that 50 

of each 100 receive Treatment A, and 50 receive aspirin. There are several 

sampling designs to affect this, but they will not be discussed here. See Wei 

[22], for example. 

*Presented at Midwest Biopharmaceutical Statistics Workshop, held at Ball State 

University, ~~ncie, Indiana on May 23-24,]978. 
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The patients range in age from SO to 80. Because of the sequential 

nature of the arrival of patients, the study at each center may last from 6 

months to 1 year. 

One of the problems in analyzing the data is the loss of some patients 

from observation over the testing period. Common sense might suggest that 

investigators ignore those patients who fail to ever return to the centers. But 

serious loss of data occurs when patients who have been observed for most of the 

study disappear. 

One solution to this problem is to use techniques which actuaries use in 

measuring mortality. These are explained in Batten [3], and Gershenson, [11]. 

Essentially they allow investigators to measure exposure to risk 

populations during any period of observation. Let us agree that 

of non-stationaryj 

the risk in the 

arthritis study is that the med"icine is non-effective. We will record a "1" for 

each patient for each week (or suitable sub-unit of the observation period) 

during which the medicine is non-effective. The sums of these ones for the two 

categories will be the numerators of two rates. The denominators will be the 

exposed-to-risk figures. The exposed-to-risk figure for one patient consists 

of the number of completed weeks of observation. The sums of these figures 

provides the respective denominators. These seriatim procedures can be 

replaced by more sophisticated procedures when thousands of patients are involved. 

The next page shows sample data for Minneapolis. Similar pages would 

reflect the studies at the other three centers. Over-all rates could be obtained 

by adding comparable figures for the four centers before divisions. 

12 



Center: ~linneapolis 

Treatment A 

~umber N of week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 t21 22 23 24 25 26 Total 

~umber of patients 
~4 127 126 completing week N 49 48 47 46 41 41 41 39 39 38 38 37 34 33 32 31 27 27 26 26 26 26 26 915 

:-.<umber reporting 
non-effectiveness 
in week N 11 9 13 12 9 10 11 11 11 9 8 8 8 7 7 8 6 6 6 6 7 8 6 5 6 6 214 

Rate of non- Sum of Row 3 214 .234 effectiveness Sum of Row 2 = 915 = 

Aspirin 

~umber N of week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Total 

Number of patients 
completing week N ~9 47 46 45 43 40 39 38 38 37 37 36 34 32 30 28 28 27 27 26 26 26 25 25 24 24 877 

Number reporting 
non-effectiveness 
in week N 3 12 12 13 12 11 11 10 10 10 9 10 9 10 8 7 6 7 7 8 6 5 6 6 6 6 230 

Rate of non-
effectiveness .262 



For some studies it would be appropriate to compute a time series of rates 

but that seems unnecessary in this example. In reference [2], such time series 

are portrayed very effectively in Figure 2. The two parts of that figure show 

the results of clinical trials where approximately equal numbers of cancer 

patients were treated with neutrons or photons. The figures portray the multiple· 
I 

risks of death, incomplete regression, and recurrence, as well as complete 

regression as the eighteen month.period evolves, and as the number of patients 

under each treatment declines. Four colored areas reveal the progressions of the 

time series. 

Numerous recent statistical papers have been concerned with sample 

designs for clinical trials of treatments for cancer, coronary heart disease, 

or other serious disease. A central theme is the ethical one of minimizing 

the number of apparently inferior treatments. References Flehinger-Louis [9], 

Zelen (23], and Wei [22], are examples of such papers. 

A paper which was studied carefully in the preparation of this paper was 

"Statistical Aspects of Clinical Trials" by B. W. Brown, (6]. The 64 references 

in that paper proved useful in several ways. The reference to Gehan [10], led to 

a helpful version of a life table which will be pursued in Section 2. The 

reference to The University Group Diabetes Program, [16], [18], revealed a 

wealth of material on cooperative clinical trials. 
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§!_ction ~· Life Table Analysis 

The techniques in Section 1 produced over-all rates, but not duration 

dependent rates. Moreover, no attempt was made to keep separate counts of 

those people who were either lost to follow-up, or withdrew from the study. 

In the next example, 100 people are observed fro 24 months beyond an 

initial time. Following Gehan, [10], page 633, the initial time could refer 

5 

to the time of start of treatment, time of diagnosis, or time of first symptoms. 

The life table format is based on page 632 of [10], and the column headings are 

self-explanatory, except for the last one. That column has a starting value of 

1.00000. Each subsequent value is obtained by multiplying the preceding entry 

by the comparable value in the column headed: Conditional Proportion Surviving. 

For example, .94902 = .96965 (.97872), approximately. The first column 

requires a little explanation. The initial month is given, followed by a dash to 

indicate that the period ends just short of the riext initial number. Thus 9 -

refers to the period from the beginning of the 9th month through the end of 

the 11th month. The two columns whose labels start with the word "conditional" 

assume survival to the beginning of the various intervals. 

In a cooperative cli~ical trial, such as UGDP ([16], [18]), it might be 

possible to prepare such a life table for each group of ages (e.g. < 45, 45-64, 

~ 65), or perhaps for each age group, by sex. The present table is for all 

ages and both sexes combined. 
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A LIFE TABLE 

NO.ENTERING NO.LOST TO NO.WITHDRAWN NO.EXPOSED CONDITIONAL CONDITIONAL CU~!ULATI VE 
INTERVAL MID-POINT INTERVAL FOLLOW-UP ALIVE TO RISK NO.DYING PROPORTION PROPORTION PROPORTION 

DYING SURVIVING SURVIVI!iG 

0- 1.5 100. 0 1 99.5 1 .01005 .98995 1.00000 

3- 4.5 98 0 1 97.5 2 .02051 .97949 .98995 

6- 7.5 95 1 1 94.0 2 .02128 .97872 .96965 

9- 10.5 91 1 1 90.0 3 .03333 .96667 .94901 

12- 13.5 86 2 2 84.0 3 .03571 .96429 .91739 

15- 16.5 79 2 1 77.5 2 .02581 .97419 .88463 

18- 19.5 74 4 2 71.0 4 .05634 .94366 .86180 

21- 22.5 64 6 2 60.0 5 .08333 .91667 .81325 
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Let us next consider a toxicology study on rats in which the competing risks are: 

(1) cancer (induced by drugs), (2) old age, (3) pneumonia, and (4) influenza. 

How do you separate (2), (3), (4) deaths from treatment effects deaths from 

cancer induced by drugs? 

All die within 3 or 4 years. 

Solution. With the data we will build a multiple-decrement table. According to 

Jordan [13] ,p. 271, "A multiple-decrement table is a mathematical model which 

assumes a large body of lives subject to several independent causes of decrement 

which are operating continuously. The body of lives forms a closed group, there' 

being no new entrants and no re-entrants after the operation of the various 

decre•ents." 

We will introduce the standard notation ~3] ,pages 271-280 in the terms of 

this example, 

d(l) ~ number of decrements from cancer between ages x and x + 1. 
X 

d(l) • number of decrements from old age between ages x and x + 1. 
X 

d(l) • number of decrements from pneumonia between ages x and x + 1. 
X 

d(4) " numbtr of decremellc:> from influenza between ages x and x + 1. 
X 

d(T) = total number of decrements from all causes between ages x and x + 1 
X 

4 
• 1: d(k). 

k=l X 

l(T) number of lives attaining age x in a body of lives subject to the operation 
X 

of causes of decrement (1), (2), (3), (4). 

q(k) ~ probability that (x) will leave the body of lives within one year as a 
X 

result of cause (k): 
d(k) 

q(k) X 
X : 1 (T) 

X 
1 7 



~) • probability that (x) will leave the body of lives within one year 

regardless of cause: 

~T) 
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p(T) ~ probability that (x) will remain in the body of lives for at least one 
X 

year: 

Similarly, nP~T) and q(T) 
n x 

1 - p (T) 
n x 

Let us assume that 1000 rats are observed, with the resulting multiple-

decrement table: 

X 1 (T) d (1) d (2) d (3) d(4) 
X X X X X 

0 1000 22 0 17 24 

1 937 43 0 26 33 

2 835 84 0 39 47 

3 665 174 42 69 82 

4 298 103 87 47 61 

Various probability statements can be answered from this table. For 

example: 

q~l) E :3~ = probability of death from cancer between ages 2 and 3. 

174 + 42 + 69 + 82 
665 = probability of death from any of the 4 causes 

between ages 3 and 4. 
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\ 

i'~T) = probability of survival 2 years from age 0 = ~O~O 

2~1) = probability of death from cancer 1n first 2 years = 221~0043 

31 q~l) = probability of death from cancer between ages 4 and 5 = 1Q3 
937 

We nov vish to determine total decremental rates which would operate if 
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all cancer deaths were eliminated. We will use a technique explained on pages 

137-9, of Spiegelman [21] • the demography text for actuarial students. A principal 

reference for that technique is Greville [12), a paper which will also be 

referred to later. 

probability that (x) will survive in a life table from which 

cause i has b~en eliminated. 

Let ~-i) ~ 1- p~-i). 

The quantity d(i) who are now saved from cause i would be exposed to deaths from 
X 

all other causes for one half year, on the average. Hence the extra deaths due 

to other causes are 

The new mortality rate for all causes except (i) is 

Upon solving for 

(-i) 
~ 

d(T) - d(i) + ~(i). (-i) 
X X 2 X qX 

q(-i) and then p(-i) one obtains 
X 1 X 1 

1 (T) + .!.. d (i) 
(-i) x+l 2 x 

Px 1 (T) _.!.. d(i) 
X 2 X 

Applying these rates to l(T) = 1000 yields: 0 
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X 0 1 2 3 4 

l(T) 
X 

1000 959 897 705 470 

This table is based on the rates: 

(-1) 937 + 11 948 
Po 1000 - 11 = 989 = .95854 

(-1) 835 + 21.5 856.5 .93555 p1 937 - 21.5 = 915.5 = 

(-1) 665 + 42 623 .78562 p2 835 - 42 = 793 = 

(-1) 298 + 87 385 .66609 p3 665 - 87 = 578 = 

A comparison of the vectors of l(T) values gives one indication of the 
• X 

improvement of mortality. Another indication is to compare expectations of life. 

The curtate and complete expectations of life are defined by: 

e(T) = _1_ ~ l (T) 
X 1 {T) .tel x+t 

X 

As Jordan, [13] says on p. 173: "On the average, the complete future lifetime 

exceeds by half a year the number of integral years in the future lifetime, and 

hence 

Before applying these formulas, the second table must be extended because 

it is very doubtful that all 470 lives in 1,fr) would die in the next year. - Four 

different extension methods are described on page 23 of Miller's monograph, [19] 
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We will use the fourth method, restricted as follows: 

l(T) =A+ 8x + Cx2 + Ox3, x = 2, 3, 4, 5, 6 
X 

I. 000, or 1 ?) 0. 

fhiS produces the following four equations: 

897 ~ A + 28 + 4C + 80 

705 • A + 38 + 9C + 270 

470 • A + 48 + 16C + 640 

0 • A + 78 + 49C + 3430. 

The solution of this system of equations is: 

A • 954.792; 8 • 129.142; c = -95.453; 0 = 8.217. 

The extrapolated values are therefore 1 (T) = 241, 
5 

and lr) = 68. 

11 

The following tables portray the respective life expectancies, and hence 

the gains in expected life by the elimination of cancer from this closed population 

of 1000. 

X 0 1 2 3 4 

e(T) 
X 

2.735 1. 919 1.153 0.448 0.000 

g(T) 3.235 2.419 1.653 0.948 0.500 
X 

X 0 1 2 3 4 5 6 

elTJ 
X 

3.340 2.483 1.654 1.105 0.657 0.282 0.000 

o(T) 
ex 3.840 2.983 2.154 1.605 1.157 0.782 0.500 
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The associated single-decrement tables can be constructed from a multiple. 

decrement table as discussed in pages 277-280 of (13]. Let q;(k) represent the 
X 

probability of decrement from cause k between ages x and x + 1 . This rate will 

not apply to l(T) since some of those lives are not exposed to cause k for a 
X 

full year since they leave due to one of the other causes. If we assume that 

those lives are exposed to cause k for one-half year before leaving, the l(T) 
X 

figure should be reduced by .!.cd CT) - d (k)) 
2 X X 

d (k) 

0 , (k) It --:--=--7-x --,-.......--­
"X i (T) -.!. d(-k) 

X 2 X 

1 d ( -k) 
2 X • Therefore, 

This was the method followed by Pike and Roe (20] in their analysis of an experiment 

in carcinogenesis. The Appendix of Lee (17] used this method. Lee also presents 

another method which will be discussed in Section 3. Both methods are concerned 

with obtaining comparable cancer rates. The Introduction to Lee's paper explains 

the problem on page 777. "In many comparative carcinogenesis experiments in 

animals the non-tumour mortality experience of the different groups of animals 

varies considerably. Allowing for this differing non-tumour mortality is a major 

problem in the analysis of such experiments." 

A valuable and early paper uaing life table analysis and data from the 

Mayo Clinic is ( 4] by Berkson and Gage. Table 1 on page 509 of [ 4] compares 

expectations of life at durations 0, 1, 2, ••• , 15 years after treatment for cured 

and not cured patients treated for cancer of the breast. Table 3 on page 512 of 

(4] utilized the formula for ~(k) for death from cancer. 
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Section 3. Force of ~lort~li ~y 
.:::,::.::...:-
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A function representing force of mortality can be used to construct a life 

table. Thus, this section is a continuation of life table analysis. This brief 

explanation is based on pages lZ-Z~ of Jordan [13J. Typically a life table· port::=ays 

the numbers of lives alive at the beginnings of integral ages. However, the 

intensitY of ~ortality is changing at each instant of t~e. This could be measured 

by the sizple derivative of the life function, i.e. dl (x) 
dx 

However, these 

derivatives ~auld be subject to the exposed to risk l(x). To avoid that problem, 

.i •o have positive values, ~he force oi mortality is defined as 

IJ • _ dl(x) . 1 
x-- dx l(x) 

An al ternati'le expression for :.:x is 

X 

This easily-produces :he result 1 (0) exp{ --f 1J dy}. Therefore, given 
0 y 

the radix 1(0} and ux, one can produce t~e l(x) column, and hence the d(x) column. 

Also note that --------- --------
uly} 

n 
• exp{-f u dt}· and 

_ __ 0 x+t . .:._ .. ... 

n~ • 

n 
- exp{-f u dt}. 

0 x•t 
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Let us again consider the life table iJ, the beginning of Section 2. As 

discussed on pages 629, 631, and 634 of Gehan (10], the force of mortality is alsc' 

referred to as the hazard function. On page 634, (10], an estimate of the 

hazard function during the ith time period is given as 

l 1 • di 1· {h. (n. -d. I 2)} 
l. l. l. 

where hi is the length of the ith time period, and ni is the number exposed 

to risk. This actuarial estimate of the hazard function is described in Kimball 

[15). For our table, h .• 0.25 . 
l. 

Utilizing our life table, we obtain the following approximate values for 

the forces of mortality. 

INTERVAL n. d. h. (n1 - di I 2) \. 
l. l. l. l. 

0- 99.5 1 24.750 .04040 

3- 97.5 2 24.125 .08290 

6- 94.0 2 23.250 .08602 

9- 90.0 3 22.125 .13559 

12- 84.0 3 20.625 .14545 

15- 77.5 2 19.125 .10458 

18- 71.0 4 17.250 .23188 

21- 60.0 5 14.375 .34783 
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Actuaries developed two far-reaching laws of mortality. Gompertz developed 

the law: ~x = Bcx . 

Makeham's law accounts for accidental deaths by adding a constant to the above 

geometric progression. Thus, 

These laws have been very useful in modelling human mortality, and have also been 

used for other types of life For example, Berry and Wagner[S] in a 

carcinogenesis experiment assumed that the natural death rate of a group of rats 

followed the Gompertz distribution in the absence of exposure to the carcinogen. 

Actuaries have used these laws in mortality studies involving millions of 

lives, and thousands of deaths. Over the years special techniques have been 

developed to estimate A, B, and c. These are explained in detail in pages 44-47 

of Miller, [19]. The simplest method applies when the data is smooth, as judged 

OUiler [19), p.S) by the progression and size of some order or orders of the 

finite differences of the data. In that case, one chooses four equidistant values 

of l(x) and solves the set of simultaneous equations resulting from equating the 

observed values to the function values. 
x ex 

For Makeham's ~x' l(x) = ks g where 

-A, and lneg = -8/lnec. These constants may be obtained by 

solving equation (6.31), page 44 of [19). 

lnel(x) = In k + x In s + cxln g e e e 

lnek + (x+2t)lnes + cx+2tlneg 

x+3t 
lnek + (x+3t)lnes + c lneg. 

When the observed data is not regular, methods explained on pages 45-47 of 

[19] are used. 

25 
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An important multiple-decrement paper is [12] by T.N.E. Greville. One of 

its sections is concerned with calculating net from crude death rates, vhen compet~ 

risks are involved. This vas accomplished by assuming that the forces of mortality 

were constant for short periods of time. The paper cited earlier, [ 4] by Berkson 

and Gage, ut111zed this assumption in deriving its key equation (3). 

In Lee '[17], the force of mortality vas assumed constant for a short 

period of time. The three carcinogenesis experiments involved Z?, 20, and 16 

constant forces of mortall ty, respect! vely. Returning to our earlier equations, 

1t \ly = llo for the interval 0 .:S y .:S x, and \ly = \lx for x ,:S y ,:S x + n, 

we obtain: 

Let us now use the notation of Lee on page 778. Let Pik represent the probability 

of surviving the kth risk from time ti to ti+l" In Lee's paper, risk 1 was diagn~sis 
of a tumor, and risk 2 was death 
from any other cause. The symbol Ni represented the number of animals alive at 

time ti (alive without ever having had a tumor), Dik represented decrements from 

risk k for k 1, 2, between times ti and ti+l~ and Di· = Oil + Di2• It was 

assumed that in (ti' ti+l) there were constant forces of mortality vik from 

risk k, k = 1, 2. Thus Pik = e-vik(ti+1-ti), k = 1, 2. The paper Chiang [7] 

demonstrated that Pik could be estimated by 

P1.k,. [1 - D. /N.]Dik/Di• 
1" 1 

Populations were simulated with tumor rates of the actual population, and 

non-tumor death rates of suitable standard populations. Leestates that the 
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assumption of constant forces of mortality can be improved to the weaker restriction 

that the decremental rates remain in constant proportion during (ti' ti+l)' and 

cites the book by Chiang [8]. The reader is referred to pages 244-247 of [8]. 

The variable in Makeham's law is typically age. In a recent paper [1], 

R. Bailey used the model 

h(t) z 6 + a exp(-yt) 

as the force of mortality to describe survival after certain medical procedures. 

The variable t is elapsed time from the procedure. As Bailey states on page 1 of 

[1], "··· the parameter 6 is the long-term risk, a is an initial excess risk, and 

y is a rate constant for the disappearance of the initial excess risk". Let T be 

the random variable representing survival. If F(t) = P[T ~ t], then the above h(t) 

yields 1- F(t) = exp{-6t- (a/y)(l- exp(-yt))}. The paper develops a 

computationally useful expression for the moments 

The first four moments were computed in a trial data set. Also, maximum 

likelihood estimates for that set provided the estimates: 

a = 1.388, y 3.506, and 6 0.120. 

Acknowledgement. The author acknowledges the helpful suggestions of Dr. Charles 

B. Sampson, Lilly Research Laboratories, in the initiation and preparation of this 

paper. 
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