Arnolf F. Shapiro and John M. McAdon

ABSTRACT

This article shows how one could determine how the workload should be divided between the tranch offices of a consulting firm in such a way as to minimize costs.

Introduction

Many uses were recoqnized for the Simplex Metbod very soon after it was developed. One such ixportant application was to the solution of a qeneral supply-and-demand transportation problem which was formulated by Dantzig and Schell. ${ }^{1}$

The transportation problem assumes that there are supply centers and demand centers which are in fixed geographic locations. There are various transportation costs associated with supplying a qiven demand center from a qiven supply center. The objective of the transportation problem is to satisfy the total demand with the least total cost.

Definitions of Keywords

Supply center. A supply center provides something which is needed at another location. Each supply center is assumed to te in a fixed qeoqraphic location. to have a maximum production capacity, and to at least partially meet the needs of some demand center.

```
1Dantziq (1951, p. 359).
```

Sugply sufficiency. For a feasirle solution to exist, the supply centers wust be capable of supolying the total quantity needed by demand centers.

Demand center. A demand center requires something which is produced or distributed at another location. Each demand center is assumed to be in a fixed geoqraphic location and to have a known demand.

Decision variable. A decision variable represents the quantity transported to a specific demand center from a specific supply center.

Direct unit gost qatrix. The transportation costs per unit of supplying a qiven demand center from a qiven supply center are known. Assume that each of these costs is a fixed rate per unit being transported. If there are a supply centers and n demand centers, then these transportation costs per unit may for a artrix of mows by colnms, known as a direct unit cost matrix. ${ }^{2}$ Table 3 is an example.

Obiective function. In the transportation problea. the okjective is to minimize the total cost of transportation. The direct unit costs are the required coefficients for the decision variables in the objective function.

Constraints. The constraints in the transportation problem are the maximum production capacity at each supply center and the quantity needed at each demand center.

Feasible solution. A feasible solution to the transportation
zDantziq (1951, p. 367).
reached. This method of finding an arbitrary tasic solution is called the northwest-corner rule.

Simplex method for the tragsportation problem. given a transportation problem with m supply centers, n demand centers, the sufficiency of the supply to meet the total quantity demanded, the direct unit cost matrix, and an arhitrary basic solution, the simplex method is able to determine an optimal solution in a finite number of iterations. The following procedure is used:

1) If the current feasible solution cannot be improved by the addition of a currently unused airect route, stop. The current feasible solution is an optimal solution.
2) Select one of the currently unused direct rontes which could improve the current feasible solution to enter as a nonzero variablf in the next solution.
3) Discover which currently used route is replaced ry the route which was selected in step two.
4) Repeat steps one through three untilan optimal solution is found.

Reqiew the output. It is important to review the final solution qiven hy a computer proqram to see that the solution is feasitie. Also, the number of norzero variables should be counted. If there are m supply centers and n demand centers, the optimal solution should not contain more than $\quad+n-1$ routes with positive transported amounts.

SumMary

The solution to the transportaticn proflem may he summarized as follows:

1) Determine the supriy centers and demand centers. Separate any combination supply and demand center by substitution.
2) Deteraine the quantity needed at each deqand center.
3) Determine the maximum production capacity of each supply center.
4) Unless the total production capacity is sufficient, stop. No feasible solution exists.
5) Detormine the direct unit cost matrix. Ine the biq-M methor, if necessary, to prevent infeasible solutions.
6) If the total production capacity exceeds the total quantity needed by demand centers, enter a surplus demand center.
7) Use the northwest corner rule to obtain an arbitrary basic solution.
8) Use a computer proqram adopted for the transportation prohlea wich uses the simplex method.
9) Check the resolts.

Apelications

The followina example shows how to use the simplex rethod to solve problems in a pension consulting firm which are similar to the transportation frohlen.

The grohlem. \quad certain fension consulting firm has three main offices and nine branch offices. The firm's business consists of selling and servicing pension plans.

The main offices have the necessary computer facilities and actuarial support and a company policy is to centralize the difficult duties. The firm's offices are located in: Hartford, Connecticut; Phoenix, Arizona; Springfield, Illinois. Table 1 shous an estimate of how much actuarial time is available next year at each main office.

TAELE 1
Availatle Actuarial Time

The branch offices obtain new pension plans for the firm through consultants. Staff located at each branct office perform much of the clerical work, such as checking employee census data, for their pension flans. The firm's branch offices are located in: Atlanta, Georgia; Chicaqo, Illinois; Dallas, Texas: Denver, Colorado: Los Angeles, California; Philadelphia. pennsylvania: Phoenix, Arizona; San Prancisco, California; Seattle, Washington. Table 2 shows an estimate of how much actuarial time will be needed for each branch office's pension plans.

TAELE 2

	Needed Actuarial Time	
Demand-Center Number	Branch office	Actuary-Hours
1.	Atlanta	1.760
2.	Chicaqo	1.590
3.	Dallas	3.670
4.	Cenver	3.280
5.	Los Anqeles	2.950
6.	Philadelphia	3.870
7.	Phoenix	1. 550
8.	San Francisco	3,630
9.	Seattle	2,200

The total available actuarial time at all three main offices is 25.550 hours. The total amount of time needed by all of the pension plans is 24,500 hours. Therefore, the number of hours available is sufficient.

Table 3 qives the direct unit cost matrix. The entries represent expected telephone or traveling expenses per hour of actuarial time.

TAELE 3
Direct Unit Cost Matrix

Supply center	1	2	3	4	${ }_{5}$	nter	7	8	-
1	2.00	2.01	2.50	2. 50	3.00	1. 25	2.75	3.30	3.33
2	2.50	2.50	2.00	1.75	1.50	2.75	0.75	1.75	2. 25
3	1.75	1.00	1.75	2.00	2.50	2.00	2.25	2.50	2.50

Assume that the cost per hour of actuarial time is the same for all main offices. What is the optimal distritution of services?

The solution. Recause the total hours available exceeds the total number of hours needed, a surplus demand center must he
entered. There are no telephone or travelinq expenses rolated with the surplus demand center.

Next, the northwest-corner rule is used to obtain the artitrary basic solution shown in Table 4. Note that entrips are expressed in units of tens of hours. The Hartford main office spends 1,760 actuarial hours with pension plans from the Atlanta branch office, and there is an excess capacity of 1,050 actuarial hours at the Springfield main office. The total of telephone or travelinq expenses is $\$ 53,995$ for the arbitrary basic sclution.

TAELE 4
Arbitrary Easic Solution
(unit $=10$ hours)

Supply										
Center	1	2	3	4	5	6	7	8	9	Surplus
1	176	159	367	225	0	0	0	0	0	0
2	0	0	0	103	295	387	155	15	0	0
3	0	0	0	0	0	0	0	348	220	105

Table 5 contains an optimal solution. ${ }^{4}$ The total of teleptone or traveling expenses is $\$ \mathbf{4 1 . 3 1 0}$, which is a savings of $\$ 12.685$ from the arbitrary basic solution.

4This solution was ottained with a computer proqram which was written to solve the transportation problem with the simplex method.

TAELE 5
Cptimal Solution
(unit $=10$ hours)

Note that the firm's excess capacity of 1.050 actuarial hours has been reassiqned to the fartford main office.

EIBL IOGRAPHY
Ballou. Fonald H. 1973. Business Logistics Management (Englewood Cliffs, New Jersep: Frentice-hall, Inc.)

Bowersox, Donald J. 1978. Loqistical Management, 2nd. ed. (New York: Macmillan Purlishinq Co., Inc.)

Bradley, Stephen P., Arnoldo C. Hax and Thomas L. Magnanti. 1977. Applied Mathematical Eroqramming (Reading, Massachusetts: Addison-Wesley publishing Compañ. Inc.)

Dartzig. George B. 1751. Wapplication of the Sirplex Method to a Transportation Problem." Chapter 23 of Tjalling C. Koopmans (ed.). 1951. Cowles Commissicn Monograph No. 13, ACtivity analysis of production and Allocation: proceedings of a Conference (New York: John Wiley ε Sons. Inc.). pp. 35c-373.

